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Abstract. We study pricing equations in jump-to-default models, and
we provide conditions under which the option price is the unique classical
solution, with a special focus on boundary conditions. In particular, we
find precise conditions ensuring that the option price at the default
boundary coincides with the recovery payment. We also study spatial
convexity of the option price, and we explore the connection between
preservation of convexity and parameter monotonicity.

1. Introduction

Merton’s [19] first structural model for credit risk, followed by Black and
Cox [3], relies on an understanding of the fact that equity and debt of a
firm are linked. This link motivates the need to price equity derivatives and
credit derivatives consistently in a unified framework, enabling consistent
risk management and hedging. In these first structural models only diffusion
processes were used, and default happens when the firm’s asset value hits a
lower boundary, thus making default predictable. An alternative approach
is represented by so-called reduced form models, which were introduced by
Jarrow and Turnbull [14]. In such models, a default intensity is specified,
which leads to unpredictable default times. Recent studies of reduced form
models in which the stock price jumps to zero at default are performed by
Linetsky [16], Carr and Linetsky [5], Carr and Wu [7], Carr and Madan [6],
Mendoza-Arriaga, Carr and Linetsky [18], and Bayraktar and Yang [1] (see
also Merton [20, p.135] for an early reference in which the arrival rate of the
default event is constant).

In the current paper, we study diffusion models extended with a pos-
sible jump to default. Here the stock price follows a diffusion process up
to the default time, which is modeled as the first jump time of a doubly
stochastic Poisson (Cox) process, with a jump intensity that is dependent
on the current state of the underlying diffusion, compare [16], [5] and [6].
At default the stock price drops to zero, reflecting the principle of abso-
lute priority stipulating that stockholders do not receive any recovery. The
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jump-to-default model is thus an analytically tractable, yet flexible, hybrid
model that includes both a stock price process and a default hazard process.

While the focus in [16] and [5] is on models allowing for explicit closed
forms solutions for the standard financial contracts, we consider general
jump-to-default extended diffusion models under weak assumptions on the
jump intensity. In the absence of closed form solutions, numerical methods
have to be employed when pricing, and for this appropriate boundary condi-
tions are needed. We provide a thorough study of the corresponding pricing
equation for this type of models. The contracts we consider have payoffs
that are functions of the underlying stock price at maturity combined with
a recovery payment in the event of default. In particular, conditions are
given under which the price is continuous up to the boundary where the
stock price is zero. One may note that these conditions are also necessary
in the sense that if they are not fulfilled, then the option price close to the
boundary will not be given by the recovery in case of default.

We also provide convexity theory for jump-to-default models. In particu-
lar, we show that if the default rate is convex in the underlying stock price
and the recovery payment, expressed in terms of currency units at maturity,
is increasing in time to maturity, then the jump-to-default model is convex-
ity preserving in the sense that if the pay-off at maturity is convex, then
also the price of the contract is convex in the stock price. Further we show
that preservation of convexity has important implications for parameter de-
pendence. In fact, convexity preserving models are increasing in the default
rate and in the volatility. For related results on preservation of convexity
and parameter dependence in classical diffusion models and jump-diffusion
models, see for example [2], [8], [9], [10], [11], [12] and [13].

The outline of the paper is as follows. In Section 2 we introduce the model
together with general assumptions, and we formulate our main results. For
the sake of simplicity, these results are formulated for time-independent
models, but are easily extendable to more general models as described in that
section. In Section 3 we prove that the option price is the classical solution
to the pricing equation as formulated in Section 2. Finally, in Section 4
we provide conditions under which the model is convexity preserving and
option prices are monotone in the default intensity and in the volatility.

2. Assumptions and main results

We model the pre-default stock price Yt by Y0 = x ∈ [0,∞) and

(1) dYt = (r − q + λ(Yt))Yt dt+ σ(Yt) dWt.

Here the interest rate r and the dividend yield q are non-negative constants,
the default intensity λ and the diffusion coefficient σ are given functions of
the pre-default stock price, and W is a standard Brownian motion. Denote
by τ0 = inf{t ≥ 0 : Yt ≤ 0} the first hitting time (possibly infinite) of zero,
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and define

At =

{ ∫ t
0 λ(Ys) ds t < τ0
∞ t ≥ τ0.

