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Abstract

The ability to analyse, interpret and make inferences about evolving dynamical

systems is of great importance in different areas of the world we live in today.

Various examples include the control of engineering systems, data assimilation in

meteorology, volatility estimation in financial markets, computer vision and vehicle

tracking. In general, the dynamical systems are not directly observable, quite often

only partial information, which is deteriorated by the presence noise, is available.

This naturally leads us to the area of stochastic filtering, which is defined as the

estimation of dynamical systems whose trajectory is modelled by a stochastic process

called the signal, given the information accumulated from its partial observation.

A massive scientific and computational effort is dedicated to the development of

various tools for approximating the solution of the filtering problem. Classical PDE

methods can be successful, particularly if the state space has low dimensions (one to

three). In higher dimensions (up to ten), a class of numerical methods called particle

filters have proved the most successful methods to-date. These methods produce

approximations of the posterior distribution of the current state of the signal by

using the empirical distribution of a cloud of particles that explore the signal’s state

space.

In this thesis, we discuss a more general class of numerical methods which involve

generalised particles, that is, particles that evolve through spaces larger than the

signal’s state space. Such generalised particles include Gaussian mixtures, wavelets,

orthonormal polynomials, and finite elements in addition to the classical particle

methods. This thesis contains a rigorous analysis of the approximation of the so-

lution of the filtering problem using Gaussian mixtures. In particular we deduce

the L2-convergence rate and obtain the central limit theorem for the approximating

system. Finally, the filtering model associated to the Navier-Stokes equation will be

discussed as an example.
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Notations

• (Ω,F ,P) - probability triple consisting of a sample space Ω, the σ-algebra F

which is the set of all measurable events, an the probability measure P.

• (Ft)t≥0 - a filtration, an increasing family of sub-σ-algebras of F ; Fs ⊂ Ft,

0 ≤ s ≤ t.

• Rd - the d-dimensional Euclidean space.

• Rd - the one-point compactification of Rd formed by adding a single point at

infinity to Rd.

• (S,B(S)) - the state space of the signal. Normally S is taken as a complete

separable space, and B(S) is the associated Borel σ-algebra, that is, the σ-

algebra generated by the open sets in S.

• B(S) - the space of bounded B(S)-measurable functions from S to R.

• P (S) - the family of Borel probability measures on space S.

• Cb(Rd) - the space of bounded continuous functions on Rd.

• Cm
b (Rd) - the space of bounded continuous functions on Rd with bounded

derivatives up to order m.

• Cm
0 (Rd) - the space of continuous functions on Rd, vanishing at infinity with

continuous partial derivatives up to order m.

• ‖ ∙ ‖∞ - the supremum norm for ϕ : Rd → R: ‖ϕ‖∞ = supx∈Rd ‖ϕ(x)‖.

• ‖ ∙ ‖m,∞ - the norm such that for ϕ on Rd, ‖ϕ‖m,∞ =
∑

|α|≤m supx∈Rd |Dαϕ(x)|,

where α = (α1, . . . , αd) is a multi-index and Dα = (∂1)
α1 ∙ ∙ ∙ (∂d)

αd .
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• MF (Rd) - the set of finite measures on Rd.

• MF (Rd) - the set of finite measures on Rd.

• DMF (Rd)[0, T ] - the space of càdlàg functions (or right continuous functions

with left limits) f : [0, T ] → MF (Rd).

• DMF (Rd)[0,∞) - the space of càdlàg functions (or right continuous functions

with left limits) f : [0,∞) → MF (Rd).
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Chapter 1

Introduction

1.1 Preamble

The ability to analyse, manipulate, and interpret data is of crucial and increasing

importance nowadays. The scope of the related areas is huge and includes satellite

positioning, communications, finance and econometrics, etc (see, for example, [32]

and [8]). We are, however, rarely able to fully and directly observe many of these

phenomena and data which are crucial to our lives; it is often the case that only

partial information about the phenomena is available. It is therefore important to

know what analysis one can do and what conclusions one can make about the data,

or the signal, from its partial observation which is perturbed by noises.

Stochastic filtering is an area which enables us to deal with and solve this type

of problem. Generally speaking, stochastic filtering deals with the estimation of an

evolving dynamical system, called the signal, using some partial observations and a

stochastic model. The signal is modelled by a stochastic process, usually denoted

by X = {Xt, t ≥ 0}, defined on a generic probability space (Ω,F ,P), where t is

the temporal parameter. As mentioned above, the signal process is not available

to observe directly; instead, a partial observation is obtained and it is modelled by

another continuous process Y = {Yt, t ≥ 0}. Therefore, the aims of the filtering

problem is to make inferences about the process X using the information obtained

from recording the process Y .
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The original signal cannot be observed or measured fully partly because of the

presence of noise. Thus we can define the observation process as a function of the

signal X and the (measurement) noise, which is modelled by another stochastic

process W = {Wt, t ≥ 0}, that is:

Yt = ft(X,Wt), t ∈ [0,∞).

The information available from the observation up to time t is defined as the filtration

Y = {Yt, t ≥ 0} generated by the observation process Y , that is:

Yt = σ(Ys, s ∈ [0, t]), t ≥ 0.

Given all these settings, many possible inferences can be made about the signal

process X. For example:

• The best estimate X̂t of the value of the signal at time t given the observation

up to time t. If we mean the best estimate, for example, as the best mean square

estimate, it is equivalent to compute E[Xt | Yt], the conditional expectation

of Xt given Yt.

• The estimate of the difference Xt − X̂t given the observation up to time t. In

the case the signal is real-valued, one may wish to compute the conditional

variance

E[(Xt − X̂t)
2 | Yt] = E[X2

t | Yt] − E[Xt | Yt]
2.

• The probability that the signal at time t can be found within a certain set A

given the observation up to time t, which means computing

P(Xt ∈ A | Yt) = E[1{Xt∈A} | Yt],

the conditional probability of {Xt ∈ A} given Yt.

One can see that all the above inferences require the computation of one or more

quantities of the form E[ϕ(Xt) | Yt], where ϕ is a real-valued function defined on the

state space of the signal. Furthermore, instead of the fragments of information about

Xt obtained from the above quantities, we would like to know all the information

about Xt which is contained in Yt. That means that, we want to compute πt — the

12



conditional distribution of Xt given Yt. This πt is defined as a probability measure-

valued random variable measurable with respect to Yt so that

πt(ϕ) = E[ϕ(Xt) | Yt] =

∫

S
ϕ(x)πt(dx) (1.1)

for all statistics ϕ for which both sides of (1.1) make sense and S is the state space

of the signal. It follows that knowing πt will enable us, at least theoretically, to

compute any inference of Xt given Yt if we integrate function ϕ with respect to πt.

It is well known (see, for example, [64], [65], [66], [71]) that, when Xt and Yt are

both diffusion processes, πt is the solution of the Kushner-Stratonovich equation and

its unnormalised version satisfies the Zakai equation. Both equations are stochastic

partial differential equations, and the corresponding stochastic integral parts are

martingales under certain conditions (details in Chapter 2).

1.2 Overview

Since the analytical solutions to both the Zakai and the Kushner-Stratonovich equa-

tions are rarely available, numerical algorithms for solving the filtering equations are

required. This thesis is therefore devoted to obtaining numerical approximations of

the filtering equations in the continuous time setting.

Among the existing numerical methods for solving the filtering problem, particle

filters (also known as sequential Monte Carlo method ) are among the most popular

ones. Essentially, particle filters are algorithms that approximate πt with discrete

random measures of the form
∑

i

ai(t)δvi(t),

where δvj(t) is the Dirac delta measure centred at vj(t). In other words, we compute

the empirical distributions associated with sets of randomly located particles with

weights a1(t), a2(t), . . ., and positions v1(t), v2(t), . . .. As time increases, typically

the trajectories of a large number of particles diverge from the signal’s trajectory;

with only a small number remaining close to the signal. The weights of the diverg-

ing particles decrease rapidly, therefore contributing very little to the approximating

system, and causing the approximation to converge very slowly to the conditional
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distribution. In order to tackle this so-called sample degeneracy phenomenon, a cor-

rection procedure is added. At correction times, each particle is replaced by a random

number of offspring. Redundant particles are abandoned and only the particles con-

tributing significantly to the system (i.e. with large weights) are carried forward;

so that the most probable region of the trajectory of the signal process X will be

more thoroughly explored. This correction mechanism is also called branching or

resampling. Currently the tree based branching algorithm (TBBA) and multinomial

branching algorithm are two approaches for the correction step.

The introduction of particle methods (or sequential Monte Carlo methods) in

solving the filtering problem dates back to 1960’s by Handschin and Mayne ([40]),

and Akashi and Kumamoto ([1]). In the mid 1990’s, several particle filtering algo-

rithms were proposed by various people. See, for example, Gordon, Salmond and

Ewing ([38]), Gordon, Salmond and Smith ([39]), Kitagawa ([45]), and Carvalho, Del

Moral, Monin and Salut ([12]). The first convergence results for particle filters were

published by Del Moral ([27], [28]) and independently by Crisan and Lyons ([21]).

Various authors made several improvements on the results subsequently, see, for

instance, Crisan and Lyons ([22], [23]), Crisan, Del Moral and Lyons ([17]), Crisan

and Doucet ([18]), Del Moral and Guionnet ([30]), Del Moral and Miclo ([31]), and

Le Gland and Oudjane ([52]). The area of particle filters is still very active, and has

huge amount of research outcomes each year.

The above mentioned classic particle filters make use of a mixture of Dirac mea-

sures to construct the particle approximation; several attempts have been made to

generalise this idea. Kotecha and Djurić ([46]) first introduced the so called Gaus-

sian particle filters, where they used a single Gaussian to approximate the posterior

distribution. They shortly improved their initial work and built the approximations

by weighted Gaussian mixtures (See [47]). Up to now, most of the existing work

has been closely related to the extended (or ensemble) Kalman filter, because of the

Gaussian nature of Kalman filter, and this method of Gaussian mixture approxi-

mations may provide a way to improve the asymptotic behaviour for the ensemble

Kalman filter (see discussions in [51]). The majority of the previous work is in the

discrete time framework. Reich ([59]) recently took a Gaussian mixture to gener-
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alise the ensemble Kalman filter and designed a new algorithm based on continuous

time formulation, where the approximation was constructed using Gaussian mix-

tures without weights. See Flament et al ([36]), Van der Merwe and Wan ([69]),

Carmi et al ([10]), Iglesias, Law and Stuart ([42]), and Lee ([53]) for more related

work.

A major application of the Gaussian mixture approximation is the problem of

filtering the Navier-Stokes equation. There has been a huge amount of literatures

studying various properties of Navier-Stokes equation; however, the study of the

filters of Navier-Stokes equation started quite recently. Brett et al ([6]) chose the

Navier-Stokes equation as the forward model, then formulated data assimilation as

a Bayesian inverse problem and derived the Gaussian approximation filters. Law

and Stuart ([50]) used an MCMC algorithm and showed (by numerical simulation)

that, by appropriate parameter choices, approximate filters can perform well in re-

producing the mean, whereas do not generally do well in reproducing the covariance.

More recent studies on filtering the Navier-Stokes equation are carried out by, for

example, Iglesias, Law and Stuart ([41]), and Beskos et al ([4]).

However, to the author’s knowledge, there has been no existing literature –

including all these mentioned in the above paragraphs – containing rigorous mathe-

matical study on the convergence results of such Gaussian mixture methods. There-

fore, it is of great interests to fill this gap; and this is part of the aim of this thesis.

In addition, this thesis will aim to generalise the current particle filters framework

and build a new approximating system, which I call the generalised particle filters.

In the generalised particle filters system, the ‘generalised positions ’ may take values

on spaces which are (possibly) larger than the state space of the signal; and the

‘generalised weights ’ do not necessarily satisfy the same evolution equation as the

classic weights.

Four possible settings (Gaussian mixtures, wavelets, orthonormal polynomials,

and finite elements) are discussed in this thesis. The key ideas of all these four

methods are similar. To be specific, we would like to find appropriate ways to

construct the approximations of the solution of the Zakai equation, so that the evo-
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lution equation satisfied by the approximating measures are ‘sufficiently’ close the

the Zakai equation. Then we are able to show that the approximating measures are

‘sufficiently’ close to the solution of the Zakai equation and obtain the convergence

of the approximating measures to the real measure. The ultimate aim is to inte-

grate within the framework of generalised particle filters a wide variety of numerical

methods including the above ones, and develop a common approach to analysing

and comparing the existing numerical methods for solving the filtering problem.

In particular, this thesis will concentrate on the approximation using mixtures

of Gaussian measures. Convergence and central-limit type results will be obtained

for the Gaussian mixture approximating system. The application to the filtering of

the solution of the Navier-Stokes equation will also be discussed.

1.3 Contents of the Thesis

In view of the ideas and settings described above, this thesis is devoted to formu-

lating the stochastic filtering framework and solving the filtering equations, both

theoretically and numerically. The thesis is distributed as follows:

In Chapter 2, we review the existing results on stochastic filtering theory1. The

filtering framework is introduced first, with the focus on the problems where the

signal X and observation Y are diffusion processes and the state space S of the

signal process is a complete separable metric space (usually we take S = Rd). Af-

ter that, we will discuss the change of measure approach to deducing the Zakai

equation, which is the linear stochastic partial differential equation satisfied by the

unnormalised version of the conditional distribution of X. Deducing the evolution

equation satisfied by the normalised conditional distribution πt — the Kushner-

Stratonovich equation, is a simple consequence of the Zakai equation.

Chapter 3 contains an introduction of the generalised particle filters with Gaus-

sian mixtures. We will first briefly discuss the classic particle filtering methods. We

1For detailed history of the development of stochastic filtering problem, see, for example, Section

1.3 of [3].
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will then generalise the classic particle approximation system and suggest a different

approach. A natural generalisation is to replace the Dirac measures by Gaussian

measures with non-zero covariance matrix. The approximating system using this

mixtures of Gaussian measures will be set out, with the aim of obtaining the ap-

proximations of the solutions to the Zakai and Kushner-Stratonovich equations. The

Tree Based Branching Algorithm (TBBA) and Multinomial branching algorithm are

discussed for the branching mechanism.

Chapters 4 and 5 contain the main results of the thesis. Chapter 4 includes the

law of large numbers theorem associated to the approximating system. In this chap-

ter, the evolution equations of the approximating systems introduced in the previous

chapter are derived. It is shown that, under certain conditions, the unnormalised

and normalised versions of the approximations of the conditional distribution con-

verge to the solutions of the Zakai equation and the Kushner-Stratonovich equation,

respectively.

To be specific, we have the following result:

Theorem 1.3.1. We denote by ρn
t the approximating measure of ρt – the solution

of the Zakai equation, and πn
t the approximating measure of πt – the solution of the

Kushner-Stratonovich equation, where n is the number of the generalised particles.

Then under certain conditions (see Chapter 4 for details), for any T > 0 and m ≥ 6,

there exist constants cT and c̃T independent of the n, such that for any test function

ϕ ∈ Cm+2
b (R)

Ẽ

[

sup
t∈[0,T ]

(ρn
t (ϕ) − ρt(ϕ))2

]

≤
cT

n
‖ϕ‖2

m+2,∞; (1.2)

Ẽ

[

sup
t∈[0,T ]

|πn
t (ϕ) − πt(ϕ)|

]

≤
c̃T

√
n
‖ϕ‖m+2,∞. (1.3)

Ẽ is the expectation under probability P̃, which is a new probability obtained by

Girsanov transformation such that under P̃ the observation Y is a Brownian motion

independent of the signal X. The derivation of P̃ is discussed in Chpater 2.

Computer simulation results for Beneš filter are given at the end of this chapter.
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In Chapter 5 we obtain a central limit type result. The error between the approx-

imations and the true solutions are recalibrated and shown to form a tight sequence

and their limit in distribution is obtained. Specifically, we have:

Theorem 1.3.2. We adopt the same notations as in Theorem 1.3.1, and we define

the measure-valued processes Un and Ūn as

Un
t ,

√
n(ρn

t − ρt), Ūn
t ,

√
n(πn

t − πt).

Then Un is a tight sequence and converges in distribution to a DM(R)[0,∞)-valued

process U satisfying

Ut(ϕ) = U0(ϕ) +

∫ t

0

Us(Aϕ)ds +

∫ t

0

Us(hϕ)dYs + Λϕ
t .

Furthermore, U is pathwise unique (see Chapter 2 for the definitions of A and h,

and Chapter 5 for the definition of Λϕ). The process Ū satisfies

Ūt(ϕ) =
1

ρt(1)
(Ut(ϕ) − πt(ϕ)Ut(1)) .

Chapter 6 contains the possible areas of future research. In Section 6.1 we intro-

duce the basic ideas of constructing the generalised particle filters with other possible

tools, which include wavelet methods, orthomormal polynomial method, and finite

element method. In the following section, we discuss an important application of

the generalised particle filters, especially the Gaussian measures. Two-dimensional

Navier-Stokes equation is considered as an example. The final chapter will be the

conclusion and summary of the whole thesis.

18



Chapter 2

The Classic Filtering Theory

In this chapter, we review the filtering framework and introduce the change of mea-

sure methods for deducing the Zakai equation, which describes the evolution of the

unnormalised version of the filtering solution. Then the Kushner-Stratonovich equa-

tion, which is satisfied by (the normalised version of) the conditional distribution,

is also discussed. Both existence and uniqueness conditions are introduced.

2.1 Filtering Framework

Let (Ω,F ,P) be a probability space together with a filtration (Ft)t≥0 which satisfies

the usual conditions. On (Ω,F ,P) we consider a Ft-adapted process X = {Xt; t ≥ 0}

which takes value in a complete separable metric space S (the state space, usually

S = Rd). Let S be the associated Borel σ-algebra B(S). The process X is assumed

to have paths which are càdlàg. We call process X the signal process. Define

Xt = σ(Xs; s ∈ [0, t]) ∨N ,

where N is the collection of all P-null sets on (Ω,F), then Xt is the usual augmen-

tation with null sets of the filtration associated with the process X. Then define

X ,
∨

t∈R+

Xt = σ

(
⋃

t∈R+

Xt

)

.

Let B(S) be the space of all bounded B(S)-measurable functions, let A : B(S) →

B(S) be a possibly unbounded linear operator and denoted by D(A) the domain of
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A which is a subset of B(S). We assume that 1 ∈ D(A) and A1 = 0. This definition

implies that if f ∈ D(A) then Af is bounded.

Let π0 ∈ P(S) and assume that X is a solution of the martingale problem

for (A, π0). In other words, assume the distribution of X0 is π0 and the process

Mϕ = {Mϕ
t ; t ≥ 0} defined as

Mϕ
t = ϕ(Xt) − ϕ(X0) −

∫ t

0

(Aϕ)(Xs)ds, t ≥ 0 (2.1)

is an Ft-adapted martingale for any ϕ ∈ D(A). The operator A is called the in-

finitesimal generator of the process X.

Let h = (hi)
m
i=1 : S→ Rm be a measurable function such that

P

(∫ t

0

‖h(Xs)‖ds < ∞

)

= 1 (2.2)

for all t ≥ 0, where ‖ ∙ ‖ is the Euclidean norm, meaning ‖a‖ =
√∑d

i=1

∑p
j=1 a2

ij for

a d×p matrix a. Let W be a standard Ft-adapted m-dimensional Brownian motion

on (Ω,F ,P) independent of X, and Y be the process which satisfies the following

evolution equation

Yt = Y0 +

∫ t

0

h(Xs)ds + Wt, (2.3)

Condition (2.2) ensures that the Riemann integral in equation (2.3) exists almost

surely. This process Y = {Yt; t ≥ 0} is called the observation process. Let {Yt, t ≥

0} be the usual augmentation of the filtration associated with the process Y , viz

Yt = σ(Ys, s ∈ [0, t]) ∨N ,

Y =
∨

t∈R+

Yt = σ

(
⋃

t∈R+

Yt

)

.

Then note that since by the measurability of h, Yt is Ft-adapted, it follows that

Yt ⊂ Ft.

Now we are in the position to formally define the filtering problem:

Definition 2.1.1. The filtering problem consists in determining the conditional dis-

tribution πt of the signal X at time t given the information accumulated from ob-

serving Y in the interval [0, t]; that is, for ϕ ∈ B(S), computing

πt(ϕ) =

∫

S
ϕ(x)πt(dx) = E[ϕ(Xt) | Yt]. (2.4)
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From the following theorem (see, for example, in [3]), we see that πt can be

formalised by defining a (probability) measure-valued stochastic process describing

the conditional distribution.