Let θ be exponentially distributed with parameter 1 and such that θ and W
are independent. Let

(2) τ = inf{t ≥ 0 : At > θ},

and define the stock price process X by

Xt :=

{
Yt t < τ
0 t ≥ τ.

Then 0 is the cemetery state for X. Moreover, the stochastic process X
jumps to 0 at time τ , and the rate of default by a jump to default, conditional
on Xt > 0, is λ(Xt).

In this article we consider options specified by a terminal reward if no
default happened together with a time-dependent rebate in case of default.
More precisely, let φ : [0,∞) → R and g : [0,∞) → R be two continuous
functions, and define u : [0,∞)2 → R by

(3) u(x, t) := Ex
[
e−rtg(Xt)1{t<τ} + e−rτφ(t− τ)1{τ≤t}

]
.

Note that, in this equation, t ≥ 0 represents the time left to maturity.
Also note that φ(t) represents the rebate paid out at default in case default
happens when the time left to maturity is t. If the contract instead would be
specified so that the holder receives the rebate φ̃(t) in case default happens
when the time left to maturity is t, but to be paid out at maturity, then the
correct option price is obtained if φ(t) := e−rtφ̃(t).

Remark The process e−(r−q)tXt is a martingale under some mild growth
conditions on the coefficients (specified in Hypothesis 2.1 below). A market
consisting of a risk-free bank account with zero interest rate and the risky
asset X is of course incomplete, and there are infinitely many equivalent
martingale measures. We do not address the issue of picking a suitable
pricing measure, but we rather assume that the model has been calibrated
and specified directly under the measure used for pricing. In this way, u
defined in (3) is, by definition, the option price.

The corresponding pricing equation is

(4)

 ut = Lu(x, t) + λ(x)φ(t) (x, t) ∈ (0,∞)2

u(x, 0) = g(x)
u(0, t) = φ(t),

where

Lu = αuxx + βux − (r + λ)v

with α(x) := σ2(x)/2 and β(x) = (r − q + λ(x))x. If u ∈ C([0,∞)2) ∩
C2,1((0,∞)2) satisfies all equalities in (4), then we say that u is a classical
solution of the pricing equation.
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Hypothesis 2.1. The pay-off functions g : [0,∞)→ R and φ : [0,∞)→ R
are continuous and satisfy g(0) = φ(0), and g is of at most polynomial
growth. The default rate λ : (0,∞) → [0,∞) is non-increasing and locally
Lipschitz continuous. The diffusion coefficient σ : [0,∞)→ [0,∞) is locally
Hölder(1/2) and satisfies the bounds

0 < σ(x) ≤ C(1 + x)

for all x ∈ (0,∞).

Remark Note that the case σ(0) > 0 is allowed.

One of our main results provides conditions under which the option price
is the unique classical solution of the pricing equation.

Theorem 2.2. (Classical solution.) Assume Hypothesis 2.1. Also as-
sume that either limx→0 λ(x) = ∞ or that the process Y can reach zero.
Then the function u defined in (3) is a classical solution of the pricing equa-
tion (4). Moreover, it is the unique classical solution of at most polynomial
growth in the spatial variable.

Remark The classical Feller condition for explosion of diffusions shows that
Y can reach zero if and only if∫ 1

0
exp

{∫ 1

x

β(z)

α(z)
dz

}∫ 1

x

1

α(y)
exp

{
−
∫ 1

y

β(z)

α(z)
dz

}
dydx <∞,

where α(z) = 1
2σ

2(z) and β(z) = (r − q + λ(z))z.

Remark If the pre-default price Y cannot reach zero, and if the local default
rate λ(x) is bounded, then the boundary condition at x = 0 specified in (4)
is not correct. As an example, it is straightforward to check that if g(x) = x,
r = q = 0, σ is linear, λ(x) = 1 and φ(t) = t, then u(x, t) = x+ t− 1 + e−t.
Thus u(0+, t) = t − 1 + e−t 6= t = φ(t). We believe that in such cases, the
appropriate boundary condition at x = 0 is always obtained by formally
inserting x = 0 in the pricing equation, thus obtaining

(5)

{
ut(0, t) = λ(0)φ(t)− (r + λ(0))u(0, t) t > 0
u(0, 0) = φ(0).