Theorem 2.1.2. Let S be a complete metric space and S be the associated Borel

σ-algebra. Then there exists a P(S)-valued Yt-adapted process π = {πt : t ≥ 0} such

that for any f ∈ B(S)

πt(f) = E[f(Xt) | Yt] P− a.s.,

where P(S) is the space of probability measures over (S, P (S)) and P (S) is the set

of all subsets of S. In particular, the identity

πω
t (A) = P[Xt ∈ A | Yt](ω) (2.5)

holds true almost surely for any A ∈ B(S).

Moreover if Y satisfies the evolution equation

Yt = Y0 +

∫ t

0

h(Xs)ds + Wt, t ≥ 0, (2.6)

where W = {Wt : t ≥ 0} is a standard Ft-adapted m-dimensional Brownian motion

and h = (hi)
m
i=1 is a measurable function such that

E

[∫ t

0

‖h(Xs)‖ds

]

< ∞ (2.7)

and

P

(∫ t

0

‖πs(h)‖2ds < ∞

)

= 1 (2.8)

for all t ≥ 0, then π has a Yt-adapted progressively measurable modification. Fur-

thermore, if X is càdlàg then πt can be chosen to have càdlàg paths.

There are two commonly used particular cases of the signal process Xt, which

are diffusion process and Markov chain with a finite state space respectively. The

following example discusses the first case, which will be used throughout this thesis.

Example 2.1.3 (X is a Diffusion Process). Let X = (X i)d
i=1 be the solution of a

d-dimensional stochastic differential equation driven by a p-dimensional Brownian

motion V = (V j)p
j=1:

X i
t = X i

0 +

∫ t

0

f i(Xs)ds +

p∑

j=1

∫ t

0

σij(Xs)dV j
s , i = 1, . . . , d (2.9)
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We assume that both f = (f i)d
i=1 : Rd → Rd and σ = (σij)i=1,...,d;j=1,...,p : Rd → Rd×p

are globally Lipschitz1. Under the globally Lipschitz condition, (2.9) has a unique

solution (Theorem 5.2.9 in [44]). The generator A associated with the process X is

the second-order differential operator

A =
d∑

i=1

f i ∂

∂xi
+

d∑

i=1

d∑

j=1

aij ∂2

∂xi∂xj
, (2.10)

where a = (aij)i,j=1,...,d : Rd → Rd×d is the matrix-valued function defined as

aij =
1

2

p∑

k=1

σikσkj =
1

2
(σσ>)ij , i, j = 1, . . . , d; (2.11)

and σ> is the transpose of σ.

Remark 2.1.4. For the case where X is a Markov process with a finite number of

states, see section 3.2.2 of [3].

The proofs of the results in the reminder of this chapter, unless otherwise stated,

can be found in [3].

2.2 Theoretical Results

Among the possible ways of deducing the evolution equation for π, there are two

commonly used approaches, namely the change of measure method and the innova-

tion process method. We revisit briefly change of probability measure method. For

the second approach, see Section 3.7 of [3].

In the change of measure method, we construct a new probability measure on Ω,

under which the process Y is a Brownian motion; and then we represent π in terms

of its unnormalised version ρ, which is shown to satisfy a linear evolution equation.

An application of Itô’s formula gives us the evolution equation satisfied by π.

Firstly, let Z = {Zt, t ≥ 0} be the process defined by

Zt = exp

(

−
m∑

i=1

∫ t

0

hi(Xs)dW i
s −

1

2

m∑

i=1

∫ t

0

hi(Xs)
2ds

)

, t ≥ 0. (2.12)

1That is to say, ∃K > 0, so that for ∀x, y ∈ Rd, ‖f(x)− f(y)‖ ≤ K‖x− y‖ and ‖σ(x)−σ(y)‖ ≤

K‖x − y‖.
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Instead of considering Novikov’s condition, which is difficult to verify directly, we

consider the following condition

E

[∫ t

0

‖h(Xs)‖
2ds

]

< ∞, E

[∫ t

0

Zs‖h(Xs)‖
2ds

]

< ∞ (2.13)

Proposition 2.2.1. If condition (2.13) holds, then the process Z = {Zt, t ≥ 0}

defined in (2.12) is an Ft-adapted martingale.

Having these conditions, and notice the fact that Zt > 0 a.s. for fixed t ≥ 0, we

introduce a probability measure P̃t on Ft by specifying its Radon-Nikodym derivative

with respect to P to be given by Zt, viz

dP̃t

dP

∣
∣
∣
∣
∣
Ft

= Zt.

We define a probability measure P̃ which is equivalent to P on
⋃

0≤t<∞ Ft and

we are able to ignore the superscript t.

Then by Girsanov’s Theorem (Theorem 3.5.1 of [44]), the observation process

Y is a Brownian motion independent of X under P̃ provided condition (2.13) is

satisfied; and the law of the signal X under P̃ is the same as its law under P.

Let Z̃ = {Z̃t, t ≥ 0} be the process defined as Z̃t = Z−1
t for t ≥ 0, then under P̃,

Z̃t has the following expression:

Z̃t = exp

(
m∑

i=1

∫ t

0

hi(Xs)dY i
s −

1

2

m∑

i=1

∫ t

0

hi(Xs)
2ds

)

, t ≥ 0. (2.14)

It is immediate that Ẑ is a local martingale and since Ẽ[Z̃t] = E[Z̃tZt] = 1, Z̃t is a

genuine Ft-adapted martingale under P̃ and

dP

dP̃

∣
∣
∣
∣
∣
Ft

= Z̃t t ≥ 0.

The following proposition holds because of the fact that under P̃, the Yt-adapted

Brownian motion Y is also a Markov process.

Proposition 2.2.2. Let U be an integrable Ft-measurable random variable. Then

we have

Ẽ[U | Yt] = Ẽ[U | Y ]. (2.15)
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Remark 2.2.3. The importance of this proposition is that it replaces the time-

dependent family of σ-algebra Yt in the conditional expectation with the fixed σ-

algebra Y, enabling us to apply results from Kolmogorov conditional expectation

which is applicable only if the conditioning σ-algebras are time-independent.

Now we are able to introduce Kallianpur-Striebel formula and define the unnor-

malised conditional distribution process.

Proposition 2.2.4 (Kallianpur-Striebel formula). Assume that condition (2.13)

holds. For every ϕ ∈ B(S), for fixed t ∈ [0,∞),

πt(ϕ) =
Ẽ[Z̃tϕ(Xt) | Y ]

Ẽ[Z̃t | Y ]
P̃(P) − a.s.. (2.16)

Let ζ = {ζt, t ≥ 0} be the process defined by ζt = Ẽ[Zt | Y ], then we can choose a

càdlàg version of ζt which is a Yt-martingale. Given such a ζ, we have the following

definition:

Definition 2.2.5 (Unnormalised Conditional Distribution). We define the unnor-

malised conditional distribution of X to be the measure-valued process ρ = {ρt, t ≥ 0}

which is determined by the values of ρtϕ for ϕ ∈ B(S) which are given for t ≥ 0 by

ρt(ϕ) , (πt(ϕ)) ∙ ζt.

Then from Proposition 2.2.4 and the definition of ζ, for every t ≥ 0, we have:

ρt(ϕ) = Ẽ[Z̃tϕ(Xt) | Y ] P̃(P) − a.s. (2.17)

and if condition (2.13) holds, we also have:

πt(ϕ) =
ρt(ϕ)

ρt(1)
P̃(P) − a.s.. (2.18)

Now we are in the position to introduce the Zakai Equation, which is satisfied

by ρtϕ; as well as the Kushner-Stratonovich Equation, which is satisfied by πtϕ. In

the following, we further assume that for all t ≥ 0,

P̃

[∫ t

0

[ρs(‖h‖)]
2ds < ∞

]

= 1. (2.19)
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Theorem 2.2.6 (Zakai Equation). If conditions (2.13) and (2.19) are satisfied then

the process ρt satisfies the following evolution equation, called the Zakai Equation.

ρt(ϕ) = π0(ϕ) +

∫ t

0

ρs(Aϕ)ds +

∫ t

0

ρs(ϕh>)dYs, P̃− a.s. ∀t ≥ 0 (2.20)

for any ϕ ∈ D(A).

To derive the equation satisfied by π, we firstly give the explicit representation

of the process t → ρt(1), which is

ρt(1) = exp

(∫ t

0

πs(h
>)dYs −

1

2

∫ t

0

πs(h
>)πs(h)ds

)

.

With this expression and Kallianpur-Striebel formula, use of Itô’s formula leads to

the following Theorem:

Theorem 2.2.7 (Kushner-Stratonovich Equation). If conditions (2.13) and (2.19)

are satisfied then the conditional distribution of the signal X satisfies the following

evolution equation called the Kushner-Stratonovich Equation.

πt(ϕ) = π0(ϕ) +

∫ t

0

πs(Aϕ)ds +

∫ t

0

(πs(ϕh>)− πs(h
>)πs(ϕ))(dYs − πs(h)ds) (2.21)

for any ϕ ∈ D(A).

Given the Zakai equation and the Kushner-Stratonovich equation, it is natural

to investigate the uniqueness of the solutions. We would like to know under what

assumptions on the coefficients of the signal and observation processes the two equa-

tions are uniquely characterised by ρt and πt respectively. In fact the question of

uniqueness becomes highly important when we approximate ρ and π numerically as

most of the analysis of existing numerical algorithms depends on the SPDE charac-

terisation of the two processes.

For the Zakai equation (2.20), we consider the following class of stochastic pro-

cesses:

Definition 2.2.8. The set U is the space of all Yt-adapted Ml(Rd)-valued stochastic

processes μ = {μt, t ≥ 0} with càdlàg paths such that for all t ≥ 0, we have

Ẽ

[∫ t

0

(μs(ψ))2ds

]

< ∞,
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where ψ : Rd → R is the function ψ(x) = 1 + ‖x‖ for any x ∈ Rd; and Ml(Rd) is

the space of finite measures μ over B(Rd) such that μ(ψ) < ∞.

Then we have the following theorem on the uniqueness of solution of Zakai equa-

tion.

Theorem 2.2.9. If the functions f in (2.9), a in (2.11) and h in (2.6) have twice

continuously differentiable components and all their derivatives of first- and second-

order are bounded, then the Zakai equation (2.20) has a unique solution in the class

U , up to indistinguishability.

For Kushner-Stratonovich equation (2.21), let Ū be the class of all Yt-adapted

Ml(Rd)-valued stochastic processes μ = {μt, t ≥ 0} with càdlàg paths such that

the process mμμ belongs to the class U , where

mμ
t = exp

(∫ t

0

μs(h
>)dYs −

1

2

∫ t

0

μs(h
>)μ(h)ds

)

, t ≥ 0.

Theorem 2.2.10. If functions f in (2.9), a in (2.11) and h in (2.6) have twice con-

tinuously differentiable components and their derivatives of first- and second-order

are bounded, then the Kushner-Stratonovich equation (2.21) has a unique solution

in the class Ū , up to indistinguishability.
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Chapter 3

Generalised Particle Filters with

Gaussian Mixtures

In this chapter, we will firstly review the classic particle filters, and then introduce

a generalisation called generalised particle filters with Gaussian mixtures. In this

case, the positions of the (generalised) particles are in (possibly) larger spaces than

the state space of the signal process X.

One of the reason for introducing the generalised particle filters is that the par-

ticles involved in the classical particle filter carry information about their positions

and their weights. One can interpret the system of particles as a quantisation of

the posterior distribution π, and of the unnormalised conditional distribution ρ of

the signal, respectively. This limited information may be wasteful. Indeed, it may

be the case that if we allow more information to be carried by each particle then

perhaps we will need a smaller number of particles. Therefore we may be able to

reduce the overall computational effort.

In what follows, we discuss the general ideas the classic particle filters and the

generalised particle filters constructed by Gaussian mixtures. We will, in this chap-

ter, introduce the approximating algorithm of the Gaussian mixture approximation;

the corresponding convergence analysis and central limit theorem will be discussed

in the next two chapters.
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3.1 Introduction to the Classic Particle Filters

Explicit solutions (ρ or π) of the filtering equations are rarely available. There are

only a few exceptions where one can obtain πt explicitly (see Chapter 6 of [3] for

explicit formula for the Beneš filter and Kalman-Bucy filter). Several classes of

numerical methods were therefore developed to approximate the solution of the fil-

tering problem. These methods include the projection filter and moments methods,

the spectral methods, the PDE methods, as well as the particle methods.

The projection filter is an algorithm which is used to provide an approximation

of the conditional distribution of the signal. It is based on the differential geometric

approach to statistics. To the author’s knowledge, no general convergence theorem

has been developed for this method.

The spectral approach, introduced in 1997 by Lototsky, Mikulevicius and Ro-

zovskii in [54], for numerically estimating the conditional distribution of the signal

is based on Cameron-Martin decomposition of L2-functionals of a Gaussian process.

This approach allows the computations involving the observations and the ones in-

volving the system parameters to be separated.

The partial differential equations (PDE) method makes use of the fact that the

density of the unnormalized conditional distribution of the signal is the solution of a

partial differential equation (see, for example, Chapter 7 in [3]). Although this is a

stochastic partial differential equation, classical partial differential equations meth-

ods can still be applied to it. These methods are very successful in low dimensions

but cannot be applied to high-dimensional problems. This is because they require

the use of a space grid whose size increases exponentially with the dimension of the

state space of the signal.

Particle methods are one of the most effective and versatile methods for solving

the filtering problem numerically. The main idea is to represent the process πt

(or ρt) by an approximating system of (weighted) particles whose positions and

weights satisfy certain SDEs which are numerically solvable. Roughly speaking, they

are algorithms which approximate the stochastic process πt with discrete random
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measures (sum of Dirac measures) of the form

∑

i

ai(t)δvi(t)

with stochastic masses (weights) a1(t), a2(t), . . . , and corresponding stochastic po-

sitions v1(t), v2(t), . . . , where vi(t) ∈ S. Kallianpur-Striebel formula is the basis of

this class of numerical method because we are essentially doing Monte Carlo approx-

imation to the unnormalised conditional distribution ρtϕ = Ẽ[Z̃tϕ(Xt) | Y ] (defined

in (2.17)). This idea will be explained further as below:

From the Kallianpur-Striebel formula we know that:

πt(ϕ) =
ρt(ϕ)

ρt(1)
P̃(P) − a.s.,

Let {vn
j }

n
j=1 be n mutually independent stochastic processes which are all indepen-

dent of the observation Y , and each of them is a solution of the martingale problem

(A, π0); in other words, the evolution of vn
j is

vn
j (t) = vn

j (0) +

∫ t

0

f
(
vn

j (s)
)
ds +

∫ t

0

σ
(
vn

j (s)
)
dV (j)

s , (3.1)

where the processes (V (j))n
j=1 are mutually independent Ft-adapted p-dimensional

Brownian motions which are independent of Y and all other random variables in the

system.

Also let {an
j }

n
j=1 be the following exponential martingale:

an
j (t) = 1 +

m∑

k=1

∫ t

0

an
j (s)hk(vn

j (s))dY k
s ; (3.2)

in other words

an
j (t) = exp

(∫ t

0

h(vn
j (s))>dYs −

1

2

∫ t

0

‖h(vn
j (s))‖2ds

)

. (3.3)

Then (vn
j , an

j , Y ), j = 1, . . . , n, are identically distributed and have the same distri-

bution as (X, Z̃, Y ) under P̃; and furthermore, the pairs (vn
j (t), an

j (t)), j = 1, . . . , n

are mutually independent conditional on the σ-algebra Yt.
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We now have the numerical approximations ρn = {ρn
t ; t ≥ 0} (and πn = {πn

t ; t ≥

0}) of the solutions of the filtering problem ρ (and π). Define the measure-valued

process ρn
t to be the following weighted sum of Dirac measure:

ρn
t ,

1

n

n∑

j=1

an
j (t)δvn

j (t); (3.4)

and its normalised version

πn
t ,

ρn
t

ρn
t (1)

=
n∑

j=1

ān
j (t)δvn

j (t), (3.5)

where the normalised weights ān
j have the form

ān
j (t) ,

an
j (t)

∑n
k=1 an

k(t)
.

It can now be seen that this is a Monte Carlo approximation and the independent

realisations vn
j of the signal X can be interpreted as the trajectories of the particles.

From Corollary 8.2.1 in [3] we have that ρn and πn converge (both in expectation

and almost surely) to ρ and π respectively.

As time increases, the unnormalised weights of the majority of the particles

decrease to zero, with only few becoming very large (or equivalently, the normalised

weights of the majority of the particles decrease to zero, with only few becoming

close to one), this phenomenon is called the sample degeneracy. As a consequence,

only a small number of particles contribute significantly to the approximations, and

therefore a large number of particles are needed in order to obtain the required

accuracy; in other words, the convergence of this approximation is very slow. In

order to solve this, particle filters (or sequential Monte Carlo Methods) are employed.

To be specific, a resampling (or branching) procedure is used so that it culls particles

with small weights and multiplies particles with large weights. The resampling

depends both on the weights of the particles and the observation data, and by doing

this particles with small weights (and hence their trajectories are far from the signal)

are not carried forward and therefore the more likely region where the signal might

be can be explored.
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3.2 The Approximation with Gaussian Mixtures

The Gaussian mixture approximation is similar to the classic particle filters, except

that the approximating measures are constructed using a sum of Gaussian measures,

rather than Dirac measures. In this section we will introduce the approximating al-

gorithm involving mixtures of Gaussian measures.

For ease of notations, we assume, hereinafter from this section, that the state

space of the signal S = R. The approximating algorithm discussed in this section,

together with the L2-convergence analysis in Chapter 4 and Central Limit Theorem

result in Chapter 5, are all based on this assumption. We should also note that all

the results hereinafter can be extended without significant technical difficulties to

the multi-dimensional case where S = Rd.

Firstly, we let Δ = {0 = δ0 < δ1 < ∙ ∙ ∙ < δN = T} be an equidistant partition of

the interval [0, T ] with equal length, with δi = iδ, i = 1, . . . , N ; and N = T
δ
. The

approximating algorithm is then introduced as follows.

Initialisation: At time zero, the particle system consists of n Gaussian measures

all with equal weights 1/n, initial means vn
j (0), and initial variances ωn

j (0), for

j = 1, . . . , n; denoted by Γvn
j (0),ωn

j (0). The approximation of π0 has the form

πn
0 ,

1

n

n∑

j=1

Γvn
j (0),ωn

j (0), (3.6)

Recursion: During the interval t ∈ [iδ, (i+1)δ), i = 1, . . . , N, the approximation

ρn of the unnormalised conditional distribution ρ will take the form

πn
t ,

n∑

j=1

ān
j (t)Γvn

j (t),ωn
j (t), (3.7)

where vn
j (t) denotes the mean and ωn

j (t) denotes the variance of the Gaussian mea-

sure Γvn
j (t),ωn

j (t), and an
j (t) is the (unnormalised) weight of the particle, and

ān
j (t) =

an
j (t)

∑n
k=1 an

k(t)
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is the normalised weight. Obviously, each particle is characterised by the triple

process (an
j , vn

j , ωn
j ) which is chosen to evolve as






an
j (t) = 1 +

∫ t

iδ
an

j (s)h(vn
j (s))dYs,

vn
j (t) = vn

j (iδ) +
∫ t

iδ
f
(
vn

j (s)
)
ds +

√
1 − α

∫ t

iδ
σ
(
vn

j (s)
)
dV

(j)
s ,

ωn
j (t) = α

(
β +

∫ t

iδ
σ2
(
vn

j (s)
)
ds
)

,

(3.8)

where {V (j)}n
j=1 are mutually independent Brownian motions and independent of

Y . The parameter α is a real number in the interval [0, 1]. For α = 0 we recover

the classic particle approximation (see, for example, Chapter 9 in [3]); for α = 1

the mean of the Gaussian measures evolve deterministically (the stochastic term is

eliminated). The parameter β is a positive real number, which we call the smooth-

ing parameter, ensures that the approximating measure has smooth density at the

branching time.

Branching/Resampling: As in the classic particle filters, we need a branch-

ing/resampling mechanism in order to minimise the effect of sample degeneracy. To

be specific, at the end of the interval [iδ, (i + 1)δ), immediately prior to branching,

each Gaussian measure is replaced by a random number of offsprings, which are

Gaussian measures with mean Xn
j ((i + 1)δ) and variance αβ, where the mean Xn

j is

a normally distributed random variable, i.e.

Xn
j ((i + 1)δ) ∼ N

(
vn

j (i + 1)δ−, ωn
j (i + 1)δ−

)
, j = 1, . . . , n.

We denote by o
n,(i+1)δ
j the number of “offsprings” produced by jth generalised par-

ticle. The total number of offsprings is fixed to be n at each branching event.

After branching all the particles are re-indexed from 1 to n and all of the unnor-

malised weights are re-initialised back to 1; and the particles evolve following (3.8)

again. The recursion is repeated N times until we reach the terminal time T , where

we obtain the approximation πn
T of πT .

There are two commonly adopted branching methods, namely the Tree Based

Branching Algorithm (TBBA) and Multinomial Branching, to determine the distri-

bution of {on
j }

n
j=1. In what follows we discuss each of them respectively.
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3.2.1 Tree Based Branching Algorithm

We set

o
n,(i+1)δ
j =






[
nā

n,(i+1)δ
j

]
with prob. 1 − {nā

n,(i+1)δ
j }

[
nā

n,(i+1)δ
j

]
+ 1 with prob. {nā

n,(i+1)δ
j };

(3.9)

where ā
n,(i+1)δ
j is the value of the Gaussian particle’s weight immediately prior to

the branching, in other words,

ā
n,(i+1)δ
j = ān

j ((i + 1)δ−) = lim
t↗(i+1)δ

ān
j (t).

If F(i+1)δ− is the σ-algebra of events up to time (i + 1)δ, i.e.

F(i+1)δ− = σ(Fs : s < (i + 1)δ),

then we have the following proposition.

Proposition 3.2.1. The random variables {on
j }

n
j=1 defined in (3.9) have the follow-

ing properties

E
[
o

n,(i+1)δ
j′ |F(i+1)δ−

]
= nā

n,(i+1)δ
j′ ,

E

[(
o

n,(i+1)δ
j − nā

n,(i+1)δ
j

)2 ∣
∣F(i+1)δ−

]

=
{

nā
n,(i+1)δ
j

}(
1 −

{
nā

n,(i+1)δ
j

})
.

Remark 3.2.2. By Exercise 9.1 in [3] we know that the random variables o
n,(i+1)δ
j

defined (3.9) have conditional minimal variance in the set of all integer-valued ran-

dom variables ξ satisfying E[ξ|F(i+1)δ−] = nā
n,(i+1)δ
j . This property is important as

it is the variance of on
j that influences the speed of the corresponding algorithm.

We wish to control the branching process so that the number of particles in the

system remains constant at n; that is, we require that for each i,

n∑

j=1

o
n,(i+1)δ
j = n. (3.10)

We apply the algorithm introduced in Section 9.2.1 in [3] to ensure (3.10) is satisfied,

and by Proposition 9.3 in [3] we know that the distribution of on
j satisfies (3.9) and

Proposition 3.2.1.
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3.2.2 Multinomial Branching Algorithm

Under this algorithm, the offspring distribution is determined by the multinomial

distribution

O(i+1)δ = Multinomial(n, ān
1 ((i + 1)δ−), . . . , ān

n((i + 1)δ−))

defined by

P
(
O

(j)
(i+1)δ = o

n,(i+1)δ
j , j = 1, . . . , n

)
=

n!
∏n

j=1 o
n,(i+1)δ
j !

n∏

j=1

(
ān

j ((i + i)δ−)
)on,(i+1)δ

j

(3.11)

with
∑n

j=1 o
n,(i+1)δ
j = n.

We then, by properties of multinomial distribution, have the following result.

Proposition 3.2.3. At branching time (i+1)δ,
{

O
(j)
(i+1)δ = o

n,(i+1)δ
j

}n

j=1
has a multi-

nomial distribution, then the conditional mean is proportional to the normalised

weights of their parents:

Ẽ
[
o

n,(i+1)δ
j

∣
∣F(i+1)δ−

]
= nā

n,(i+1)δ
j′ (3.12)

for 1 ≤ j ≤ n; and the condition variance and covariance satisfy

Ẽ
[(

o
n,(i+1)δ
l − nā

n,(i+1)δ
l

)(
o

n,(i+1)δ
j − nā

n,(i+1)δ
j

) ∣∣
∣F(i+1)δ−

]

=






nā
n,(i+1)δ
j

(
1 − ā

n,(i+1)δ
j

)
, l = j

−nā
n,(i+1)δ
l ā

n,(i+1)δ
j , l 6= j

(3.13)

for 1 ≤ l, j ≤ n.

This multinomial sampling algorithm essentially states that, at branching times,

we sample n times (with replacement) from the population of Gaussian random vari-

ables Xn
j ((i+1)δ) (with means vn

j ((i+1)δ−) and variances ωn
j ((i+1)δ−)), j = 1, . . . , n

according to the multinomial probability distribution given by the corresponding

normalised weights ān
j ((i + 1)δ−), j = 1, . . . , n. Therefore, by definition of multi-

nomial distribution, o
n,(i+1)δ
j is the number of times Xn

j ((i + 1)δ) is chosen at time

(i+1)δ; that is to say, o
n,(i+1)δ
j is the number of offspring produced by this Gaussian

random variable.
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Chapter 4

Convergence Analysis

In this chapter we deduce the evolution equation of the approximating measure ρn for

the generalised particle filters with Gaussian mixtures, and show its convergence to

the target measure ρ – the solution of the Zakai equation, as well as the convergence

of πn to π – the solution of the Kushner-Stratonovich equation. The correction

mechanism for the generalised particle system involves either the use of the Tree

Based Branching Algorithm (TBBA) or the multinomial sampling branching. These

will be investigated in Sections 4.2 and 4.3 respectively.

4.1 Evolution Equation for ρn

We firstly define the process ξn = {ξn
t ; t ≥ 0} by

ξn
t ,




[t/δ]∏

i=1

1

n

n∑

j=1

an,iδ
j





(
1

n

n∑

j=1

an
j (t)

)

.

Then ξn is a martingale and by Exercise 9.10 in [3] we know for any t ≥ 0 and p ≥ 1,

there exist two constants ct,p
1 and ct,p

2 which depends only on maxk=1,...,m ‖hk‖0,∞,

such that

sup
n≥0

sup
s∈[0,t]

Ẽ [(ξn
s )p] ≤ ct,p

1 , (4.1)

and

max
j=1,...,n

sup
n≥0

sup
s∈[0,t]

Ẽ
[
(ξn

s an
j (s))p

]
≤ ct,p

2 . (4.2)
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We use the martingale ξn to linearise πn in order to make it easier to analyse its

convergence. Let ρn = {ρn
t ; t ≥ 0} be the measure-valued process defined by

ρn
t , ξn

t πn
t =

ξ[t/δ]δ

n

n∑

j=1

an
j (t)Γvn

j (t),ωn
j (t). (4.3)

We will show the convergence of ρn to ρ as the number of particles n increases. In

the following, we will use the norm ‖ ∙ ‖m,∞ (m ≥ 0) defined as

‖ϕ‖m,∞ =
∑

|η|≤m

sup
x∈Rd

|Dηϕ(x)|,

where η = (η1, . . . , ηd) is a multi-index and Dη = (∂1)
η1 ∙ ∙ ∙ (∂d)

ηd . We also define

D(0)ϕ(x) , ϕ(x), where ‖ϕ‖0,∞ , ‖ϕ‖ = supx∈Rd |ϕ(x)|.

The following proposition describes the evolution equation satisfied by the ap-

proximating sequence ρn = {ρn
t ; t ≥ 0} constructed using the algorithm described

in the previous chapter. As discussed in Chapter 3, the approximation algorithm

is constructed for the case where the state space of the signal process X is R. We

adopt this assumption in this chapter and Chapter 5.

Proposition 4.1.1. The measure-valued process ρn = {ρn
t : t ≥ 0} satisfies the

following evolution equation:

ρn
t (ϕ) = ρn

0 (ϕ) +

∫ t

0

ρn
s (Aϕ)ds +

∫ t

0

ρn
s (hϕ)dYs + Mn,ϕ

[t/δ] + Bn,ϕ
t (4.4)

for any ϕ ∈ Cm
b (R) and t ∈ [0, T ] with m ≥ 6.

In (4.4), Mn,ϕ = {Mn,ϕ
i , i > 0 and i ∈ N} is the discrete process

Mn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=0

ξn
iδ

n∑

j=1

[

on,iδ
j

∫

R
ϕ(x)

e−
(x−Xn

j (iδ))2

2αβ

√
2παβ

dx − nān
j (iδ−)

∫

R
ϕ(x)

e
−

(x−vn
j (iδ−))2

2ωn
j

(iδ−)

√
2πωn

j (iδ−)
dx

]

(4.5)

where Xn
j (iδ) ∼ N(vn

j (iδ−), ωn
j (iδ−)) is a Gaussian random variable.

Bn,ϕ
t is the following process:

Bn,ϕ
t =

1

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
;
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the processes R1
s,j(ϕ), R2

s,j(ϕ), and R3
s,j(ϕ) are

R1
s,j(ϕ) =ωn

j (s)

[
1

2
(fϕ′′′)(vn

j (s)) +
α

4
(σϕ(4))(vn

j (s)) + 2ασ2(vn
j (s))I

(4)
4,j (ϕ) − Ij(Aϕ)

]

+(ωn
j (s))2



f(vn
j (s))I

(5)
4,j (ϕ) +

ασ2(vn
j (s))

2
√

ωn
j (s)

I5,j(ϕ) +
1 − α

2
σ2(vn

j (s))I
(6)
4,j (ϕ)



 ,

(4.6)

R2
s,j(ϕ) =ωn

j (s)

[
1

2
h(vn

j (s))ϕ′′(vn
j (s)) − Ij(hϕ)

]

+ (ωn
j (s))2h(vn

j (s))I
(4)
4,j (ϕ), (4.7)

R3
s,j(ϕ) =

√
1 − α

[

σ(vn
j (s))ϕ′(vn

j (s)) +
1

2
ωn

j (s)σ(vn
j (s))ϕ′′′(vn

j (s))

+ (ωn
j (s))2σ(vn

j (s))I
(5)
4,j (ϕ)

]

; (4.8)

and

I
(k)
4,j (ϕ) =

∫

R

y4e
−y2

2

√
2π

∫ 1

0

ϕ(k)
(
vn

j (s) + uy
√

ωn
j (s)

) (1 − u)3

6
dudy, for k = 4, 5, 6;

I5,j(ϕ) =

∫

R

y5e
−y2

2

√
2π

∫ 1

0

ϕ(5)
(
vn

j (s) + uy
√

ωn
j (s)

) u(1 − u)3

6
dudy;

Ij(ψ) =

∫

R

y2e
−y2

2

√
2π

∫ 1

0

(ψ)′′
(
vn

j (s) + uy
√

ωn
j (s)

)
(1 − u)dudy, for ψ = Aϕ, hϕ.

Proof. For any ϕ ∈ Cm
b (R) and t ∈ [iδ, (i + 1)δ), we have from (4.3) that

ρn
t (ϕ) =

ξn
iδ

n

n∑

j=1

an
j (t)

∫

R
ϕ(x)Γvn

j (t),ωn
j (t)(dx)

=
ξn
iδ

n

n∑

j=1

an
j (t)

∫

R
ϕ(x)

1
√

2πωn
j (t)

exp

(

−
(x − vn

j (t))2

2ωn
j (t)

)

dx

=
ξn
iδ

n

n∑

j=1

an
j (t)

∫

R
ϕ
(
vn

j (t) + y
√

ωn
j (t)

) 1
√

2π
exp

(

−
y2

2

)

dy, (4.9)

with similar formulas for Aϕ and hϕ.
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We have the following Taylor expansions

ψ
(
vn

j (t) + y
√

ωn
j (t)

)
=

2p−1∑

k=0

yk

k!
(ωn

j (t))
k
2 ψ(k)(vn

j (t))

+ y2p
(
ωn

j (t)
)p
∫ 1

0

1

(2p)!
ψ(2p)

(
vn

j (t) + uy
√

ωn
j (t)

)
(1 − u)2p−1du,

(4.10)

where ψ can be ϕ, Aϕ, or hϕ.

By applying (4.10) (for p = 2 and p = 1) to (4.9) and the similar ones for Aϕ and

hϕ, note the fact that for any k ≥ 1 and k ∈ N,

∫

R
y2k−1 1

√
2π

exp(−
y2

2
)dy = 0,

∫

R
y2k 1

√
2π

exp(−
y2

2
)dy =

k∏

j=1

(2j − 1),

we obtain that

ρn
t (ϕ) =

ξn
iδ

n

n∑

j=1

an
j (t)

[

ϕ(vn
j (t)) +

1

2
ωn

j (t)ϕ′′(vn
j (t))

]

+
ξn
iδ

n

n∑

j=1

an
j (t)

(
ωn

j (t)
)2

I
(4)
4,j (ϕ);

(4.11)

ρn
t (Aϕ) =

ξn
iδ

n

n∑

j=1

an
j (t)

[
(Aϕ) (vn

j (t))
]
+

ξn
iδ

n

n∑

j=1

an
j (t)ωn

j (t)Ij(Aϕ); (4.12)

ρn
t (hϕ) =

ξn
iδ

n

n∑

j=1

an
j (t)

[
(hϕ) (vn

j (t))
]
+

ξn
iδ

n

n∑

j=1

an
j (t)ωn

j (t)Ij(hϕ). (4.13)

Next we apply Itô’s formula to equation (4.11), with the particles satisfying equa-

tions (3.8). After substituting (4.12) and (4.13), we have for t ∈ [iδ, (i + 1)δ)

ρn
t (ϕ) = ρn

iδ(ϕ) +

∫ t

iδ

ρn
s (Aϕ)ds +

∫ t

iδ

ρn
s (hϕ)dYs

+

∫ t

iδ

1

n

n∑

j=1

ξn
iδa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
. (4.14)

Let Fiδ− = σ (Fs, 0 ≤ s < iδ) be the σ-algebra of the events up to time iδ (the

time of the i-th-branching) and ρn
iδ− = limt↗iδ ρn

t . For any t ≥ 0, we have1

ρn
t (ϕ) = ρn

0 (ϕ)+

[t/δ]∑

i=1

(ρn
iδ(ϕ)−ρn

iδ−(ϕ))+

[t/δ]∑

i=1

(ρn
iδ−(ϕ)−ρn

(i−1)δ(ϕ))+(ρn
t (ϕ)−ρn

[t/δ]δ(ϕ)),

(4.15)

1We use the standard convention
∑0

k=1 = 0.
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At the i-th branching event, each Gaussian measure is replaced by a random number

(on,iδ
j ) of offsprings. Each offspring is a Gaussian measure with mean Xn

j (iδ) and

variance αβ, where Xn
j (iδ) ∼ N (vn

j (iδ−), ωn
j (iδ−)). The weights of the offspring

generalised particles are re-initialised to 1, i.e. an
j (iδ) = 1; hence ān

j (iδ) = 1/n. So

πn
iδ =

1

n

n∑

j=1

on,kδ
j ΓXn

j (kδ),αβ, and πn
iδ(ϕ) =

1

n

n∑

j=1

on,kδ
j

∫

R
ϕ(x)

e−
(x−Xn

j (iδ))2

2αβ

√
2παβ

dx;

Before the branching event, we still have generalised particles, thus

πn
iδ−(ϕ) =

n∑

j=1

ān
j (iδ−)

∫

R
ϕ
(
vn

j (iδ−) + y
√

ωn
j (iδ−)

) 1
√

2π
exp

(

−
y2

2

)

dy.

We then obtain

Mn,ϕ
t/δ ,

[t/δ]∑

i=0

(
ρn

iδ(ϕ) − ρn
iδ−(ϕ)

)
=

[t/δ]∑

i=0

ξn
iδ

(
πn

iδ(ϕ) − πn
iδ−(ϕ)

)

=
1

n

[t/δ]∑

i=0

ξn
iδ

n∑

j=1

[

on,iδ
j

∫

R
ϕ(x)

e−
(x−Xn

j (iδ))2

2αβ

√
2παβ

dx − nān
j (iδ−)

∫

R
ϕ(x)

e
−

(x−vn
j (iδ−))2

2ωn
j

(iδ−)

√
2πωn

j (iδ−)
dx

]

.

(4.16)

For t ∈ [(i − 1)δ, iδ), for i = 1, 2, . . . , [t/δ], we have

ρn
t (ϕ) − ρn

(i−1)δ(ϕ) =

∫ t

(i−1)δ

dρn
s (ϕ),

Similarly, let t ↗ iδ−, we have

ρn
iδ−(ϕ) − ρn

(i−1)δ(ϕ) =

∫ iδ

(i−1)δ

dρn
s (ϕ).

Then by (4.14), we obtain that

[t/δ]∑

i=1

(ρn
iδ−(ϕ) − ρn

(i−1)δ(ϕ)) + (ρn
t (ϕ) − ρn

iδ(ϕ)) =

[t/δ]∑

i=1

∫ iδ

(i−1)δ

dρn
s (ϕ) +

∫ t

[t/δ]δ

dρn
s (ϕ)

=

∫ t

0

dρn
s (ϕ) = ρn

0 (ϕ) +

∫ t

0

ρn
s (Aϕ)ds +

∫ t

0

ρn
s (hϕ)dYs

+

∫ t

0

1

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
,

(4.17)

Finally, (4.16) and (4.17) imply (4.4), which completes the proof. �
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Corollary 4.1.2. Under the same assumption as in Proposition 4.1.1, if we further

assume that α = 0 in (3.8), which implies the classic particle filters with mixture of

Dirac measures, then the approximating measure ρn satisfies the following evolution

equation:

ρn
t (ϕ) = ρn

0 (ϕ) +

∫ t

0

ρn
s (Aϕ)ds +

∫ t

0

ρn
s (hϕ)dYs + Mn,ϕ

[t/δ] + Bn,ϕ
t (4.18)

for any ϕ ∈ C1
b (R), where

Mn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=0

ξn
iδ

n∑

j=1

ϕ(vn
j (iδ−))

[
on,iδ

j − nān
j (iδ−)

]
;

Bn,ϕ
t =

1

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)σ(vn

j (s))ϕ′(vn
j (s))dV (j)

s .

4.2 Convergence Results for Generalised Particle

Filters using the TBBA

In order to investigate the convergence of the approximating measure ρn, we con-

sider the mild form of the Zakai equation. One should note that the proof of

the convergence in [3] using the dual, ψt,ϕ
s , of the measure-valued process ρ does

not work for our model. ψt,ϕ
s is measurable with respect to the backward filtra-

tion Y t
s = σ(Yt − Yr, r ∈ [s, t]), and so is R2

s,j(ψ
t,ϕ
s ); however, the Itô’s integral

∫ t

0
R2

s,j(ψ
t,ϕ
s )dYs requires R2

s,j(ψ
t,ϕ
s ) is measurable with respect to the forward filtra-

tion Ys = σ(Yr, r ∈ [0, s]). This leads to an anticipative integration which cannot

be tracked in a standard manner. Another approach is therefore required. Markov

semigroups was used in [56] to obtain relevant bounds on the error which in turn

enables us to discuss the convergence rate. In the following this idea will be dis-

cussed in some details.

We introduce first the Zakai equation for time-inhomogeneous test functions. Let

ϕ̃ : [0,∞) × S → R be a bounded measurable function with continuous bounded

derivatives up to order m (m ≥ 6). Then for any ϕ̃ ∈ D(A), the time-inhomogeneous

Zakai equation is (see, for example, Chapter 3 in [3])

dρt(ϕ̃) = ρt

(
∂ϕ̃

∂t
+ Aϕ̃

)

dt + ρt(hϕ̃)dYt. (4.19)
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Now fix s > 0 and define

ϕ̃(t, x) = Ps−tϕ(x), t ∈ [0, s]

where (Pr)r≥0 is the Markov semigroup whose infinitesimal generator is the operator

A and ϕ is the single variable function which does not depend on t. It follows by

the properties of semigroup (see, for example, [63]) that

∂ϕ̃

∂t
= −APs−tϕ,

therefore (4.19) becomes

dρt(Ps−tϕ) = ρt(hPs−tϕ)dYt,

and the integration form is

ρt(Ps−tϕ) = ρ0(Psϕ) +

∫ t

0

ρr(hPs−rϕ)dYr.