Solving (5) then gives the explicit boundary condition

u(0, t) = e−(r+λ(0))t
(
λ(0)

∫ t

0
e(r+λ(0))sφ(s) ds+ φ(0)

)
.

We also study preservation of spatial convexity and parameter monotonic-
ities.

Theorem 2.3. (Preservation of convexity.) In addition to Hypothe-
sis 2.1, also assume that g and λ are convex and that the function ertφ(t) is
increasing. Then x 7→ u(x, t) is convex for any fixed t ≥ 0.
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Theorem 2.4. (Parameter monotonicities.) Assume that g is convex
and ertφ(t) is increasing, and let λi : (0,∞)→ [0,∞), σi : [0,∞)→ [0,∞),
i = 1, 2 be functions such that λ1 ≤ λ2 and σ1 ≤ σ2. If λi and σi satisfy the
conditions of Hypothesis 2.1 and if λ1 or λ2 is convex, then the corresponding
option prices satisfy u1 ≤ u2.

Remark Theorems 2.3 and 2.4 also hold if the assumption φ(0) = g(0) is
replaced with the weaker condition φ(0) ≥ g(0). Indeed, in that case one
may approximate g by gn ≥ g such that gn is convex and gn(0) = φ(0).

The proof of Theorem 2.2 is given in Section 3, and the proofs of Theo-
rems 2.3 and 2.4 are given in Section 4. For similar results in jump models
with fixed jump intensity, but with level-dependent relative jump sizes, see
[8].

Remark The results of this section are readily extendable to the case of
time-dependent models. Let σ = σ(x, t) and λ = λ(x, t) be measurable in
time. For the results above to hold, we need σ and λ to satisfy the conditions
in the relevant theorems in the spatial variable for each fixed t. Moreover, if
these conditions hold locally uniformly in t, the proofs in the sections below
are more or less directly applicable. For instance, if the process Y can reach
zero, it is enough if λ(x, t) ≤ λ(x) and σ(x, t) ≥ σ(x) where λ and σ satisfy
the relevant conditions in the theorems above as well as the Feller condition.
In the case of exploding default rates, a locally uniform lower bound suffices.

Model Intensity Volatility

Madan-Unal [17] c
(ln(Xt/δ))2

constant

Linetsky [16] αx−p constant
Carr-Linetsky [5] b(t) + cx−2p a(t)x−p

Carr-Madan [6] b(t)x−p general local vol.

Table 1. Some examples of hybrid models from the litera-
ture. Here c, δ and p are positive constants, and a and b are
functions of time.

Remark In Table 1 we list a few choices of intensity functions λ and volatil-
ities σ/x that have been studied in the literature. The three last models all
fulfill the model assumptions of Theorems 2.2-2.4. In [17] the authors as-
sume a positive default level δ > 0. Clearly, a simpe translation of our
results shows that the model in [17] can be considered a special case of our
general set-up, and the assumptions of Theorems 2.2-2.4 are then satisfied.

We end this section with a few examples of commonly used contracts.

Example European call options with no recovery in case of default (i.e.
g(x) = (x − K)+, φ(t) = 0) and European put options with the recovery
equal to the strike price, paid out at maturity (i.e. g(x) = (K − x)+,
φ(t) = K−rt), are covered by Theorems 2.2-2.4 above.
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Example A defaultable bond with no recovery (i.e. g(x) = 1, φ(t) = 0)
is covered by versions of Theorems 2.3-2.4 for concave contracts. Thus, if
the remaining assumptions of these theorems are fulfilled, then the value is
concave in x and decreasing in the jump intensity and in the volatility.

Example The floating leg of a credit default swap (CDS) pays a fixed
amount at default if default happens before maturity, and if no default
occurs, nothing is paid out (g(x) = 0, φ(t) = 1). Thus Theorems 2.3-2.4
apply (compare the remark after Theorem 2.4). The fixed leg of a CDS can
be valued as a portfolio of defaultable bonds with no recovery, compare the
previous example.

3. The option price is a classical solution

We begin the proof of Theorem 2.2 by showing uniqueness by employing
classical maximum principle arguments.

Proposition 3.1. (Uniqueness.) There exists at most one classical solu-
tion of (4) of at most polynomial growth.