Similarly for ρn
t (ϕ) we rewrite (4.4) for t ∈ [0, s] and get

ρn
t (Ps−tϕ) = ρn

0 (Psϕ) +

∫ t

0

ρn
r (hPs−rϕ)dYr + Mn,Pϕ

[t/δ] + Bn,Pϕ
t (4.20)

and the error of the approximation has the representation

(ρn
t − ρt)(Ps−tϕ) = (ρn

0 − ρ0)(Psϕ) +

∫ t

0

(ρn
r − ρr)(hPs−rϕ)dYr + Mn,Pϕ

[t/δ] + Bn,Pϕ
t ,

(4.21)

where Mn,ϕ
i and Bn,ϕ

t are the same as in Proposition 4.1.1, except that ϕ replaced

by Ps−rϕ.

In order to prove the convergence of the approximating measures ρn
t to the actual

measure ρt, we need to control all the terms on the right hand side of (4.21). Now

we will discuss each of them respectively in the following Lemmas.

Assumption (A). We assume that the coefficients σ, f , and h are bounded and

Lipschitz, σ and f are six times differentiable, and h is twice differentiable.

Lemma 4.2.1. If Assumption (A) is satisfied. Then for any T > 0 there exists a

constant cT
1 independent of n such that for any p ≥ 1 and ϕ ∈ Cb(R), we have

Ẽ [(ρn
0 (Psϕ) − ρ0(Psϕ))p] ≤

cT
1

np/2
‖ϕ‖p, t ∈ [0, T ]
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Proof. Note that ρn
0 (Psϕ) − ρ0(Psϕ) = πn

0 (Psϕ) − π0(Psϕ), and also note that

ξj ,
1

n

n∑

j=1

(Psϕ(vn
j (0)) − π0(Psϕ) = πn

0 (Psϕ) − π0(Psϕ), j = 1, . . . , n

are independent identically distributed random variables with mean 0, therefore

Ẽ
[
(ρn

0 (Psϕ) − ρ0(Psϕ))2p′
]

= Ẽ





(
1

n

n∑

j=1

ξj

)2p′




=
1

n2p′
Ẽ

[
∑

j1,...,jn

(
2p′

j1, . . . , jn

)

[ξj1
1 ∙ ∙ ∙ ξjn

n ]

]

=
1

n2p′

∑

j1,...,jn

(
2p

j1, . . . , jn

)

Ẽ[|ξ1|
j1 ∙ ∙ ∙ |ξn|

jn ]

≤
Cp′

np′
‖ϕ‖2p′ ;

then the result follows by setting p = 2p′ and cT
1 = Cp′ . �

Lemma 4.2.2. If Assumption (A) is satisfied. Then for any T > 0, there exists a

constant cT
2 independent of n such that for any ϕ ∈ C6

b (R),

Ẽ





(
1

n

n∑

j=1

∫ t

0

ξn
[r/δ]δa

n
j (r)R1

r,j(Ps−rϕ)dr

)2


 ≤ cT
3 (αδ)2‖ϕ‖2

6,∞.

Proof. From the facts that f and σ are bounded, for αδ ≤ 1 we have

|R1
r,j(Ps−rϕ)| ≤

(
C1αδ + C2(αδ)2

)
‖ϕ‖6,∞ ≤ Cαδ‖ϕ‖6,∞,

Then by Jensen’s inequality, Fubini’s theorem and (4.2), we have

Ẽ





(
1

n

n∑

j=1

∫ t

0
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
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tẼ
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[r/δ]δa

n
j (r)R1
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]

≤
1
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6,∞

∫ t
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Ẽ
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ξn
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j (r)
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≤
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n
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tC2(αδ)2‖ϕ‖2
6,∞ct,2

2 t

=T 2C2cT,2
2 (αδ)2‖ϕ‖2

6,∞.

The result follows by letting cT
3 = T 2C2cT,2

2 . �
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Lemma 4.2.3. If Assumption (A) is satisfied. Then for any T > 0, there exists a

constant cT
2 independent of n such that for any ϕ ∈ C4

b (R),

Ẽ





(
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n
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∫ t
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ξn
[r/δ]δa

n
j (r)R2

r,j(Ps−rϕ)dYr

)2


 ≤ cT
4 (αδ)2‖ϕ‖2

4,∞.

Proof. From the facts that f and σ are bounded, we have for αδ ≤ 1

R2
r,j(Ps−rϕ) ≤

(
C1αδ + C2(αδ)2

)
‖ϕ‖4,∞ ≤ Cαδ‖ϕ‖4,∞.

Then Burkholder-Davis-Gundy and Jensen’s inequalities, Fubini’s theorem, and

(4.2) yield
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n
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≤
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


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0
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[r/δ]δa

n
j (r)dYr
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



≤
1

n2
C2(αδ)2‖ϕ‖2

4,∞C̃Ẽ





〈∫ ∙

0

n∑

j=1

ξn
[r/δ]δa

n
j (r)dYr

〉

t





=
1

n2
C2(αδ)2‖ϕ‖2

4,∞C̃

∫ t

0

Ẽ





(
n∑

j=1

ξn
[r/δ]δa

n
j (r)

)2


 dr

=
1

n2
C2C̃(αδ)2‖ϕ‖2

4,∞

∫ t

0

[
n∑

j=1

n∑

k=1

Ẽ
(
ξn
[r/δ]δa

n
j (r)ξn

[r/δ]δa
n
k(r)

)
]

dr

≤
1

n2
C2C̃(αδ)2‖ϕ‖2

4,∞

∫ t

0

[
n∑

j=1

n∑

k=1

√

Ẽ
[
(ξn

[r/δ]δa
n
j (r))2

]
Ẽ
[
(ξn

[r/δ]δa
n
k(r))2

]
]

dr

≤
1

n2
C2C̃(αδ)2‖ϕ‖2

4,∞

∫ t

0

n2ct,2
2 dr

≤TC2C̃ct,2
2 (αδ)2‖ϕ‖2

4,∞,

and the result follows by letting cT
4 = TC2C̃ct,2

2 . �

Lemma 4.2.4. If Assumption (A) is satisfied. Then for any T > 0, there exists a

constant cT
2 independent of n such that for any ϕ ∈ C5

b (R),

Ẽ





(
1

n

n∑

j=1

∫ t

0

ξn
[r/δ]δa

n
j (r)R3

r,j(Ps−rϕ)dV (j)
r

)2


 ≤
cT
5

n
‖ϕ‖2

5,∞.
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Proof. By the facts that f and σ are bounded, we have for αδ ≤ 1

R3
r,j(Ps−rϕ) ≤

(
C0 + C1αδ + C2(αδ)2

)
‖ϕ‖5,∞ ≤ (C0 + Cαδ)‖ϕ‖5,∞.

Then by Burkholder-Davis-Gundy and Jensen’s inequalities, Fubini’s theorem, and

(4.2), and noticing the fact that {V (j)}n
j=1 are mutually independent Brownian mo-

tions, we have

Ẽ





(
1

n

n∑

j=1

∫ t

0

ξn
[r/δ]δa

n
j (r)R3
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r
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



=
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n∑

j=1

Ẽ

[(∫ t

0

ξn
[r/δ]δa

n
j (r)R3
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r

)2
]

≤
1
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(C0 + Cαδ)2‖ϕ‖2

5,∞
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Ẽ

[(∫ t

0
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[r/δ]δa

n
j (r)dV (j)

r
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]

≤
1
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(C0 + Cαδ)2‖ϕ‖2

5,∞

n∑

j=1

C̃Ẽ

[〈∫ t

0
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[r/δ]δa

n
j (r)dV (j)

r

〉

t

]

=
1

n2
C̃(C0 + Cαδ)2‖ϕ‖2

5,∞

n∑

j=1

∫ t

0

Ẽ
[
(ξn

iδa
n
j (r))2

]
dr

≤
1

n2
C̃(C0 + Cαδ)2‖ϕ‖2

5,∞nct,2
2 t

≤
1

n
TC̃(C0 + Cαδ)2ct,2

2 ‖ϕ‖2
5,∞,

and the result follows by letting cT
5 = TC̃(C0 + Cαδ)2ct,2

2 . �

Recalling Proposition 4.1.1 and the semigroup operator P , we can decompose

Mn,ϕ in the following way

Mn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=0

ξn
iδ

n∑

j=1

[

on,iδ
j

∫

R
ϕ(x)

e−
(x−Xn

j (iδ))2

2αβ

√
2παβ

dx − nān
j (iδ−)

∫

R
ϕ(x)

e
−

(x−vn
j (iδ−))2

2ωn
j

(iδ−)

√
2πωn

j (iδ−)
dx

]

,An,ϕ
[t/δ] + Dn,ϕ

[t/δ] + Gn,ϕ
[t/δ],

where Xn
j (iδ) ∼ N

(
vn

j (iδ−), ωn
j (iδ−)

)
is a Gaussian distributed random variable,
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and

An,ϕ
[t/δ] =

1

n

[t/δ]∑

i=1

ξn
iδ

n∑

j=1

[(
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
]
; (4.22)

Dn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=1

ξn
iδ

n∑

j=1

[

on,iδ
j

(∫

R
ϕ
(
Xn

j (iδ) + y
√

αβ
) e

−y2

2

√
2π

dy − ϕ(Xn
j (iδ))

)]

;

(4.23)

Gn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=1

ξn
iδ

n∑

j=1

nān
j (iδ−)

[

ϕ(Xn
j (iδ)) −

∫

R
ϕ
(
vn

j (iδ−) + y
√

ωn
j (iδ−)

) e−
y2

2

√
2π

dy

]

=

[t/δ]∑

i=1

n∑

j=1

ξn
iδā

n
j (iδ−)

[
ϕ(Xn

j (kδ)) − Ẽ
(
ϕ(Xn

j (kδ))
)]

. (4.24)

Then we have the following lemma:

Lemma 4.2.5. If Assumption (A) is satisfied. Then for any T > 0, and for any

ϕ ∈ C1
b (R), we have the following bounds for An,ϕ

[t/δ], Dn,ϕ
[t/δ] and Bn,ϕ

[t/δ]:

Ẽ
[
|An,ϕ

[t/δ]|
2
]
≤

cT
6

n
√

δ
‖ϕ‖2

0,∞,

Ẽ
[
|Dn,ϕ

[t/δ]|
2
]
≤ c̃T

6 (αβ)2‖ϕ‖2
2,∞,

Ẽ
[
|Gn,ϕ

[t/δ]|
2
]
≤

cT
7 α

n
‖ϕ‖2

1,∞; (4.25)

where cT
6 , c̃T

6 and cT
7 are constants independent of n.

Proof. Without loss of generality, we choose the test function ϕ to be non-negative

(since we can write ϕ = ϕ+ − ϕ−) and the random variables {on,kδ
j′ , j ′ = 1, . . . , n}
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are negatively correlated (see Proposition 9.3 in [3]), it follows that

Ẽ


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(
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


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Ẽ
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(
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∣
∣
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Yiδ− ∨ Fiδ−

]
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j (iδ−)
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1 − nān
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}
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(ξn

iδ)
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0,∞nCδ

√
δ = Cδ

√
δ
(ξn

iδ)
2

n
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0,∞;

By taking the expectation on both sides, we have

Ẽ


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(
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j − nān
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Therefore

Ẽ

[(
An,ϕ

[t/δ]

)2
]
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Cδc
t,2
1
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(4.26)

For Gn,ϕ
[t/δ], first by noting that

∫

R
ϕ
(
Xn

j (iδ) + y
√

αβ
) e

−y2

2

√
2π

dy − ϕ(Xn
j (iδ)) =

αβ

2
ϕ′′
(
Xn

j (iδ)
)

+ O
(
(αβ)2

)
;

(4.27)

then it is clear that we only need to show

Ẽ







 1
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ξn
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(
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(
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))




2

 ≤ c̃T
6 (αβ)2‖ϕ‖2

0,∞. (4.28)
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Observe that
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(4.29)

For Tree Based Branching Algorithm (TBBA), by Proposition 3.2.1,
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]
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j (iδ−)
})

≤
1

4
; (4.30)

and then by taking expectation on both sides of (4.57), we have
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1 ec2t

≤cT (αβ)2‖ϕ‖2
2,∞, (4.31)

where cT = 1
2

+ 2
√

ct,4
1 ec2t.

Therefore, we obtain

Ẽ
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if we let c̃T
6 = T 2cT /δ2.

As for Gn,ϕ
[t/δ], first note that Xn

j (iδ) ∼ N
(
vn

j (iδ), ωn
j (iδ)

)
and Xn

j s are mutually

independent (j = 1, . . . , n), then we have
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Ẽ

[
(
ϕ(Xn

j (kδ)) − Ẽ
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We know from the proof of Lemma 4.4 in [56] that for any p > 0,

Ẽ
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ān
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)p]
≤
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exp(cpt);

then by taking the expectation on both sides, we have
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(
ϕ(Xn

j (kδ))
)]
)2




≤cσαδ‖ϕ‖2
1,∞

n∑

j=1

Ẽ
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Finally we have

Ẽ

[(
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)2
]
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√
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1 exp(c4t)

n
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(4.32)

The result follows by letting cT
6 = TCδc

T,2
1 and cT

7 = Tcσ

√
cT,4
1 exp(c4T ). �
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The following Theorem, which is a variation of Theorem 4.10 in [56], establishes

the convergence of finite signed measure valued processes and allows us to use the

bounds obtained from the above Lemmas to get the convergence results of ρn
t .

Theorem 4.2.6. Let μn = {μn
t : t ≥ 0} be a signed measure-valued process such

that for any ϕ ∈ Cm
b (Rd), m ≥ 6, any fixed α ≥ 1 and fixed s > t, we have

μn
t (ϕ) = μn

0 (as(ϕ)) +
α∑

l=1

Rn,ϕ
t,l +

β∑

k=1

∫ t

0

μn
r (ak

s,r(ϕ))dW k
r , (4.33)

where W = (W k)β
k=1 is an β-dimensional Brownian motion, and as, ak

s,r : Cm
b (Rd) →

Cm
b (Rd) are bounded linear operators with bounds c and Ck (k = 1, . . . , β) respec-

tively, i.e., ‖as(ϕ)‖m,∞ ≤ c‖ϕ‖m,∞ and ‖ak
s,r(ϕ)‖m,∞ ≤ Ck‖ϕ‖m,∞. If for any

T > 0 there exist constants γ0, γ1, . . . , γα such that for t ∈ [0, T ], p ≥ 2 and ql > 0

(l = 0, 1, . . . , α),

Ẽ [|μn
0 (as(ϕ))|p] ≤

γ0

nq0
‖ϕ‖p

m,∞, Ẽ
[
|Rn,ϕ

t,l |p
]
≤

γl

nql
‖ϕ‖p

m,∞, l = 1, . . . , α. (4.34)

Then for any t ∈ [0, T ], we have

Ẽ [|μn
t (ϕ)|p] ≤

ct

nq
‖ϕ‖p

m,∞, (4.35)

where ct is a constant independent of n and q = min(q0, q1, . . . , qα).

Proof. See Appendix B.3. �

Applying the bounds in Lemmas 4.2.1 to 4.2.5, one obtains the rate of conver-

gence of the approximation in terms of the three parameters n, δ and α. In what

follows we will assume, without loss of generality that δ < 1. The following theorem

can then be viewed as a direct corollary of Theorem 4.2.6.

Proposition 4.2.7. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6,

there exists a constant cT
0 independent of n, δ or α such that for any ϕ ∈ Cm

b (R),

we have for t ∈ [0, T ]

Ẽ
[
(ρn

t (ϕ) − ρt(ϕ))2
]
≤ cT

0 ‖ϕ‖
2
m,∞c(n, δ, α, β),

where

c(n, δ, α, β) = max

{
1

n
, (αδ)2,

1

n
√

δ
, (αβ)2,

α

n

}

.
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In what follows, we will discuss c(n, δ, α, β) to obtain the L2-convergence rate of

the approximation process ρn
t .

When α = 0 in (3.8), the component Gaussian measures have null covariance

matrices, in other words they are Dirac measures. In this case ρn is nothing other

than the classic particle filter (see, for example, [3]). In this case several terms

in c(n, δ, α) coming from the covariance term disappear. The rate of convergence

c(n, δ, 0) becomes:

c(n, δ, 0) = max

{
1

n
,

1

n
√

δ

}

.

Obviously the fastest rate is obtained when δ is a fixed constant independent of n.

The L2-convergence rate will be in this case of order 1/n, which coincides with the

results in [3].

When α ∈ (0, 1], the rate of convergence can deteriorate. First of all let us

observe that we still need to choose δ to be a fixed constant independent of n. Then

the convergence depends on the simpler coefficient c(n, α) given by

c(n, α, β) = max

{
1

n
, α2, (αβ)2,

α

n

}

In this case we need to choose α = 1√
n

(or of order 1/
√

n) and β to be a fixed

constant independent of n to ensure the optimal rate of convergence, which equals

to 1/n. This discussion therefore leads to the following convergence theorem:

Theorem 4.2.8. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6, there

exists constant cT
1 independent of n, such that for any ϕ ∈ Cm

b (R), t ∈ [0, T ] and

α ∝ 1√
n

(defined in (3.8)), we have

Ẽ
[
(ρn

t (ϕ) − ρt(ϕ))2
]
≤

cT
1

n
‖ϕ‖2

m,∞. (4.37)

For the normalised approximating measure πn, we have the following result.

Theorem 4.2.9. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6, there

exists a constant cT
7 independent of n such that for α ∝ 1√

n
and ϕ ∈ Cm

b (R), we have

Ẽ [|πn
t (ϕ) − πt(ϕ)|] ≤

cT
7√
n
‖ϕ‖m,∞, t ∈ [0, T ]. (4.38)
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Proof. Observe that ρn
t (ϕ) = ρn

t (1)πn
t (ϕ), we then have

πn
t (ϕ) − πt(ϕ)

= (ρn
t (ϕ) − ρt(ϕ)) (ρt(1))−1 − πn

t (ϕ) (ρn
t (1) − ρt(1)) (ρt(1))−1.

Use the fact that mt ,
√
Ẽ [(ρt(1))−2] < ∞ (see Exercise 9.16 of [3] for details),

and by Cauchy-Schwartz inequality:

Ẽ [|πn
t (ϕ) − πt(ϕ)|]

≤mt

(√
Ẽ [(ρn

t (ϕ) − ρt(ϕ))2] + ‖ϕ‖0,∞

√
Ẽ [(ρn

t (1) − ρt(1))2]

)

, (4.39)

and the result follows by applying Theorem 4.2.8 to the two expectations of the

right hand side of (4.39). �

The above results applied to the convergence of ρn
t (ϕ) to ρt(ϕ) and πn

t (ϕ) to

πt(ϕ) for a fixed test function ϕ. We now discuss the convergence of ρn
t to ρt and

πn
t to πt. Let M = {ϕi, i ≥ 0} ∈ C6

b (Rd) be a countable convergence determining

set2 such that ‖ϕi‖6,∞ ≤ 1 for any i > 0 and dM be the metric on MF (Rd)

dM : MF (Rd) ×MF (Rd) → [0,∞);

dM(μ, ν) =
∞∑

i=0

|μϕi − νϕi|
2i

.

Theorem 4.2.8 and Theorem 4.2.9 imply the following corollary:

Corollary 4.2.10. If Assumption (A) is satisfied. Then for any T ≥ 0, there exist

two constants cT
8 and cT

9 independent of n, such that

sup
t∈[0,T ]

Ẽ[dM(ρn
t , ρt)] ≤

2
√

cT
8√

n
sup

t∈[0,T ]

Ẽ[dM(πn
t , πt)] ≤

2cT
9√
n

(4.40)

This corollary means that ρn
t converges to ρt in expectation and πn

t converges to

πt in expectation. A stronger convergence result for ρn
t and πn

t will be proved in the

following two theorems, from which we can see that their convergence are uniform

in time t.

2See Theorem 2.18 in [3] for the existence of such set.
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Proposition 4.2.11. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6,

there exists a constant cT
10 independent of n such that for any ϕ ∈ Cm+2

b (R),

Ẽ

[

sup
t∈[0,T ]

(ρn
t (ϕ) − ρt(ϕ))2

]

≤
cT
10

n
‖ϕ‖2

m+2,∞. (4.41)

Proof. By Proposition 4.1.1 and the fact that ρt(ϕ) satisfies Zakai equation, we have

ρn
t (ϕ) = (πn

0 (ϕ) − π0(ϕ))

+

∫ t

0

(ρn
s (Aϕ) − ρs(Aϕ))ds +

∫ t

0

(ρn
s (hϕ) − ρs(hϕ))dYs + Mn,ϕ

[t/δ]

+
1

n

n∑

j=1

∞∑

i=0

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
.

(4.42)

By Lemmas 4.2.2 – 4.2.4, we know that,

Ẽ



 sup
t∈[0,T ]

(
1

n

n∑

j=1

∞∑

i=0

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (r)R1

s,j(ϕ)ds

)2


 ≤ cT
3 (αδ)2‖ϕ‖2

6,∞;

Ẽ



 sup
t∈[0,T ]

(
1

n

n∑

j=1

∞∑

i=0

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (r)R2

s,j(ϕ)dYs

)2


 ≤ cT
4 (αδ)2‖ϕ‖2

4,∞;

Ẽ



 sup
t∈[0,T ]

(
1

n

n∑

j=1

∞∑

i=0

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (r)R3

s,j(ϕ)dV (j)
s

)2


 ≤
cT
5

n
‖ϕ‖2

5,∞.

By Doob’s maximal inequality and Lemma 4.2.5

Ẽ

[

max
i=1,...,[T/δ]

(Mn,ϕ
i )2

]

≤ 4Ẽ

[(
Mn,ϕ

[T/δ]

)2
]

≤
4c

[T/δ]
6

n
‖ϕ‖2

1,∞;

Now we only need to bound the first three terms on the right-hand side of

(4.42). For the first term, using the mutual independence of the initial locations of

the particles vn
j (0),

Ẽ [( πn
0 (ϕ) − π0(ϕ))2] =

1

n

(
π0(ϕ

2) − π0(ϕ)2
)
≤

1

n
‖ϕ‖2

2,∞ ≤
1

nq
‖ϕ‖2

2,∞.
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For the second term, by Jensen’s inequality and Fubini’s Theorem, together with

Theorem 4.2.8, we have

Ẽ

[

sup
t∈[0,T ]

(∫ t

0

(ρn
s (Aϕ) − ρs(Aϕ))ds

)2
]

≤ Ẽ

[

sup
t∈[0,T ]

t

∫ t

0

(ρn
s (Aϕ) − ρs(Aϕ))2ds

]

=Ẽ

[

T

∫ T

0

(ρn
s (Aϕ) − ρs(Aϕ))2ds

]

= T

∫ T

0

Ẽ
[
(ρn

s (Aϕ) − ρs(Aϕ))2
]
ds

≤
cT
0 T 2

n
‖Aϕ‖2

m,∞ =
c̃T
0 T 2

n
‖ϕ‖2

m+2,∞.

For the third term, similarly, by Burkholder-Davis-Gundy inequality and Fubini’s

Theorem, together with Theorem 4.2.8, we have

Ẽ

[

sup
t∈[0,T ]

(∫ t

0

(ρn
s (hϕ) − ρs(hϕ))dYs

)2
]

≤ C̃Ẽ

[∫ T

0

(ρn
s (hϕ) − ρs(hϕ))2ds

]

≤C̃

∫ T

0

Ẽ
[
(ρn

s (hϕ) − ρs(hϕ))2
]
ds ≤

C̃cT
0 T‖h‖2

0,∞

n
‖ϕ‖2

m,∞.

The above obtained bounds together imply (4.41). �

Proposition 4.2.12. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6,

there exists a constant cT
11 independent of n such that for and ϕ ∈ Cm+2

b (R),

Ẽ

[

sup
t∈[0,T ]

|πn
t (ϕ) − πt(ϕ)|

]

≤
cT
11√
n
‖ϕ‖m+2,∞. (4.43)

Proof. As in the proof of Theorem 4.2.9,

Ẽ

[

sup
t∈[0,T ]

|πn
t (ϕ) − πt(ϕ)|

]

≤m̂T





√√
√
√Ẽ

[

sup
t∈[0,T ]

(ρn
t (ϕ) − ρt(ϕ))2

]

+ ‖ϕ‖0,∞

√√
√
√Ẽ

[

sup
t∈[0,T ]

(ρn
t (1) − ρt(1))2

]

 ,

where

mt ,

√√
√
√Ẽ

[

sup
t∈[0,T ]

(ρt(1))−2

]

< ∞

and the result follows from Theorem 4.2.11. �
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Let M̄ = {ϕi, i ≥ 0} ∈ C8
b (Rd) be a countable convergence determining set such

that ‖ϕi‖8,∞ ≤ 1 for any i > 0 and with the same dM̄ be the metric on MF (Rd).

Then the following corollary follows immediately from Theorem 4.2.11 and Theorem

4.2.12

Corollary 4.2.13. If Assumption (A) is satisfied. Then for any T ≥ 0, there exist

two constants cT
12 and cT

13, such that

Ẽ

[

sup
t∈[0,T ]

dM̄(ρn
t , ρt)

]

≤
2
√

cT
12√

n
Ẽ

[

sup
t∈[0,T ]

dM̄(πn
t , πt)

]

≤
2cT

13√
n

(4.44)

Remark 4.2.14. The fact that the optimal value for α decreases with n is not

surprising. As the number of particles increases, the quantisation of the posterior

distribution becomes finer and finer. Therefore, asymptotically, the position and the

weight of the particle provide sufficient information to obtain a good approximation.

Remark 4.2.15. Since the approximations ρn
t and πn

t have smooth densities with

respect to the Lebesgue measure, it makes it possible to study various properties the

density of ρt and that from its approximation ρn
t (for example, the position of their

maximum value, the decay in time, the properties of their derivatives, etc). This

would be possible under the classic particle filtering framework, where the approxi-

mations are linear combinations of Dirac measures, only if a smoothing procedure is

applied first (see [24]).

In this section, the convergence results and L2-error are obtained under proba-

bility P̃; however, it is more natural to investigate these results under the original

probability P. The following proposition states the L2-convergence result under P.

Proposition 4.2.16. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6,

there exists constant cT independent of n, such that for any ϕ ∈ Cm
b (R), t ∈ [0, T ]

and α ∝ 1√
n

(defined in (3.8)), we have

E [|ρn
t (ϕ) − ρt(ϕ)|] ≤

cT

√
n
‖ϕ‖m,∞. (4.45)

Proof. Recalling the derivation of the new probability P̃, we know that

Z̃t = exp

(∫ t

0

h(Xs)dY i
s −

1

2

∫ t

0

h2(Xs)ds

)

(t ≥ 0) (4.46)
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is an Ft-adapted martingale under P̃ and

dP

dP̃

∣
∣
∣
∣
∣
Ft

= Z̃t t ≥ 0.

Therefore

E [|ρn
t (ϕ) − ρt(ϕ)|] =Ẽ

[
|ρn

t (ϕ) − ρt(ϕ)|Z̃t

]

≤

√

Ẽ [|ρn
t (ϕ) − ρt(ϕ)|2] Ẽ

[
(Z̃t)2

]

≤

√
cT
1 cz̃

n
‖ϕ‖m,∞. (4.47)

The result follows by letting cT =
√

cT
1 cz̃. �

Remark 4.2.17. Under the Tree Based Branching Algorithm (TBBA), Lp-convergence

result for ρn cannot be generally obtained. This is because, in general, pth moment

of Mn,ϕ
[t/δ] can not be obtained and controlled under P̃. As a result, one can only obtain

L1-convergence result for ρn under the original probability P.

4.3 Convergence Results using the Multinomial

Branching Algorithm

In this section we show the convergence result for the case where the resampling is

conducted by using Multinomial branching algorithm. The following theorem states

the main convergence result.

Theorem 4.3.1. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6, there

exists constant cT
1 independent of n, such that for any ϕ ∈ Cm

b (R), t ∈ [0, T ] and

α ∝ 1√
n

(defined in (3.8)), we have

Ẽ
[
(ρn

t (ϕ) − ρt(ϕ))2
]
≤

cT
1

n
‖ϕ‖2

m,∞. (4.48)

In order to prove Theorem 4.3.1, we note that after replacing the TBBA by

Multinomial branching, all the analysis in Section 4.2 is automatically valid, except

for the analysis on Mn,ϕ
i . Therefore, it suffices to re-investigate the L2-bound for

Mn,ϕ
i only. In other words, we only need to modify the proof of Lemma 4.2.5 as

follows.
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Lemma 4.3.2. If Assumption (A) is satisfied. Then for any T > 0, given a test

function ϕ ∈ C1
b (R), Mn,ϕ

[t/δ] can be decomposed as

Mn,ϕ
[t/δ] = An,ϕ

[t/δ] + Dn,ϕ
[t/δ] + Gn,ϕ

[t/δ]; (4.49)

where An,ϕ
[t/δ] and Gn,ϕ

[t/δ] are defined the same as the Section 4.2; and we further have

Ẽ
[
|An,ϕ

[t/δ]|
2
]
≤

cT
6

nδ
‖ϕ‖2

0,∞, Ẽ
[
|Dn,ϕ

[t/δ]|
2
]
≤ c̃T

6 (αβ)2‖ϕ‖2
0,∞, Ẽ

[
|Gn,ϕ

i |2
]
≤

cT
7 α

n
‖ϕ‖2

1,∞;

(4.50)

where cT
6 , c̃T

6 and cT
7 are constants independent of n.

Proof. Recalling proposition 4.1.1 and the semigroup operator P , we can decompose

Mn,ϕ in the following way

Mn,ϕ
[t/δ] =

1

n

[t/δ]∑

i=0

ξn
iδ

n∑

j=1

[

on,iδ
j

∫

R
ϕ(x)

e−
(x−Xn

j (iδ))2

2αβ

√
2παβ

dx − nān
j (iδ−)

∫

R
ϕ(x)

e
−

(x−vn
j (iδ−))2

2ωn
j

(iδ−)

√
2πωn

j (iδ−)
dx

]

,An,ϕ
[t/δ] + Dn,ϕ

[t/δ] + Gn,ϕ
[t/δ],

where Xn
j (iδ) ∼ N

(
vn

j (iδ−), ωn
j (iδ−)

)
is a Gaussian distributed random variable.

For the first term, by Proposition 3.2.3

Ẽ





(
1

n

n∑

j=1

ξn
iδ

((
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
)
)2 ∣∣
∣
∣
∣
Yiδ− ∨ Fiδ−





=
(ξn

iδ)
2

n2
Ẽ





(
n∑

j=1

((
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
)
)2 ∣∣
∣
∣
∣
Yiδ− ∨ Fiδ−





=
(ξn

iδ)
2

n2
‖ϕ‖2

0,∞Ẽ





(
n∑

j=1

(
on,iδ

j − nān
j (iδ−)

)
)2 ∣∣
∣
∣
∣
Yiδ− ∨ Fiδ−





≤
(ξn

iδ)
2

n2
‖ϕ‖2

0,∞Ẽ

[
n∑

j=1

(
on,iδ

j − nān
j (iδ−)

)2

∣
∣
∣
∣
∣
Yiδ− ∨ Fiδ−

]

=
(ξn

iδ)
2

n2
‖ϕ‖2

0,∞

[
n∑

j=1

nān
j (iδ−)(1 − ān

j (iδ−))

]

. (4.51)

We know from the proof of Lemma 4.4 in [56] that for any p > 0,

Ẽ
[(

ān
j (t)

)p]
≤

1

np
exp(cpt);
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then by Cauchy-Schwarz inequality, we know

Ẽ
[
(ξn

iδ)
2ān

j (iδ−)(1 − ān
j (iδ−))

]

≤

√

Ẽ [(ξn
iδ)

4] Ẽ
[(

ān
j (iδ−)(1 − ān

j (iδ−))
)2]

≤

√

Ẽ [(ξn
iδ)

4] Ẽ
[(

ān
j (iδ−)

)2]

≤
1

n

√
cT,4
1 exp(c2T ), (4.52)

then we have

Ẽ





(
1

n

n∑

j=1

ξn
iδ

((
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
)
)2




≤
‖ϕ‖2

0,∞

n2
n

n∑

j=1

Ẽ
[
(ξn

iδ)
2ān

j (iδ−)(1 − ān
j (iδ−))

]

≤
‖ϕ‖2

0,∞

n2
n

n∑

j=1

1

n

√
cT,4
1 exp(c2T ) =

‖ϕ‖2
0,∞

√
cT,4
1 exp(c2T )

n
. (4.53)

Therefore

Ẽ

[(
An,ϕ

[t/δ]

)2
]

≤
[t/δ]∑

i=1

√
cT,4
1 exp(c2T )

n
‖ϕ‖2

0,∞ ≤
t
√

cT,4
1 exp(c2T )

δn
‖ϕ‖2

0,∞. (4.54)

For Gn,ϕ
[t/δ], first by noting that

∫

R
ϕ
(
Xn

j (iδ) + y
√

αβ
) e

−y2

2

√
2π

dy − ϕ(Xn
j (iδ)) =

αβ

2
ϕ′′
(
Xn

j (iδ)
)

+ O
(
(αβ)2

)
;

(4.55)

then it is clear that we only need to show

Ẽ







 1

n

[t/δ]∑

i=1

ξn
iδ

n∑

j=1

on,iδ
j

(
(αβ)ϕ′′

(
Xn

j (iδ)
))




2

 ≤ c̃T
6 (αβ)2‖ϕ‖2

0,∞. (4.56)
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Observe that

Ẽ





(
1

n
ξn
iδ

n∑

j=1

on,iδ
j

(
(αβ)ϕ′′

(
Xn

j (iδ)
))
)2 ∣∣
∣
∣
∣
Fiδ−





=
(ξn

iδ)
2(αβ)2

n2
Ẽ





(
n∑

j=1

on,iδ
j ϕ′′

(
Xn

j (iδ)
)
)2 ∣∣
∣
∣
∣
Fiδ−





≤
(ξn

iδ)
2(αβ)2

n2
‖ϕ‖2

2,∞Ẽ





(
n∑

j=1

[(
on,iδ

j − nān
j (iδ−)

)
+ nān

j (iδ−)
]
)2 ∣∣
∣
∣
∣
Fiδ−





≤
2(ξn

iδ)
2(αβ)2

n2
‖ϕ‖2

2,∞




n∑

j=1

Ẽ

[(
on,iδ

j − nān
j (iδ−)

)2 ∣∣
∣Fiδ−

]

+

(
n∑

j=1

nān
j (iδ−)

)2


 .

(4.57)

For Multinomial Branching Algorithm, by Proposition 3.2.3,

Ẽ

[(
on,iδ

j − nān
j (iδ−)

)2 ∣∣
∣Fiδ−

]

= nān
j (iδ−)(1 − ān

j (iδ−)), (4.58)

and then by taking expectation on both sides of (4.57), we have

Ẽ





(
1

n
ξn
iδ

n∑

j=1

on,iδ
j

(
(αβ)ϕ′′

(
Xn

j (iδ)
))
)2




≤
2‖ϕ‖2

2,∞(αβ)2

n2

n∑

j=1

Ẽ
[
(ξn

iδ)
2ān

j (iδ−)(1 − ān
j (iδ−))

]

+
2‖ϕ‖2

2,∞(αβ)2

n2
n2Ẽ



(ξn
iδ)

2

(
n∑

j=1

ān
j (iδ−)

)2




≤
2‖ϕ‖2

2,∞(αβ)2

n2

n∑

j=1

√
Ẽ [(ξn

iδ)
4] Ẽ

[
ān

j (iδ−)2(1 − ān
j (iδ−))2

]
+ 2(αβ)2‖ϕ‖2

2,∞ct,4
1 ec2t

≤
2‖ϕ‖2

2,∞(αβ)2

n2

n∑

j=1

1

n

√
ct,4
1 ec2t + 2(αβ)2‖ϕ‖2

2,∞ct,4
1 ec2t

=
2‖ϕ‖2

2,∞(αβ)2

n2

√
ct,4
1 ec2t + 2‖ϕ‖2

2,∞(αβ)2ct,4
1 ec2t = cT (αβ)2‖ϕ‖2

2,∞, (4.59)

where cT = 2
√

ct,4
1 ec2t + 2ct,4

1 ec2t.

Therefore, we obtain

Ẽ







 1

n

[t/δ]∑

i=1

ξn
iδ

n∑

j=1

on,iδ
j

(
(αβ)ϕ′′

(
Xn

j (iδ)
))




2

 ≤ [t/δ]

[t/δ]∑

i=1

cT (αβ)2‖ϕ‖2
2,∞ = c̃T

6 (αβ)2‖ϕ‖2
2,∞
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if we let c̃T
6 = T 2cT /δ2.

As for Gn,ϕ
[t/δ], first note that Xn

j (iδ) ∼ N
(
vn

j (iδ), ωn
j (iδ)

)
and Xn

j s are mutually

independent (j = 1, . . . , n), then we have

Ẽ





(
n∑

j=1

ξn
iδā

n
j (iδ−)

[
ϕ(Xn

j (kδ)) − Ẽ
(
ϕ(Xn

j (kδ))
)]
)2 ∣∣
∣
∣
∣
Yiδ−





≤
n∑

j=1

(
ξn
iδā

n
j (iδ−)

)2
Ẽ

[
(
ϕ(Xn

j (kδ)) − Ẽ
(
ϕ(Xn

j (kδ))
))2

∣
∣
∣
∣
∣
Yiδ−

]

≤
n∑

j=1

(
ξn
iδā

n
j (iδ−)

)2
Ẽ

[
(
ϕ(Xn

j (kδ)) − Ẽ
(
ϕ(Xn

j (kδ))
))2

∣
∣
∣
∣
∣
Yiδ−

]

≤
n∑

j=1

(
ξn
iδā

n
j (iδ−)

)2
2‖ϕ′‖2

0,∞Ẽ

[
(
Xn

j (kδ) − Ẽ
(
Xn

j (kδ)
))2

∣
∣
∣
∣
∣
Yiδ−

]

≤2
n∑

j=1

(
ξn
iδā

n
j (iδ−)

)2
‖ϕ‖2

1,∞‖σ‖2
0,∞αδ , cσαδ‖ϕ‖2

1,∞

n∑

j=1

(
ξn
iδā

n
j (iδ−)

)2
. (4.60)

then by taking the expectation on both sides, we have

Ẽ





(
n∑

j=1

ξn
iδā

n
j (iδ−)

[
ϕ(Xn

j (kδ)) − Ẽ
(
ϕ(Xn

j (kδ))
)]
)2




≤cσαδ‖ϕ‖2
1,∞

n∑

j=1

Ẽ
[(

ξn
iδā

n
j (iδ−)

)2]
≤ cσαδ‖ϕ‖2

1,∞

n∑

j=1

√

Ẽ
[
(ξn

iδ)
4] Ẽ

[(
ān

j (iδ−)
)4]

≤cσαδ‖ϕ‖2
1,∞

1

n2

n∑

j=1

√
ct,4
1 exp(c4t) =

cσ

√
ct,4
1 exp(c4t)

n
αδ‖ϕ‖2

1,∞. (4.61)

Finally we have

Ẽ

[(
Gn,ϕ

[t/δ]

)2
]

≤
[t/δ]∑

i=1

cσ

√
ct,4
1 exp(c4t)

n
αδ‖ϕ‖2

1,∞ ≤
tcσ

√
ct,4
1 exp(c4t)

n
α‖ϕ‖2

1,∞.

(4.62)

The result follows by letting cT
6 = t

√
cT,4
1 exp(c2T ) and cT

7 = Tcσ

√
cT,4
1 exp(c4T ). �

We also have the following convergence result for the approximation πn
t of the

normalised conditional distribution:
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Theorem 4.3.3. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6, there

exists a constant cT
7 independent of n such that for α ∝ 1√

n
and ϕ ∈ Cm

b (R), we have

Ẽ [|πn
t (ϕ) − πt(ϕ)|] ≤

cT
7√
n
‖ϕ‖m,∞, t ∈ [0, T ]. (4.63)

Remark 4.3.4. From the proof of the above theorem, it can be seen that all the other

results obtained in Section 4.2 still hold under Multinomial branching algorithm.

Under the multinomial branching algorithm, one can show that Lp-convergence

result for ρn and πn can be obtained for any p ≥ 2, namely we have the following

theorem. The proof of the theorem is similar to that of Chapter 4 of [56].

Theorem 4.3.5. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6, there

exists constants cT
1 and cT

2 independent of n, such that for any ϕ ∈ Cm
b (R), t ∈ [0, T ]

and α ∝ 1√
n

(defined in (3.8)), we have

Ẽ [|ρn
t (ϕ) − ρt(ϕ)|p] ≤

cT
1

np/2
‖ϕ‖p/2

m,∞. (4.64)

Ẽ [|πn
t (ϕ) − πt(ϕ)|p] ≤

cT
2

np/2
‖ϕ‖p/2

m,∞. (4.65)

The following proposition shows the convergence result under the original prob-

ability P.