Proof. Assume that u1 and u2 are two classical solutions of (4) of at most
polynomial growth. Let T0 <∞, and let C and n ≥ 1 be positive constants
such that u := u2 − u1 satisfies

|u(x, t)| ≤ C(1 + xn)

for all (x, t) ∈ [0,∞) × [0, T0]. Let h(x, t) = eMt(1 + xn+1), where the
constant M is chosen large enough so that h satisfies

∂h

∂t
> Lh

for all (x, t) ∈ [0,∞)×[0, T0]. Then h(0, t) > u(0, t) = 0 and h dominates u at
spatial infinity. Using standard arguments to prove the maximum principle,
see Chapter II in [15], one can show that u ≤ εh for all (x, t) ∈ [0,∞)×[0, T0]
and any ε > 0. Consequently, u ≤ 0, and by symmetry u = 0. Thus u1 ≡ u2
on [0,∞)× [0, T0]. Since T0 is arbitrary, this finishes the proof. �

We next show that the option price u is of at most polynomial growth.

Proposition 3.2. (Polynomial moments.) For each k ≥ 0 and T > 0,
there exists a constant C > 0 such that ExXk

γ ≤ C(1 +xk) for all x ≥ 0 and
all stopping times γ ≤ T .

Proof. Denote by Y the process in (1), absorbed at zero if ever reached. By
construction, 0 ≤ Xt ≤ Yt for all t, so it is enough to prove the statement
for Y . By redefining γ as γ ∧ inf{t ≥ 0 : Yt ≥M} we can assume that Yt∧γ
is bounded. We shall see that our bound does not depend on M and we can
thus let M → ∞ to obtain the result. Let h ∈ C2([0,∞)) be positive and
satisfy

• h(x) = 1 for x ≤ 1/2,
• h(x) ≥ xk everywhere,
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• h(x) = xk for x ≥ 2.

The assumptions in Hypothesis 2.1 guarantee the existence of a constant C1

such that
αh′′ + βh′ ≤ C1h

for all x ∈ [0,∞). Define f(t) = Ex[h(Yt∧γ)]. Then, by Ito’s formula,

f(t) = h(x) + Ex
[∫ t∧γ

0
α(Ys)h

′′(Ys) + β(Ys)h
′(Ys)ds

]
≤ h(x) + C1Ex

[∫ t∧γ

0
h(Ys)ds

]
≤ h(x) + C1

∫ t

0
f(s)ds.

Consequently, Gronwall’s lemma yields

Ex[Y k
t∧γ ] ≤ Ex[h(Yt∧γ)] ≤ h(x)eC1t ≤ C(1 + xk),

which finishes the proof. �

To prove continuity of the value function u we first want to establish
continuity properties of the stock price X and of the default time τ . To
emphasize the dependence of the initial point we write Xx and τx, respec-
tively. Similarly, the pre-default stock price is denoted Y x. Recall that the
pre-default stock price process Y x is defined in (1) using the same Brownian
motion W regardless of the initial point x. Similarly, the default time τx in
(2) is defined in terms of the same exponentially distributed random variable
θ, regardless of x. In this way, the process Xx is a martingale with respect
to the completion Fx = (Fxt )t≥0 of the filtration σ(Ws, I

x
s ; s ≤ t), where the

default indicator process Ix is defined by Ixt = 1{τx≤t}. (However, one may

note that Xx is not a martingale with respect to Fyt , y 6= x.)
Moreover, by standard comparison results (see for example [21, Theorem

IX.3.7]) we have that x1 ≤ x2 implies Y x1 ≤ Y x2 . Since λ is non-increasing,
we also find that τx1 ≤ τx2 and Xx1 ≤ Xx2 .

Proposition 3.3. Let the assumptions of Theorem 2.2 hold. Then τx → 0
a.s. as x→ 0.

Proof. First assume that λ(0+) = ∞. Let t > 0 and ε > 0. For k > 1,
let Ak := {Xs ≤ kx, s ∈ [0, t]}, and let B := {Xs > 0, s ∈ [0, t]}. By the
martingale inequality,

Px(Ak) ≥ 1− 1/k.

Thus

Px(B) ≤ Px(B ∩Ak) + Px(Ack)

= Px
({∫ t

0
λ(Ys) ds < θ

}
∩B ∩Ak

)
+ Px(Ack)

≤ Px(tλ(kx) < θ) + 1/k.

Since λ(y)→∞ as y → 0, we may choose k = 2/ε and δ > 0 small enough
so that P(tλ(kδ) < θ) ≤ ε/2, which finishes the proof in the case that λ
explodes.



8 HANNAH DYRSSEN, ERIK EKSTRÖM AND JOHAN TYSK

Now assume that the process Y can reach zero in finite time. Denote by
ϕ the decreasing and positive solution of the ordinary differential equation

αϕ′′ + β(x)ϕ′ − ϕ = 0.

The function ϕ is uniquely determined up to multiplication with a positive
constant, see [4, p.18-19]. Since Y can reach zero, general diffusion theory
yields ϕ(0) < ∞. Recall the notation τ0 = inf{t : Yt ≤ 0}, and let Mt :=
e−t∧τ0ϕ(Yt∧τ0). By Ito’s formula, {Mt, 0 ≤ t < ∞} is a local martingale.
Since M is bounded, M∞ = limt→∞Mt exists, and {Mt, 0 ≤ t ≤ ∞} is a
martingale. By optional sampling,

ϕ(x) = ExMτ0 = Exe−τ0ϕ(Yτ0) = ϕ(0)Exe−τ0 .
Given t > 0 and ε > 0, choose δ > 0 so that

ϕ(x)

ϕ(0)
≥ 1− ε(1− e−t)

for x ≤ δ. Then Px(τ0 > t) ≤ ε for such x. Since τ ≤ τ0, the result
follows. �

Proposition 3.4. Let t ∈ [0,∞) and x, y ∈ [0,∞). Then (Xy
t , τ

y) →
(Xx

t , τ
x) a.s. as y → x.

Proof. First recall that if x < y, then Xx
t ≤ X

y
t . Therefore

E|Xx
t −X

y
t | = |x− y|

by the martingale property. Consequently, Xy
t → Xx

t a.s. as y → x.
For the convergence of τy to τx, first assume that y < x. Then τy ≤ τx,

and it follows from above that there exists a set of full measure such that
Xy
t → Xx

t for all rational t almost surely. It follows that τy → τx almost
surely as y ↑ x.

Now consider the case when y > x. Since Xy
t → Xx

t a.s as y ↘ x, and
since Xx

t = 0 on {τx ≤ t} we have that Xy
t 1{τx≤t} → 0 a.s. It follows from

Proposition 3.3 that limy↘x τ
y ≤ t on {τx ≤ t}. Consequently, τy ↘ τx a.s.

as y ↘ x, thus finishing the proof. �

Proposition 3.5. Under the assumptions of Theorem 2.2, u is continuous.

Proof. We claim that Xy
u → Xx

t in probability as y → x and u → t. We
assume that u ≤ t (a similar argument applies if u ≥ t). Then

P(|Xy
u −Xx

t | > ε) ≤ P(|Xy
u −Xx

u | > ε/2) + P(|Xx
u −Xx

t | > ε/2)

≤ 2

ε
|x− y|+ P(|Y x

u − Y x
t | > ε/2) + P(u < τx ≤ t).

The first term obviously tends to zero as y → x, and the second term tends
to zero as u → t since the paths of Y y

u are almost surely continuous. The
third term also tends to zero since the distribution of τ has no point masses,
thus demonstrating the claim.

Now, the function u is defined by (3). The continuity of the boundary data
given by g and φ, the uniform integrability provided by Proposition 3.2 and
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the convergence in probability of (Xy
u , τy) to (Xx

t , τ
x) demonstrated above

and in Proposition 3.4 give the desired continuity of u. �

Proposition 3.6. The option price u is a classical solution of (4).

Proof. Let R be a strip (x1, x2) × (0,∞) with x1 > 0, and consider the
parabolic problem

(6)

{
vt = Lv + λφ (x, t) ∈ R
v = u (x, t) ∈ ∂pR,

where ∂pR = {x1, x2} × [0,∞)∪ (x1, x2)× {0} is the parabolic boundary of
R. Since u is continuous by Proposition 3.5, there exists a unique solution
v ∈ C(R) ∩ C2,1(R) to (6). Let (x0, t0) ∈ R and define

τR := inf{t ≥ 0 : (Xt, t0 − t) /∈ R}.
Then the process

Mt := e−r(t∧τR)v(Xt∧τR , t0 − t ∧ τR)1{t∧τR<τ} + e−rτφ(t0 − τ)1{τ≤t∧τR}

is a martingale. By the strong Markov property, u = v on R. Consequently,
u ∈ C2,1((0,∞)2) and u satisfies ut = Lu+λφ. Consequently, u is a classical
solution of (4). �

Theorem 2.2 now follows from Propositions 3.1, 3.2 and 3.6.