Proposition 4.3.6. If Assumption (A) is satisfied. Then for any T ≥ 0, m ≥ 6,

there exists constant cT independent of n, such that for any ϕ ∈ Cm
b (R), t ∈ [0, T ],

q ≥ 1 and α ∝ 1√
n

(defined in (3.8)), we have

E [|ρn
t (ϕ) − ρt(ϕ)|q] ≤

cT

nq/2
‖ϕ‖q/2

m,∞. (4.66)

Proof. Recalling the derivation of the new probability P̃, we know that

Z̃t = exp

(∫ t

0

h(Xs)dY i
s −

1

2

∫ t

0

h2(Xs)ds

)

(t ≥ 0) (4.67)

is an Ft-adapted martingale under P̃ and

dP

dP̃

∣
∣
∣
∣
∣
Ft

= Z̃t t ≥ 0.
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Therefore by Cauchy-Schwarz inequality, we have

E [|ρn
t (ϕ) − ρt(ϕ)|q] =Ẽ

[
|ρn

t (ϕ) − ρt(ϕ)|qZ̃t

]

≤

√

Ẽ [|ρn
t (ϕ) − ρt(ϕ)|2q] Ẽ

[
(Z̃t)2

]

≤

√
cT
1 cz̃

nq
‖ϕ‖q

m,∞. (4.68)

The result follows by letting cT =
√

cT
1 cz̃. �

4.4 A Numerical Example

In this section, we present some numerical experiments to test the performance of the

approximations with mixture of Gaussian measures. The model chosen in this case is

the Beneš filter. This is a stochastic filtering problem with a nonlinear dynamics for

the signal process and a linear dynamics the observation process, and this problem

has an analytical finite dimensional solution. The main reason for choosing this

model is that it has a sufficient nonlinear behaviour to make it interesting, and

more importantly, still has a closed form for its solution.

4.4.1 The Model and its Exact Solution

We assume that both the signal and the observation are one-dimensional. The

dynamics of the signal X is

Xt = X0 +

∫ t

0

f(Xs)ds + σVt, (4.69)

where f(x) = μσ tanh(μx/σ). From Exercise 6.1 in [3] we know that f satisfies the

Beneš condition. We further assume the observation Y satisfies

Yt =

∫ t

0

h(Xs)ds + Wt, (4.70)

where W is a standard Brownian motion independent of V , and h(x) = h1x + h2.

We also assume that X0, μ, h1, h2 ∈ R and σ > 0.
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Then from [25] we know that the conditional law of Xt given Yt , σ(Ys, 0 ≤ s ≤

t) has the exact expression of a weight mixture of two Gaussian distributions. In

other words, the conditional distribution πt of Xt is

πt = w+N (A+/(2Bt), 1/(2Bt)) + w−N (A−/(2Bt), 1/(2Bt)),

where N (μ, σ2) is the normal distribution with mean μ and variance σ2, and

w± , exp
(
(A±

t )2/(4Bt)
)
/
[
exp

(
(A+

t )2/(4Bt)
)

+ exp
(
(A−

t )2/(4Bt)
)]

A±
t , ±

μ

σ
+ h1Ψt +

h1X0 + h2

σ sinh(h1σt)
−

h2

σ
coth(h1σt)

Bt ,
h1

2σ
coth(h1σt)

Ψt ,
∫ t

0

sinh(h1σs)

sinh(h1σt)
dYs.

We can, however, only observe Y at a finite partition Πm,T = {0 = t0 < t1 < ∙ ∙ ∙ <

tm−1 = T} of [0, T ] in practice; thus we approximate the integral in the definition

of Ψt by

Ψt ≈
i−1∑

k=0

sinh(h1σtk+1)

sinh(h1σti)
(Ytk+1

− Ytk), for ti ∈ Πn,T .

4.4.2 Numerical Simulation Results

We set values for the parameters μ, σ, h1, h2, X0 and T as follows:

μ = 0.3, h1 = 0.8, h2 = 0.0, σ = 1.0, X0 = 0.0, T = 10.0;

and then we compute one realisation of Xt and Yt respectively using the Euler

scheme with an equidistant partition Πm,T = {ti = i
m

T}i=0,...,m with m = 106. This

realisation is then fixed and will act as the given observation path. After that, all

the simulations will be done assuming that we are given the previously obtained

Yt computed from that realisation of Xt. With this previously simulated discrete

path of Y , we can then approximate Ψt and consequently compute the values of

A±
t , Bt and w±

t ; so that we can compute the conditional law of ϕ(Xt) given Yt. At

the branching time, we use the Tree Based Branching Algorithm. We will show the

convergence of the Gaussian mixture approximation and the classic particle filters

in terms of the number of time steps in the partition and the number of particles
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respectively.

We note that for the test function ϕ(x) = x, the Gaussian mixture approximation

gives

πn
t (x) =

n∑

j=1

ān
j (t)

∫

R

(
vn

j (t) + y
√

ωn
j (t)

) 1
√

2π
exp

(

−
y2

2

)

dy =
n∑

j=1

ān
j (t)vn

j (t).

This is almost the same result as the classic particle filters, except that the evolution

equations satisfied by vn
j (t)s are slightly different in two cases (see equations (3.1)

and (3.8) for details). It is therefore more meaningful to estimate the normalised

conditional distribution πT (ϕ) for ϕ(x) = x2 and ϕ(x) = x3, that is, the second and

third moments of the system at time T given the observation Y up to time T . To

be specific, we estimate πT (ϕ) by πn
T (ϕ) with the number of particles (of Gaussian

generalised particles) n = 40000 and we choose various values for the number of time

steps m in the partition. We compute πn
T (ϕ) using classic particles and mixture of

Gaussian measures respectively. Instead of the absolute error |πn
T (ϕ) − πT (ϕ)|, we

consider the relative error
|πn

T (ϕ) − πT (ϕ)|
|πT (ϕ)|

.

The convergence of both methods as the number of discretisation time steps m

increases can be seen from the following Figure 4.1, and for large number of time

steps the Gaussian mixture approximation performs slightly better than the classic

particle filters.

In the following we fix the number of time steps m = 110 and vary the number

of particles n in the approximating system.

From Figure 4.2 and Figure 4.3 we can see the convergence of both approxima-

tions with the increase of the number of (generalised) particles. It can be seen (from

the right hand side of Figures 4.2 and 4.3) that for small number of (generalised)

particles, Gaussian mixture approximation performs much better than the classic

particle filters. This is because by using the Gaussian mixture approximation, each

(generalised) particle carries more information about the signal (from its variance)

than the classic particle does. Therefore a smaller number of particles is required in

order to obtain the same level of accuracy.
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Figure 4.1: Relative Errors with time steps for ϕ(x) = x2 (left) & ϕ(x) = x3 (right)

As the number of (generalised) particles increases, we can see (from the left

hand side of Figures 4.2 and 4.3) that the Gaussian mixture approximation converges

faster than the classic particle filters; and we are able to obtain a good approximation

for both methods with 104 particles. There is no significant improvement if we

increase the number of (generalised) particles further more in both approximating

systems.
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Figure 4.2: Relative Errors with different number of particles for ϕ(x) = x2
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Figure 4.3: Relative Errors with different number of particles for ϕ(x) = x3
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Chapter 5

Central Limit Theorem

In this chapter we will obtain a central limit type result for the unnormalised (and

normalised) conditional distributions ρ (and π) and their approximating measures

ρn (and πn). In other words, we aim to show that

√
n (ρn − ρ) and

√
n (πn − π) (5.1)

converge in distribution as the number of generalised particles n increases. We

proceed in a standard manner: we prove first a tightness result; and then deduce

the convergence in distribution. In this chapter, we will prove the central limit

theorem under Multinomial branching algorithm. We will also include a further

discussion on the preference of multinomial branching over Tree Based Branching

Algorithm (TBBA) at the end of this chapter.

5.1 Tightness

First we recall the definitions of relative compactness and tightness. It is possible

to obtain the tightness and convergence in distribution results by endowing MF (R)

with the weak topology. In this topology a sequence of finite measures {μn}n∈N ⊂

MF (R) converges to μ ∈ MF (R) if and only if for a set S(ϕ) of test functions,

μn(ϕ) converges to μ(ϕ) for all ϕ ∈ S(ϕ). S(ϕ) can be taken to be Cm
b (R) for any

m ≥ 1.

Definition 5.1.1. For (X, d) a metric space and
∏

, a family of probability measures

on (X,B(X)), we say

66



•
∏

is relatively compact if every sequence of elements of
∏

contains a conver-

gent subsequence.

•
∏

is tight if for every ε > 0, there exists a compact set K ⊆ X such that

P(K) ≥ 1 − ε, for every P ∈
∏

.

The following theorem (see, for example, Theorem 2.4.7 in [44]) states the rela-

tion between relative compactness and tightness.

Theorem 5.1.2 (Prohorov’s Theorem). Let Π be a family of probability measures

on a complete, separable metric space (X, d). This family is relatively compact if

and only if it is tight.

Define U = {Un
t : t ≥ 0} to be the measure-valued process

Un
t ,

√
n(ρn

t − ρt), (5.2)

and we aim to show that {Un} converges in distribution to a process U , which is

uniquely identified as the solution of a certain martingale problem. This implies

that for any continuous and bounded test function,

lim
n→∞

√
n(ρn

t (ϕ) − ρt(ϕ)) = Ut(ϕ); (5.3)

hence the error of the approximations ρn
t (ϕ) of ρt(ϕ) is roughly Ut(ϕ)

/√
n.

Recalling Proposition 4.1.1, we deduced that

Un
t (ϕ) =Un

0 (ϕ) +

∫ t

0

Un
s (Aϕ)ds +

∫ t

0

Un
t (hϕ)dYs +

√
nMn,ϕ

[t/δ] +
√

nBn,ϕ
t , (5.4)

where

√
nBn,ϕ

t =
1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
. (5.5)

Before proceeding further discussion on Un, we define the metric on MF (R)

which generates the weak topology. Let ϕ0 = 1 and {ϕi}i≥0 be a sequence of

functions which are dense in the space of continuous functions with compact support

on R. Then the metric dM is defined as

dM : MF (R) ×MF (R) → [0,∞), dM(μ, ν) =
∞∑

i=0

μ(ϕi) − ν(ϕi)

2i‖ϕi‖0,∞
;
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and dM generates the weak topology on MF (R) in the sense that μn converges

weakly to μ if and only if limn→∞ dM(μn, μ) = 0 as {ϕi}i≥0 is a convergence deter-

mining set of functions over MF (R).

However, the space
(
DMF (R)[0,∞), dM

)
is separable but not complete under this

metric because its underlying space (MF (R), dM) is separable but not complete.

This inconvenience makes us unable to make use of Prohorov’s Theorem. In order

to tackle this problem, we consider the one-point compactification of R

R , R ∪ {∞},

Then we embed the space DMF (R)[0,∞) into the complete and separable space

DMF (R)[0,∞) by defining a map such that

μ ∈ MF (R) → μ ∈ MF (R) and μ(A) = μ(A ∩ R), ∀A ∈ R.

The family {Un
t } can then be viewed as a stochastic process with sample paths in the

complete and separable space DMF (R)[0,∞), or as a random variable with values in

the space P(DMF (R)[0,∞)) – the space of probability measures over DMF (R)[0,∞).

We are now ready to show that the family of processes {Un} is tight on [0, T ]

for all T > 0. In other words, let {P̃n} ⊂ P
(
DMF (R)[0, T ]

)
be the family of

associated probability distributions of Un; in other words, P̃n(B) = P̃n(Un ∈ B)

for all B ∈ B(DMF (R)[0, T ]). We aim to show that {P̃n} is relatively compact

and hence, by Prohorov’s Theorem, tight. To be specific, we will make use of the

following theorem (Theorem 2.1 in [62]):

Theorem 5.1.3. A family of probabilities {P̃n}n ⊂ P
(
DMF (Rd)

[0, T ]
)

is tight, if

there exits a dense sequence {f̃k}k≥0 in Cb(Rd) such that for each k ∈ N, {πf̃k
P̃n}n ⊂

P (DR[0, T ]) is a tight sequence of probabilities; where πf̃k
: MF (Rd) → R is defined

by πf̃k
(μ) = μ(f̃k) for μ ∈ MF (Rd).

In the remaining of this chapter, because of the definition of the distance dM,

we choose (f̃k)k≥0 to be defined as follows: f̃0 ≡ 1, and f̃k (k ≥ 1) is chosen so that

f̃k

∣
∣
R

is a dense sequence in C6
b (R), the space of six times differentiable continuous

functions on R, vanishing at infinity with continuous partial derivatives up to and

including the sixth order. According to Theorem 5.1.3, it suffices to prove the
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tightness result for {πf̃k
P̃n}n. We will make use of the following criteria, which can

be found in [35], to show that {πf̃k
Un}n = {Un(f̃k)}n is tight, and then the tightness

of {πf̃k
P̃n} follows since Theorem 5.1.3.

Theorem 5.1.4 (Kurtz’s criteria of relative compactness). Let (E, d) be a separable

and complete metric space and let {Xn}n∈N be a sequence of processes with sample

paths in DE[0,∞). Suppose that for every η > 0 and rational t, there exists a

compact set Γη,t such that

sup
n
P(Xn

t /∈ Γη,t) ≤ η. (5.6)

Then {Xn}n∈N is relatively compact if and only if the following conditions hold:

• For each T ′ > 0, there exists β > 0 and a family {γn(Δ) : 0 < Δ < 1} of

non-negative random variables

Ẽ
[(

1 ∧ d(Xn
t+u, X

n
t )
)β (

1 ∧ d(Xn
t , Xn

t−v)
)β

|Ft

]
≤ Ẽ [γn(Δ)|Ft] (5.7)

for 0 ≤ t ≤ T ′, 0 ≤ u ≤ Δ and 0 ≤ v ≤ Δ ∧ t;

• For γn(Δ), we have

lim
Δ→0

lim sup
n→∞

Ẽ [γn(Δ)] = 0; (5.8)

• At the initial time

lim
Δ→0

lim sup
n→∞

Ẽ
[
(1 ∧ d(Xn

Δ, Xn
0 ))β

]
= 0. (5.9)

To justify (5.6), we need to prove the following lemma:

Lemma 5.1.5. For all η > 0, there exists a constant β such that for the associated

probabilities {πf̃k
P̃n} of {πf̃k

Un} and A = {x ∈ DR[0, T ] : supt∈[0,T ] |x(t)| > β}, we

have

πf̃k
P̃n(A) ≤ η. (5.10)

Proof. Note that πf̃k
Un

t = Un
t (f̃k), so that

πf̃k
P̃n(A) = P̃nπ−1

f̃k
(A)

= P̃n

(

Un ∈ DMF
[0, T ] : sup

t
|Un

t (f̃k)| > β

)

= P̃n

(

Un ∈ DMF
[0, T ] : sup

t
|
√

n(ρn
t (f̃k) − ρt(f̃k))| > β

)

≤
Λn

T (f̃k)

β2
, (5.11)

69



where Λn
T (f̃k) = Ẽ

[

supt

(√
n(ρn

t (f̃k) − ρt(f̃k))
)2
]

.

It suffices to show that Λn
T (f̃k) is bounded above by a constant independent of

n, which is an immediate consequence of Jensen’s inequality and Theorem 4.2.11.

Then we choose

β2 =
η

Λn
T (f̃k)

and the proof is complete. �

In order to prove the tightness of {Un(f̃k)}, we still need to show that (5.7), (5.8)

and (5.9) are satisfied by {Un(f̃k)}. We prove these by showing that each of the

increments of the process appearing on the right hand side of (5.4) satisfy similar

bounds.

In the following we will choose Δ to be sufficiently small. To be specific, we let

Δ < δ
2
, where δ is the time length between two resampling events. This ensures that

either [t − Δ, t] or [t, t + Δ] does not contain a resampling event, in other words,

there is at most one resampling event in [t, t + u] and [t − v, t], where 0 ≤ u ≤ Δ

and 0 ≤ v ≤ Δ ∧ t.

If the resampling happens only in the interval [t − v, t], and obtain

Ẽ
[(

1 ∧ d(Xn
t+u, X

n
t )
)β (

1 ∧ d(Xn
t , Xn

t−v)
)β

|Ft

]
≤ Ẽ

[(
1 ∧ d(Xn

t+u, X
n
t )
)β

|Ft

]
.

Therefore in order to determine γn(Δ) and shows that (5.7) is satisfied by

{Un(f̃k)}n, it suffices to find an appropriate γn(Δ) and show

Ẽ

[(
1 ∧ d(Un

t+u(f̃k), U
n
t (f̃k)

)2

|Ft

]

≤ Ẽ [γn(Δ)|Ft] . (5.12)

This will be done in the following proposition.

Proposition 5.1.6. Let k ∈ N, and we further assume that f̃k ∈ C6
b (R), and

Assumption (A) holds. Let the length bewtween two resampling events δ to be fixed

and let α ∝ 1√
n
. Define the family {γn

u (Δ) : 0 < Δ < 1} of non-negative random

variables

γn(Δ) , 3nΔ2 sup
s∈[t,t+u]

(
ρn

s (Af̃k) − ρs(Af̃k)
)2

+ 3nΔ sup
s∈[t,t+u]

(
ρn

s (hf̃k) − ρs(hf̃k)
)2

+
3Δ

n
Cγ‖f̃k‖

2
6,∞

n∑

j=1

sup
s∈[t,t+u]

(
ξn
iδa

n
j (s)

)2

, (5.13)
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where Cγ is a constant independent of n. By Theorem 4.2.11, we know that

sup
s∈[t,t+u]

n
(
ρn

s (Af̃k) − ρs(Af̃k)
)2

and sup
s∈[t,t+u]

n
(
ρn

s (hf̃k) − ρs(hf̃k)
)2

are bounded and independent of Δ. Then we have

Ẽ
[
1 ∧ d(Un

t+u(f̃k), U
n
t (f̃k))

2|Ft

]
≤ Ẽ [γn(Δ)|Ft] . (5.14)

Proof. Bearing in mind that there is no resampling event within [t, t + u], thus

[(t + u)/δ] = [t/δ] and

Mn,f̃k

[(t+u)/δ] − Mn,f̃k

[t/δ] = 0.

Therefor we have that

Ẽ
[
1 ∧ d(Un

t+u(f̃k), U
n
t (f̃k))

2
∣
∣Ft

]

≤ Ẽ
[
d(Un

t+u(f̃k), U
n
t (f̃k))

2
∣
∣Ft

]

= Ẽ
[
|Un

t+u(f̃k) − Un
t (f̃k)|

2
∣
∣Ft

]

= Ẽ

[∣
∣
∣
√

n
((

ρn
t+u(f̃k) − ρt+u(f̃k)

)
−
(
ρn

t (f̃k) − ρt(f̃k)
))∣∣
∣
2

∣
∣
∣
∣
∣
Ft

]

≤ 3n

{

Ẽ

[(∫ t+u

t

(ρn
s (Af̃k) − ρs(Af̃k))ds

)2
∣
∣
∣
∣
∣
Ft

]

+ Ẽ

[(∫ t+u

t

(ρn
s (hf̃k) − ρs(hf̃k))dYs

)2
∣
∣
∣
∣
∣
Ft

]

+
1

n2
Ẽ





(
n∑

j=1

∫ t+u

t

ξn
iδa

n
j (s)

[
R1

s,j(f̃k)ds + R2
s,j(f̃k)dYs + R3

s,j(f̃k)dV (j)
s

]
)2 ∣∣
∣
∣
∣
Ft





}

.

(5.15)

We examine each of the terms in (5.15) and observe the following:
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For the first term in (5.15), by Jensen’s inequality, we have

Ẽ

[(
√

n

∫ t+u

t

(ρn
s (Af̃k) − ρs(Af̃k))ds

)2
∣
∣
∣
∣
∣
Ft

]

≤Ẽ

[

nu

∫ t+u

t

(
ρn

s (Af̃k) − ρs(Af̃k

)2

ds

∣
∣
∣
∣
∣
Ft

]

=nu

∫ t+u

t

Ẽ

[(
ρn

s (Af̃k) − ρs(Af̃k

)2 ∣∣
∣Ft

]

ds

≤nu

∫ t+u

t

sup
s∈[t,t+u]

Ẽ

[(
ρn

s (Af̃k) − ρs(Af̃k

)2 ∣∣
∣Ft

]

ds

=nu2 sup
s∈[t,t+u]

Ẽ

[(
ρn

s (Af̃k) − ρs(Af̃k

)2 ∣∣
∣Ft

]

. (5.16)

For the second term in (5.15),

Ẽ

[(∫ t+u

t

√
n
(
ρn

s (hf̃k) − ρs(hf̃k)
)

dYs

)2
∣
∣
∣
∣
∣
Ft

]

≤Ẽ

[〈∫ ∙

t

√
n
(
ρn

s (hf̃k) − ρs(hf̃k)
)

dYs

〉

t+u

∣
∣
∣
∣
∣
Ft

]

=nẼ

[∫ t+u

t

(
ρn

s (hf̃k) − ρs(hf̃k)
)2

ds

∣
∣
∣
∣
∣
Ft

]

=n

∫ t+u

t

Ẽ

[(
ρn

s (hf̃k) − ρs(hf̃k)
)2 ∣∣
∣Ft

]

ds

≤n

∫ t+u

t

sup
s∈[t,t+u]

Ẽ

[(
ρn

s (hf̃k) − ρs(hf̃k)
)2 ∣∣
∣Ft

]

ds

=un sup
s∈[t,t+u]

Ẽ

[(
ρn

s (hf̃k) − ρs(hf̃k)
)2 ∣∣
∣Ft

]

. (5.17)

For the remaining terms in (5.15), note that

R1
s,j(f̃k) ≤ C1αδ‖f̃k‖6,∞ ≤

C1

n
‖f̃k‖6,∞,
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we then have

n
1

n2
Ẽ





(
n∑

j=1

∫ t+u

t

ξn
iδa

n
j (s)

[
R1

s,j(f̃k)ds
]
)2 ∣∣
∣
∣
∣
Ft





≤
1

n
Ẽ



u

∫ t+u

t

(
n∑

j=1

ξn
iδa

n
j (s)R1

s,j(f̃k)

)2

ds

∣
∣
∣
∣
∣
Ft





≤
1

n
Ẽ

[

u

∫ t+u

t

n
n∑

j=1

[
ξn
iδa

n
j (s)R1

s,j(f̃k)
]2

ds

∣
∣
∣
∣
∣
Ft

]

=u
n∑

j=1

∫ t+u

t

Ẽ

[(
ξn
iδa

n
j (s)R1

s,j(f̃k)
)2 ∣∣
∣Ft

]

ds

≤u2 C2
1

n
‖f̃k‖

2
6,∞

n∑

j=1

sup
s∈[t,t+u]

Ẽ
[(

ξn
iδa

n
j (s)

)2
∣
∣
∣Ft

]

≤u
C2

1

n
‖f̃k‖

2
6,∞

n∑

j=1

sup
s∈[t,t+u]

Ẽ
[(

ξn
iδa

n
j (s)

)2
∣
∣
∣Ft

]
; (5.18)

and also note that

R2
s,j(f̃k) ≤ C2αδ‖f̃k‖4,∞ ≤

C2

n
‖f̃k‖4,∞,

then we have

n
1

n2
Ẽ





(
n∑

j=1

∫ t+u

t

ξn
iδa

n
j (s)R2

s,j(ϕ)dYs

)2 ∣∣
∣
∣
∣
Ft





≤
1

n
Ẽ

[

n

n∑

j=1

(∫ t+u

t

ξn
iδa

n
j (s)R2

s,j(ϕ)dYs

)2
∣
∣
∣
∣
∣
Ft

]

≤
n∑

j=1

Ẽ

[∫ t+u

t

[
ξn
iδa

n
j (s)R2

s,j(ϕ)
]2

ds

∣
∣
∣
∣
∣
Ft

]

=
n∑

j=1

∫ t+u

t

Ẽ

[(
ξn
iδa

n
j (s)R2

s,j(ϕ)
)2∣∣
∣Ft

]

ds

≤
n∑

j=1

∫ t+u

t

sup
s∈[t,t+u]

Ẽ

[(
ξn
iδa

n
j (s)R2

s,j(ϕ)
)2∣∣
∣Ft

]

ds

=u
C2

2

n
‖f̃k‖

2
4,∞

n∑

j=1

sup
s∈[t,t+u]

Ẽ

[(
ξn
iδa

n
j (s)

)2∣∣
∣Ft

]

; (5.19)
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and finally since

R3
s,j(f̃k) ≤ (C0 + C3αδ)‖f̃k‖5,∞ ≤ (C0 + C3)‖f̃k‖5,∞,

we have that

n
1

n2
Ẽ





(
n∑

j=1

∫ t+u

t

ξn
iδa

n
j (s)R3

s,j(ϕ)dV (j)
s

)2 ∣∣
∣
∣
∣
Ft





≤
1

n
Ẽ

[
n∑

j=1

(∫ t+u

t

ξn
iδa

n
j (s)R3

s,j(ϕ)dV (j)
s

)2
∣
∣
∣
∣
∣
Ft

]

≤
1

n
Ẽ

[
n∑

j=1

∫ t+u

t

(
ξn
iδa

n
j (s)R3

s,j(ϕ)
)2

ds

∣
∣
∣
∣
∣
Ft

]

=
1

n

n∑

j=1

∫ t+u

t

Ẽ

[(
ξn
iδa

n
j (s)R3

s,j(ϕ)
)2∣∣
∣Ft

]

ds

≤
1

n

n∑

j=1

∫ t+u

t

sup
s∈[t,t+u]

Ẽ

[(
ξn
iδa

n
j (s)R3

s,j(ϕ)
)2∣∣
∣Ft

]

ds

=
u

n
(C0 + C3)

2‖f̃k‖
2
5,∞

n∑

j=1

sup
s∈[t,t+u]

Ẽ

[(
ξn
iδa

n
j (s)

)2∣∣
∣Ft

]

. (5.20)

Therefore, considering the bounds in the right hand sides of (5.16), (5.17), (5.18),

(5.19), and (5.20); we can define γn(Δ) as in (5.13) by letting

Cγ = C2
1 + C2

2 + (C0 + C3)
2.

By virtue of (5.15), we know that (5.14) is satisfied. �

The above discussion defines γn(Δ) and shows that (5.7) is satisfied for {Un(f̃k)}n.

The following proposition shows that γn(Δ) defined in (5.13) satisfies (5.8).

Proposition 5.1.7. γn(Δ) defined in (5.13) has the following property

lim
Δ→0

lim sup
n→∞

Ẽ [γn(Δ)] = 0. (5.21)

Proof. We show this by looking at the expectation of each term in (5.13).
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For the first term, by Theorem 4.2.11

Ẽ

[

nΔ2 sup
s∈[t,t+u]

(
ρn

s (Af̃k) − ρs(Af̃k

)2
]

=nΔ2Ẽ

[

sup
s∈[t,t+u]

(
ρn

s (Af̃k) − ρs(Af̃k

)2
]

≤nΔ2 cT

n

∥
∥
∥Af̃k

∥
∥
∥

2

m+2,∞
= Δ2cT

∥
∥
∥Af̃k

∥
∥
∥

2

m+2,∞
→ 0, as Δ → 0. (5.22)

Similarly, for the second term,

Ẽ

[

nΔ sup
s∈[t,t+u]

(
ρn

s (hf̃k) − ρs(hf̃k)
)2
]

≤ Δc̃T
∥
∥
∥hf̃k

∥
∥
∥

2

m+2,∞
→ 0, as Δ → 0. (5.23)

For the remaining term, again note that (αδ)2 ∼ 1/n, and

Ẽ

[
n∑

j=1

sup
s∈[t,t+u]

(
ξn
iδa

n
j (s)

)2
]

=
n∑

j=1

Ẽ

[

sup
s∈[t,t+u]

(
ξn
iδa

n
j (s)

)2
]

≤ nct,2
2 . (5.24)

Thus

Δ

n
Cγn‖f̃k‖

2
6,∞

n∑

j=1

Ẽ

[

sup
s∈[t,t+u]

(
ξn
iδa

n
j (s)

)2
]

≤
Δ

n
‖f̃k‖

2
6,∞nct,2

2 = Δct,2
2 ‖f̃k‖

2
6,∞ → 0, as Δ → 0. (5.25)

This completes the proof. �

The following proposition shows that (5.9) holds for {Un(f̃k)}.

Proposition 5.1.8. For each k ∈ N, we have

lim
Δ→0

lim sup
n→∞

Ẽ

[(
1 ∧ d(Un

Δ(f̃k), U
n
0 (f̃k))

)2
]

= 0. (5.26)

Proof. The result follows immediately by continuity of {Un(f̃k)}n at the initial time

0. �

Finally, Lemma 5.1.5, Proposition 5.1.6, Proposition 5.1.7, together with Propo-

sition 5.1.8 state that all the conditions in Theorem 5.1.4 are satisfied. Then by

Theorem 5.1.4 we know that {πf̃k
Un}n is tight, which implies that {πf̃k

P̃n}n forms a

tight sequence on P(DR[0, T ]); then by Theorem 5.1.3 we know {P̃n} forms a tight

sequence on P(DMF (Rd)[0, T ]). By definition we can then conclude the following

tightness result.

75



Theorem 5.1.9. The measure-valued processes {Un
t : t ∈ [0, T ]}n≥1 forms a tight

sequence.

Remark 5.1.10. If we assume that the resampling happens only in [t, t + u], then

by exactly the same discussion as above (except that we replace s ∈ [t, t + u] by

s ∈ [t − v, u]), we can also obtain the tightness for the process {Un
t }n≥1.

5.2 Convergence in Distribution

In this section we show that {Un}n converges in distribution to a uniquely deter-

mined process U . The strategy of the proof of the convergence in distribution is as

follows: Since the sequence of the measure-valued process {Un}n is tight, then any

subsequence {Unk}k of {Un}n contains a convergent sub-subsequence {Unkl}l. We

will prove that any convergent subsequence has a weak limit U which is the unique

solution of (5.31). This ensures that the entire sequence {Un}n is convergent and

its weak limit is the solution U of (5.31).

We need the following preliminary result.

Lemma 5.2.1. Let ϕ ∈ Cm
b (R) (m ≥ 6) be a test function, and define the measure-

valued processes

ρ̃n.1
t ,

1

n

n∑

j=1

ξn
iδa

n
j (t)δvn

j (t) =
n∑

j=1

ξn
t ān

j (t)δvn
j (t),

ρ̃n.2
t ,

1

n

n∑

j=1

{
ξn
iδa

n
j (t)

}2
δvn

j (t) = n

n∑

j=1

{
ξn
t ān

j (t)
}2

δvn
j (t). (5.27)

then for any t ∈ [0, T ],

ρ̃n,1
t → ρ̃1

t , ρ̃n,2
t → ρ̃2

t , P̃− a.s.,

where ρ̃1 and ρ̃2 are two measure-valued processes satisfying, for any ϕ ∈ D(A),

ρ̃1
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(Aϕ) + πs(h) [πs(h)ρs(ϕ) − ρs(hϕ)]

+ ρs(h) [πs(hϕ) − πs(h)πs(ϕ)]
}

ds

+

∫ t

0

{
ρs(hϕ) − πs(h)ρs(ϕ) + πs(ϕ)ρs(h)

}
dYs; (5.28)
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ρ̃2
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(1)ρs(Aϕ) − [ρs(1)ρs(hϕ) − ρs(h)ρs(ϕ)] πs(h)

+ πs(ϕ)(ρs(h))2 + 2
[
ρs(h)ρs(hϕ) − (ρs(h))2πs(ϕ)

] }
ds

+

∫ t

0

{ρs(1)ρs(hϕ) + ρs(h)ρs(ϕ)} dYs. (5.29)

Proof. See Appendix C.2. �

Proposition 5.2.2. For any ϕ ∈ C6
b (R), let Λϕ be the process defined by

Λϕ
t =

[t/δ]∑

i=1

ρiδ(1)

√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi + cω

∫ t

0

ρ̃1
s(Ψϕ)ds

+ cω

∫ t

0

(
ρ̃1

s(hϕ′′ − (hϕ)′′)
)
dB(2)

s +

∫ t

0

√
ρ̃2

s ((σϕ′)2)dB(3)
s (5.30)

for t ∈ [0, T ]. In (5.30), {Υi}i∈N is a sequence of independent identically distributed,

standard normal random variables, and

{√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi

}

i

are mutually

independent given the σ-algebra Y. cω is a constant independent of n, and the

operator Ψ is defined by

Ψϕ =
fϕ′′′

2
+

σϕ(4)

4
−

3(Aϕ)′′

2
.

B(2) and B(3) are two independent standard Brownian motion and both independent

of the observation Y .

If U is a DMF (R)[0,∞)-valued process such that for ϕ ∈ C6
b (R)

Ut(ϕ) = U0(ϕ) +

∫ t

0

Us(Aϕ)ds +

∫ t

0

Us(hϕ)dYs + Λϕ
t , (5.31)

then U is pathwise unique. That is, for any two strong solutions U and Ū of (5.31)

and with common initial value i.e. P
[
U0 = Ū0

]
= 1, the two processes are indistin-

guishable, i.e. P
[
Ut = Ūt; t ∈ [0, T ]

]
= 1.

Proof. Firstly, it can be seen that the first three terms of (5.30) are martingales

while the final term is not a martingale.

Suppose there exists two solutions U1 and U2 of (5.31). Then take ϕ ∈ C6
b (R),

we have

U1
t (ϕ) = U1

0 (ϕ) +

∫ t

0

U1
s (Aϕ)ds +

∫ t

0

U1
s (hϕ)dYs + Λϕ

t , (5.32)
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U2
t (ϕ) = U2

0 (ϕ) +

∫ t

0

U2
s (Aϕ)ds +

∫ t

0

U2
s (hϕ)dYs + Λϕ

t . (5.33)

For i, j = {1, 2} let Ū ij(ϕ1, ϕ2) , Ẽ[U i(ϕ1)U
j(ϕ2)], for ϕ1, ϕ2 ∈ C6

b (R).

By Itô’s formula we have

Ū12(ϕ1, ϕ2) =

∫ t

0

Ū12(ϕ1, Aϕ2)ds +

∫ t

0

Ū12(Aϕ1, ϕ2)ds +

∫ t

0

Ū12(hϕ1, hϕ2)ds

+

∫ t

0

Ẽ
[
U1

s (ϕ1)ρ̃
1
s(Ψϕ2) + U2

s (ϕ2)ρ̃
1
s(Ψϕ1)

]
ds

+

∫ t

0

Ẽ
[√

ρ̃2
s((σϕ1)2)ρ̃2

s((σϕ2)2) + ρ̃1
s(hϕ′′

1 − (hϕ1)
′′)ρ̃1

s(hϕ′′
2 − (hϕ2)

′′)
]
ds

+Ẽ




[t/δ]∑

i=0

Ẽ
[
(ρiδ(1))2 (πiδ−(ϕ1ϕ2) − πiδ−(ϕ1)πiδ−(ϕ2))

∣
∣Fiδ−

]


 ;

Ū11(ϕ1, ϕ2) =

∫ t

0

Ū11(ϕ1, Aϕ2)ds +

∫ t

0

Ū11(Aϕ1, ϕ2)ds +

∫ t

0

Ū11(hϕ1, hϕ2)ds

+

∫ t

0

Ẽ
[
U1

s (ϕ1)ρ̃
1
s(Ψϕ2) + U1

s (ϕ2)ρ̃
1
s(Ψϕ1)

]
ds

+

∫ t

0

Ẽ
[√

ρ̃2
s((σϕ1)2)ρ̃2

s((σϕ2)2) + ρ̃1
s(hϕ′′

1 − (hϕ1)
′′)ρ̃1

s(hϕ′′
2 − (hϕ2)

′′)
]
ds

+Ẽ




[t/δ]∑

i=0

Ẽ
[
(ρiδ(1))2 (πiδ−(ϕ1ϕ2) − πiδ−(ϕ1)πiδ−(ϕ2))

∣
∣Fiδ−

]


 ;

Ū21(ϕ1, ϕ2) =

∫ t

0

Ū21(ϕ1, Aϕ2)ds +

∫ t

0

Ū21(Aϕ1, ϕ2)ds +

∫ t

0

Ū21(hϕ1, hϕ2)ds

+

∫ t

0

Ẽ
[
U2

s (ϕ1)ρ̃
1
s(Ψϕ2) + U1

s (ϕ2)ρ̃
1
s(Ψϕ1)

]
ds

+

∫ t

0

Ẽ
[√

ρ̃2
s((σϕ1)2)ρ̃2

s((σϕ2)2) + ρ̃1
s(hϕ′′

1 − (hϕ1)
′′)ρ̃1

s(hϕ′′
2 − (hϕ2)

′′)
]
ds

+Ẽ




[t/δ]∑

i=0

Ẽ
[
(ρiδ(1))2 (πiδ−(ϕ1ϕ2) − πiδ−(ϕ1)πiδ−(ϕ2))

∣
∣Fiδ−

]


 ;
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and

Ū22(ϕ1, ϕ2) =

∫ t

0

Ū22(ϕ1, Aϕ2)ds +

∫ t

0

Ū22(Aϕ1, ϕ2)ds +

∫ t

0

Ū22(hϕ1, hϕ2)ds

+

∫ t

0

Ẽ
[
U2

s (ϕ1)ρ̃
1
s(Ψϕ2) + U2

s (ϕ2)ρ̃
1
s(Ψϕ1)

]
ds

+

∫ t

0

Ẽ
[√

ρ̃2
s((σϕ1)2)ρ̃2

s((σϕ2)2) + ρ̃1
s(hϕ′′

1 − (hϕ1)
′′)ρ̃1

s(hϕ′′
2 − (hϕ2)

′′)
]
ds

+Ẽ




[t/δ]∑

i=0

Ẽ
[
(ρiδ(1))2 (πiδ−(ϕ1ϕ2) − πiδ−(ϕ1)πiδ−(ϕ2))

∣
∣Fiδ−

]


 .

Let

vt =
(
Ū12

t − Ū11
t

)
+
(
Ū21

t − Ū22
t

)
, (5.34)

it then follows that

vt(ϕ1, ϕ2) =

∫ t

0

vs(ϕ1, Aϕ2)ds +

∫ t

0

vs(Aϕ1, ϕ2)ds +

∫ t

0

vs(hϕ1, hϕ2)ds; (5.35)

and v0(ϕ1, ϕ2) = 0.

It follows by Theorem 2.21(i) and Remark 3.4 in [55] that (5.35) has a unique

solution and since (5.35) is a homogeneous equation beginning at 0. Then we have

vt(ϕ1, ϕ2) ≡ 0, which implies

(
Ū11

t − Ū12
t

)
+
(
Ū22

t − Ū21
t

)
= 0,

that is to say, for ϕ1 = ϕ2 = ϕ

Ẽ
[
U1

t (ϕ1)U
1
t (ϕ) − U1

t (ϕ1)U
2
t (ϕ)

]
+ Ẽ

[
U2

t (ϕ1)U
2
t (ϕ) − U2

t (ϕ1)U
1
t (ϕ)

]

=Ẽ
[(

U1
t (ϕ) − U2

t (ϕ)
)2]

= 0; (5.36)

and thus U1(ϕ) = U2(ϕ) for ϕ ∈ C6
b (R), which in turn implies that the solution U

of (5.31) is unique (See Exercise 4.1 in [3]). �

The following Theorem 5.2.3 states that unique solution {U} of (5.31) is indeed

the weak limit of the measure-valued process {Un}n, in other words, {Un}n converges

in distribution to {U}.
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Theorem 5.2.3. {Un}n converges in distribution to a unique DMF (R)[0,∞)-valued

process U such that for ϕ ∈ C6
b (R),

Ut(ϕ) = U0(ϕ) +

∫ t

0

Us(Aϕ)ds +

∫ t

0

Us(hϕ)dYs + Λϕ
t , (5.37)

where Λϕ
t is defined as in (5.30).

Proof. From Proposition 5.3.20 in [44] and its extension to stochastic partial differ-

ential equation and infinitely dimensional stochastic differential equations, it follows

that for solutions of stochastic partial differential equations, pathwise uniqueness

implies uniqueness in law. The extension to stochastic PDE was done by Ondreját

(see [57]) and Röckner, Schmuland and Zhang (see [61]).

Thus by Proposition 5.2.2 the solution U of (5.31) is unique in distribution.