4. Convexity and parameter monotonicities

In this section we prove Theorems 2.3 and 2.4 about convexity of the
option price and related monotonicity properties with respect to volatility
and the default rate.

We begin with a convexity result under certain additional assumptions
on the parameters. The key ingredient in the proof is a type of maximum
principle argument developed for preservation of convexity, compare [13].

Lemma 4.1. In addition to the assumptions in Theorem 2.3, also assume
that λ and α are in C2([0,∞)) and satisfy λ(0) < ∞ and α(0) > 0. Fur-
thermore, assume that λ is constant on [B,∞) and α = Ax2 on [B,∞) for
some constants A,B > 0. Then x 7→ u(x, t) is convex for t ≥ 0.

Proof. We assume that g and φ are smooth functions, φ′(t) > −rφ(t) and
that g, g′ and g′′ are of at most polynomial growth. The general case follows
easily by approximation since the pointwise limit of a sequence of convex
functions is again convex. Under the current hypotheses, the equation holds
up to the boundary x = 0. Using u(0, t) = φ(t) we find that

(7) α(0)uxx(0, t) = φ′(t) + rφ(t) > 0.

Consequently, u is strictly convex in a neighborhood of the boundary x = 0.
Moreover, uxx is of at most polynomial growth in the spatial variable. In
fact, this can be shown using explicit representation formulas for geometric
Brownian motion involving the initial condition g, the continuous latteral
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boundary condition u(B, t) and a non-homogeneous term φ. Let T > 0,
C > 0 and n ≥ 0 be constants so that

(8) |uxx| ≤ C(1 + xn)

for (x, t) ∈ [0,∞)×[0, T ]. Define a convex function h(x, t) := eMt(x2+xn+3)
for some constant M chosen large enough so that

htxx > (Lh)xx

at all points (x, t) ∈ (0,∞)× [0, T ]. In fact, the existence of such a constant
is guaranteed by the assumptions that λ is constant and α = Ax2 for large
x. Now consider the function uε := u+ εh for fixed ε > 0. Note that by (7)
and (8) there exists some constant δ > 0 such that uε is strictly convex on
[0, δ) × [0, T ] and on (δ−1,∞) × [0, T ]. Assume (to reach a contradiction)
that

(9) t0 := inf{t ∈ [0, T ] : uεxx(x, t) < 0 for some x ∈ (0,∞)}

is finite. By compactness, the infimum is attained for some point (x0, t0) ∈
[δ, δ−1] × (0, T ]. At this point, uεxx = 0. Moreover, x 7→ uεxx(x, t0) has a
minimum point at x = x0, so uεxxx = 0 and uεxxxx ≥ 0. Similarly, uεtxx ≤ 0
at (x0, t0). Consequently,

0 ≥ uεtxx = (Lu+ λφ)xx + εhtxx > (Luε + λφ)xx

≥ λxx(xuεx − uε + φ) ≥ 0,

where the last inequality follows since λ is convex and since x 7→ uε(x, t0)−
φ(t0) is convex and is zero for x = 0. This is a contradiction, which shows
that uε is convex. Since ε is arbitrary, u is also convex in x for t ∈ [0, T ].
Since T is arbitrary, this finishes the proof. �

We next demonstrate that preservation of convexity implies that the op-
tion price is increasing in the default rate and in the volatility.

Proposition 4.2. Assume that g, φ, αi and λi, i = 1, 2 satisfy the assump-
tions of Hypothesis 2.1 and that α1(x) ≤ α2(x) and λ1(x) ≤ λ2(x) for all
x ∈ [0,∞). Also assume that g is convex and that either (α1, λ1) or (α2, λ2)
is convexity preserving. Then the corresponding option prices u1 and u2
satisfy u1 ≤ u2.

Proof. Let n ≥ 1 be such that

(10) max{|u1(x, t)|, |u2(x, t)|} ≤ C(1 + xn)

for all (x, t) ∈ (0,∞) × [0, T ]. Denote by Li the operator corresponding
to αi and λi, i = 1, 2, and choose M large enough so that the function
h(x, t) := eMt(1 + xn+1) satisfies

(11) ht > L2h
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for all x > 0 and t ∈ [0, T ]. To see that such M can be found, observe that

e−Mt(ht − L2h) = M(1 + xn+1) + (r + λ2)(1− nxn+1) + q(n+ 1)xn+1

−α2n(n+ 1)xn−1

≥ M(1 + xn+1) + (r + λ2)(1− nxn+1)− C(xn−1 + xn+1),

for some C > 0. For all small enough x the coefficient for r + λ2 is positive
and we can clearly find M so that M(1 + xn+1)−C(xn−1 + xn+1) ≥ 1. On
the other hand, for large x we have that λ2 is bounded and thus the negative
terms can be cancelled out by letting M be large enough.

Now put uε := u2 + εh, and suppose that the set

E := {(x, t) ∈ (0,∞)× [0, T ] : uε < u1}

is non-empty. By (10), E is contained in (δ, δ−1)× [0, T ] for some δ > 0, so
Ē is compact. Thus there exists a point (x0, t0) ∈ Ē such that

t0 = inf{t ∈ [0, T ] : (x, t) ∈ Ē for some x ∈ (0,∞)}.

By continuity, uε(x0, t0) = u1(x0, t0), so uε(x, 0) − u1(x, 0) ≥ εh(x, 0) > 0
gives t0 > 0. From this it is clear that

(12) ∂t(u
ε − u1) ≤ 0 at (x0, t0).

At (x0, t0) we also have uεx = (u1)x and uεxx ≥ (u1)xx. If (α1, λ1) is
convexity preserving, then by (11) we have

∂t(u
ε − u1) = L2uε − L1u1 + λ2φ− λ1φ+ ε(ht − L2h)(13)

> α2(u
ε
xx − (u1)xx) + (α2 − α1)(u1)xx + (λ2 − λ1)(x0(u1)x − (u1 − φ))

≥ 0

since u1 is convex with u1(0, t0)−φ(t0) = 0. Similarly, if (α2, λ2) is convexity
preserving, then

∂t(u
ε − u1) > α1(u

ε
xx − (u1)xx) + (α2 − α1)u

ε
xx(14)

+(λ2 − λ1)(x0uεx − (uε − φ))

≥ 0

since uε is convex.
But (13) and (14) contradict (12) so we conclude that E is empty. Now

the result follows from letting ε→ 0. �

We now remove the additional assumptions in Lemma 4.1, thus complet-
ing the proof of Theorem 2.3.

Proof of Theorem 2.3. First assume, in addition to the assumptions in
Theorem 2.3, that α satisfies the conditions specified in Lemma 4.1. For a
given default rate λ(x), approximate λ with smooth and decreasing λn ≤ λ
such that λn(0) <∞, λn is constant for large x, λn ↑ λ pointwise, and with
locally bounded Hölder(1/2)-norms uniformly in n. Let u and un be the
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corresponding option prices. By Lemma 4.1 and Proposition 4.2, each un is
convex in the spatial variable, and un ≤ un+1 ≤ u. Define

û(x, t) := lim
n→∞

un(x, t) ≤ u(x, t).

By interior Schauder estimates, û solves ût = Lû in the interior. Since un ≤
û ≤ u, the function û also satisfies the appropriate boundary conditions, so û
is a classical solution of (4). By uniqueness, û = u. Since û is the pointwise
limit of a sequence of spatially convex functions, û is also spatially convex.

To treat the general case of Theorem 2.3, approximate α with smooth
αk ≥ α such that αk(0) > 0, αk = Akx

2 for x ≥ Bk, αk ↓ α pointwise as
k →∞, and with locally bounded Hölder(1/2)-norms uniformly in k. Let u
and uk be the corresponding option prices. As shown above, uk is spatially
convex and decreasing in k. Define

ũ(x, t) := lim
k→∞

uk(x, t) ≥ u(x, t).

As above, ũ is a classical solution of the pricing equation, so ũ = u by
uniqueness. Consequently, u is spatially convex, which finishes the proof. �

Proof of Theorem 2.4. Theorem 2.4 is an immediate consequence of The-
orem 2.3 and Proposition 4.2. �
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