Now let {Unk}k be any convergent (in distribution) subsequence of {Un}n to a

process U . We then verify that this process U solves (5.31), and then the uniqueness

of solution of (5.31) implies that the original sequence {Un}n converges to U as well.

Bearing in mind that Unk satisfies (5.4), it then essentially suffices to show that

Λϕ
t in (5.37), which is given by the weak limits of

√
nMn,ϕ

[t/δ] and
√

nBn,ϕ
t in (5.4),

does satisfy (5.30). We first denote by

Λ̄ϕ
t , Λϕ

t −
∫ t

0

ρ̃1
s(Ψϕ)ds

the martingale part of Λϕ
t . Then we only need to show that Λ̄ϕ has the quadratic

variation which is the same as that of Λϕ in (5.30). In order to do so, we show that

for all d, d′ ≥ 0, 0 ≤ t1 < t2 < ∙ ∙ ∙ < td ≤ s ≤ T , 0 ≤ t′1 < t′2 < ∙ ∙ ∙ < t′d′ ≤ t ≤

T , continuous bounded functions α1, . . . , αd on MF (R) and continuous functions

α′
1, . . . , α

′
d′ on R; we have:

Ẽ

[
(
Λ̄ϕ

t − Λ̄ϕ
s

) d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

= 0, (5.38)

and

Ẽ

[(

(Λ̄ϕ
t − Λ̄ϕ

s )2 −
∫ t

s

{
ρ̃2

r

(
(σϕ′)2

)
+
(
ρ̃1

r (hϕ′′ − (hϕ)′′)
)2 }

dr

−
[t/δ]∑

i=[s/δ]+1

(ρiδ(1))2 [πiδ−(ϕ2) − (πiδ−(ϕ))2]
)

d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

= 0.

(5.39)
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To prove (5.38), we first observe the following:

lim
n→∞

1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)R1

s,j(ϕ)ds , lim
n→∞

Λn,R1,ϕ
t =

∫ t

0

ρ̃1
s(Ψϕ)ds, (5.40)

the proof can be found in Appendix C.3. Then note that

Λ̄ϕ
t − Λ̄ϕ

s = Ut(ϕ) − Us(ϕ) −
∫ t

s

Ur(Aϕ)dr −
∫ t

s

Ur(hϕ)dYr −
∫ t

s

ρ̃1
r (Ψϕ) dr,

thus showing (5.38) is equivalent to showing

Ẽ

[(

Ut(ϕ) − Us(ϕ) −
∫ t

s

Ur(Aϕ)dr −
∫ t

s

Ur(hϕ)dYr −
∫ t

s

ρ̃1
r(Ψϕ)dr

)

×
d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

= 0. (5.41)

This equality will follow by virtue of the martingale property of Λ̄ϕ
t − Λ̄ϕ

s .

By virtue of the existence of Λn
T (f̃k) in Lemma 5.1.5, it follows , for n′ ∈ N, that

sup
n′
Ẽ
[
(Un′

(ϕ))2
]

< ∞,

which implies that {Unk} is uniformly integrable (see II.20, Lemma 20.5 in [63]).

Therefore we have that

lim
k→∞

Ẽ

[

Unk
t (ϕ)

d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= Ẽ

[

Ut(ϕ)
d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

,

lim
k→∞

Ẽ

[

Unk
s (ϕ)

d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= Ẽ

[

Us(ϕ)
d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

.

By Burkholder-Davis-Gundy inequality, we know that

sup
n′
Ẽ

[(∫ t

0

Un′

r (Aϕ)dr

)2
]

< ∞;

thus we have

lim
k→∞

Ẽ

[∫ t

s

Unk
r (Aϕ)dr

d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= Ẽ

[∫ t

s

Ur(Aϕ)dr

d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

.
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Similarly, by Burkholder-Davis-Gundy inequality, we can show that

sup
n′
Ẽ

[(∫ t

s

Un′

r (hϕ)dYr

)2
]

< ∞,

we therefore have that (by Theorem 2.2 in [48]), since (Unk , Y ) converges in dis-

tribution to (U, Y ), then (Unk , Y,
∫ t

s
Unk

r (hϕ)dYr) also converges in distribution to

(U, Y,
∫ t

s
Ur(hϕ)dYr), thus we have

lim
k→∞

Ẽ

[∫ t

s

Unk
r (hϕ)dYr

d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= Ẽ

[∫ t

s

Ur(hϕ)dYr

d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

.

For
∫ t

s
ρ̃1

r (Ψϕ) dr, we have

lim
k→∞

Ẽ

[

Λnk,R1,ϕ
t

d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= Ẽ

[∫ t

s

ρ̃1
r (Ψϕ) dr

d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

.

Now we have shown (5.41), and hence (5.38).

In order to show the second equality (5.39), we firstly make the following obser-

vations about the limits of the terms in (5.4):

• We have

lim
n→∞

〈√
nAn,ϕ

.

〉
t
=

[t/δ]∑

i=1

(ρiδ(1))2 [πiδ−(ϕ2) − (πiδ−(ϕ))2] .

If we let

Āϕ
t ,

[t/δ]∑

i=1

ρiδ(1)

√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi, (5.42)

where {Υi}i∈N is a sequence of independent identically distributed, standard

normal random variables, and

{√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi

}

i

are mutually in-

dependent given the σ-algebra Y ; then we have 〈Āϕ
∙ 〉t = limn→∞ 〈

√
nAn,ϕ

. 〉t .

• For Gn,ϕ
[t/δ], we have

lim
n→∞

∣
∣
∣
√

nGn,ϕ
[t/δ]

∣
∣
∣ = 0 a.s..
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• We have

lim
n→∞

〈
1
√

n

n∑

j=1

∫ ∙

0

ξn
[s/δ]δa

n
j (s)R2

s,j(ϕ)dYs

〉

t

, lim
n→∞

〈
Λn,R2,ϕ

∙

〉

t
=
〈
ΛR2,ϕ

∙

〉

t
,

where

ΛR2,ϕ
t = cω

∫ t

0

(
ρ̃1

s(hϕ′′ − (hϕ)′′)
)
dB(2)

s , (5.43)

cω is a constant and B(2) is a Brownian motion independent of Y .

• We have that

lim
n→∞

〈
1
√

n

n∑

j=1

∫ ∙

0

ξn
[s/δ]δa

n
j (s)R3

s,j(ϕ)dV (j)
s

〉

t

, lim
n→∞

〈
Λn,R3,ϕ

∙

〉

t
=
〈
ΛR3,ϕ

∙

〉

t
,

where

ΛR3,ϕ
t =

∫ t

0

√
ρ̃2

s ((σϕ′)2)dB(3)
s , (5.44)

B(3) is a Brownian motion independent of B(2) and Y .

The proofs of these observations can be found in Appendix C.3.

From the above observations, we obtain that

Ẽ

[

(Λ̄ϕ
t − Λ̄ϕ

s )2

d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

= lim
k→∞

Ẽ

[(
(〈√

nAnk,ϕ
∙

〉
t
−
〈√

nAnk,ϕ
∙

〉
s

)
+
(〈

Λnk,R2,ϕ
∙

〉

t
−
〈
Λnk,R2,ϕ

∙

〉

s

)

+
(〈

Λnk,R3,ϕ
∙

〉

t
−
〈
Λnk,R3,ϕ

∙

〉

s

)
)

×
d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]

= lim
k→∞

Ẽ

[(
[t/δ]∑

i=[s/δ]+1

(ρnk
iδ (1))2

[
πnk

iδ−(ϕ2) −
(
πnk

iδ−(ϕ)
)2]

+

∫ t

s

(
ρ̃nk,1

r (hϕ′′ − (hϕ)′′)
)2

dr +

∫ t

s

ρ̃nk,2
r

(
(σϕ′)2

)
dr

)

×
d∏

i=1

αi(U
nk
ti )

d′∏

j=1

α′
j(Yt′j

)

]
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=Ẽ

[(
[t/δ]∑

i=[s/δ]+1

(ρiδ(1))2 [πiδ−(ϕ2) − (πiδ−(ϕ))2]

+

∫ t

s

(
ρ̃1

r(hϕ′′ − (hϕ)′′)
)2

dr +

∫ t

s

ρ̃2
r

(
(σϕ′)2

)
dr

)

×
d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

=Ẽ

[
(
〈Λ̄.ϕ〉t − 〈Λ̄.ϕ〉s

) d∏

i=1

αi(Uti)
d′∏

j=1

α′
j(Yt′j

)

]

; (5.45)

and (5.39) follows from this identity. �

Corollary 5.2.4. For and t ≥ 0 and test function ϕ ∈ C6
b (R), let

Ūn
t (ϕ) ,

√
n (πn

t (ϕ) − πt(ϕ)) .

Then {Ūn}n converges in distribution to a unique DMF (R)[0,∞)-valued process Ū =

{Ūt : t ≥ 0}, such that

Ūt(ϕ) =
1

ρt(1)
(Ut(ϕ) − πt(ϕ)Ut(1)) , (5.46)

where U satisfies (5.31).

Proof. By the fact that

πn
t (ϕ) − πt(ϕ) =

1

ρt(1)
(ρn

t (ϕ) − ρt(ϕ)) −
πn

t (ϕ)

ρt(1)
(ρn

t (1) − ρt(1)),

and ρn
t (ϕ) → ρt(ϕ), a.s. and πn

t (ϕ) → πt(ϕ) a.s. (see Remark B.1.3 in Appendix C),

we have the result. �

Remark 5.2.5. In this chapter we view {Un}n∈N and its weak limit {U} as pro-

cesses with sample paths in DMF (R)[0,∞), which is complete and separable. In the

following we show that U actually takes value in a smaller space MF (R) (i.e. U is

a DMF (R)[0,∞)-valued random variable). In other words, U has no mass ‘escaping’

to infinity. This is done by using the same approach as in Section 5 in [16].

Since the weak topology on MF (R) coincides with the trace topology from MF (R)

to MF (R), it follows that U has sample paths in DMF (R)[0,∞). It then suffices to

show that that for arbitrary t, there exists a sequence of compact sets {Kp}p>0 ∈ R

(possibly depending on t) which exhaust R such that for all ε > 0,

lim
p→∞

P̃

[

sup
s∈[0,t]

(
Us(1Kc

p
)
)
≥ ε

]

= 0, (5.47)
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where Kc
p denotes the compliment of Kp. The proof of (5.47) can be found in Section

5 in [16].

Therefore, from now on, when discussing the tightness or convergence in distri-

bution results of this chapter, our convention will be that MF (R) is endowed with the

weak topology generated by the metric dM. The discussion on the compactification

R is no longer required.

5.3 Discussion

To be able to obtain the tightness (and hence convergence in distribution) results,

multinomial branching algorithm was selected. From Chapter 4 we see that L2-

convergence results for ρn and πn can be obtained under both tree based branching

algorithm (TBBA) and multinomial branching algorithm. The main advantage of

tree based branching algorithm over multinomial algorithm is that the TBBA has

conditional minimal variance property. In other words, it produces the offspring

(generalised) particles with a probability distribution that minimises their condi-

tional variance. This is a very attractive feature for resampling algorithms because

it is the variance of offspring that determines the speed of convergence.

As can be see from this chapter, the central limit type result, however, can only

be obtained under the multinomial algorithm. We cannot obtain the corresponding

central limit result for the generalised particle filters involving branching proce-

dure based on the TBBA as the limiting process correspondent to the sequence of

quadratic variations 〈Mn,ϕ〉t can not be identified explicitly. Therefore we can not

describe the evolution equation of the limit U of Un (we can, however, prove that

the process is tight). This is left for future research.
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Chapter 6

Suggestions for Possible Areas of

Future Research

In Chapters 3, 4, and 5, we did a comprehensive study on the Gaussian mixtures

approximation to the solution of the nonlinear filtering problem. We set up the ap-

proximating algorithm, and proved a law of large number type result and a central

limit type result. These three chapters form the core part of the thesis.

It should be noted that Gaussian mixtures approximation is a natural general-

isation of the classic particle filters; it is, however, by no means the unique way of

generalising the classic particle filters. In Section 6.1, we introduce the basic ideas

of using wavelets, orthomormal polynomials, and finite elements to construct the

generalised particle approximations. The ultimate aim is to integrate within the

framework of generalised particle filters a wide variety of numerical methods, and

develop a common approach to analyse and compare these methods. At the time

of this thesis, however, only basic ideas are presented; the rigorous analysis and

comparison between these methods are left as future work.

In addition to these, being able to apply generalised particle filters to solve prac-

tical problems is of essential importance. An important application of generalised

particle filters, especially the Gaussian mixtures approximations, is the problem of

filtering the Navier-Stokes equation, whose idea is described in Section 6.2. The

content in that section is initiative and more rigorous working, in particular the
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advantage of Gaussian mixtures over Dirac mixtures, will be the author’s ongoing

and future work.

6.1 Other Possible Forms of Generalised Particle

Filters

In this section, we introduce the basic ideas of constructing the generalised particle

filters systems by using different numerical methods. These numerical methods can

include

• Classical Particle Filters : as explained above, in this case the particles carry

information about their weights and positions.

• Gaussian Mixtures : the particles are in this case characterised by Gaussian

measures. They are parameterised by their weights, mean values and the

corresponding covariance matrices.

• Wavelets : an orthonormal wavelets series with properly selected dilation and

translation parameters is chosen to characterise the particles. The transition

centres are viewed as positions; and the weights of the particles are the inner

products of the wavelets and a certain chosen density function.

• Orthonormal Polynomials : similar to wavelets method, an orthonormal basis

of a Hilbert space with properly selected dilation and shifting parameters is

chosen to characterise the generalised particles; the Hermite basis is a partic-

ular example.

• Finite Element methods : the shape functions of a finite element are considered

as the positions of the generalised particles, and the nodal variables should act

as the generalised weights.

The first two methods have already been rigorously studied. In what follows we will

discuss the general ideas of the remaining three methods.
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6.1.1 Wavelets Method

In this subsection we describe the idea of using the wavelets method, the evolution

equations satisfied by the signal X and the observation Y are assumed to be the

same as in the previous section. It is proved in Chapter 7 of [3] that, if the matrix-

valued function a = 1
2
σσ> is uniformly strictly elliptic, then the density pt of ρt (the

solution of the Zakai equation) with respect to the Lebesgue measure exists and is

smooth. We can therefore consider the approximation of the density pt, which is

denoted by pn = {pn
t , t ≥ 0}. We further assume that pn

t s exist and are chosen to

be smooth functions. Then for any ϕ ∈ D(A) we can construct the approximation

ρn of ρ as

ρn
t (ϕ) =

∫

Rd

ϕ(x)pn
t (x)dx. (6.1)

Similarly, for Aϕ and hϕ we have

ρn
t (Aϕ) =

∫

Rd

(Aϕ)(x)pn
t (x)dx, ρn

t (hϕ) =

∫

Rd

h(x)ϕ(x)pn
t (x)dx. (6.2)

Consider a continuously differentiable function ψ with compact support chosen

as the mother wavelet, and consider the discrete wavelet transform

ψj,k(x) = a− j
2 ψ(a−jx − kb); (6.3)

We know from the appendix that, by properly choosing dilation parameter a and

translation parameter b, and the mother wavelet ψ, the wavelet series {ψj,k : j, k ∈

Z} can be constructed to form an orthonormal basis for the Hilbert space L2(R),

that is, for any f ∈ L2(R),

f =
∞∑

j=−∞

∞∑

k=−∞

〈f, ψj,k〉ψj,k

where the inner product 〈f, ψj,k〉 =
∫
R f(x)ψj,k(x)dx.

Instead of the infinite sum in the above equation, we are looking at parti-

cles/wavelets with a finite number of elements. Therefore, given the function pn
t (x),

we aim to have:

pn
t =

m1∑

j=0

m2∑

k=0

〈pn
t , ψj,k〉ψj,k (6.4)

for some m1, m2 ∈ N.
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By formula (6.4), we can rewrite (6.1) and (6.2) as follows:

ρn
t (ϕ) =

m1∑

j=0

m2∑

k=0

∫

R
ϕ(x) 〈pn

t , ψj,k〉ψj,k(x)dx =

m1∑

j=0

m2∑

k=0

〈pn
t , ψj,k〉 〈ϕ, ψj,k〉 ;

ρn
t (Aϕ) =

m1∑

j=0

m2∑

k=0

∫

R
(Aϕ)(x) 〈pn

t , ψj,k〉ψj,k(x)dx =

m1∑

j=0

m2∑

k=0

〈pn
t , ψj,k〉 〈Aϕ,ψj,k〉 ;

ρn
t (hϕ) =

m1∑

j=0

m2∑

k=0

∫

R
(hϕ)(x) 〈pn

t , ψj,k〉ψj,k(x)dx =

m1∑

j=0

m2∑

k=0

〈pn
t , ψj,k〉 〈hϕ, ψj,k〉 .

By properly choosing the wavelet ψ and the dilation and translation parameters, we

hope to obtain an equation of the form

dρn
t (ϕ) = ρn

t (Aϕ)dt + ρn
t (hϕ)dYt + “small terms”.

At this stage it is not possible to say more about the “small terms” in this equation.

The idea is to be able to control the additional terms with bounds depending on the

number of wavelets.

The above described work is done within each interval of the partition [ iδ, (i +

1)δ), we should obtain the “small terms” explicitly before we can determine whether

or not we need the branching procedure (i.e. δ = ∞ or finite) and what the algorithm

should be used if branching is required.

6.1.2 Orthonormal Polynomials Method

We discuss in this subsection the idea of using orthonormal polynomials to charac-

terise the generalised particles, with the emphasis of Hermite polynomials. Instead

of unnormalised conditional distribution ρt, we consider its smooth density pt with

respect to the Lebesgue measure (see Chapter 7 in [3] for the existence and smooth-

ness of pt).

The (one-dimensional) Hermite polynomials are defined as follows

Hn(x) = (−1)nex2 dn

dxn
e−x2

; (6.5)
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and the corresponding Hermite functions are

ψn(x) = (2nn!
√

π)−1/2e−x2/2Hn(x). (6.6)

Hermite functions {ψn}∞n=1 form an orthomormal basis of L2(R), and the corre-

sponding inner product is

〈ψm, ψn〉 =

∫

R
ψm(x)ψn(x)dx = δmn =

{
1, m = n

0, m 6= n
. (6.7)

From the above definitions, it can be seen that the Hermite functions satisfy the

following recursive relations:

d

dx
ψn(x) =

√
n

2
ψn−1(x) −

√
n + 1

2
ψn+1(x)

xψn(x) =

√
n

2
ψn−1(x) +

√
n + 1

2
ψn+1(x). (6.8)

We can then conclude, from these relations, that for m ≥ 1 and m ∈ N,

dm

dxm
ψn(x), xmψn(x) ∈ span{ψ0, ψ1, . . . , ψn+m},

in other words, we are able to represent ψ
(m)
n (x) and xmψn(x) as (finite) linear

combinations of {ψj(x)}n+m
j=0 . The density pt can therefore be decomposed as

pt(x) =
∞∑

n=0

〈pt, ψn〉ψn(x). (6.9)

From Chapter 7 in [3] we know that

pt(x) = p0(x) +

∫ t

0

A∗ps(x)ds +

∫ t

0

h(x)ps(x)dYs,

where A∗ is the adjoint operator of A defined in (2.10), i.e.

A∗ϕ =
d∑

i,j=1

∂2

∂xi∂xj

(aijϕ) −
d∑

i=1

∂

∂xi

(f iϕ).

Then we would like to approximate pt(x) by a using a finite number of elements in

{ψn} as follows

pN
t (x) =

N∑

n=0

Cn(t)ψn

(
xt − μt
√

ωt

)

, (6.10)
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and by determining Cn(t), μt and ωt, we aim to show pN
t satisfies

pN
t (x) = pN

0 (x) +

∫ t

0

A∗pN
s (x)ds +

∫ t

0

h(x)pN
s (x)dYs + “small terms”. (6.11)

The reason for choosing Hermite polynomial to form the orthonormal basis is

that, in the linear case of Kalman-Bucy filter (see, for example, Chapter 6 in [3]), the

signal X and the observation Y satisfy the following evolution equations respectively:

Xt =X0 +

∫ t

0

(FsXs + fs)ds +

∫ t

0

σsdVs,

Yt =Y0 +

∫ t

0

(HsXs + hs)ds + Wt;

where, for and s ≥ 0, Fs is a d×d matrix, σs is a d× p matrix, fs is a d-dimensional

vector; Hs is a m × d matrix, and hs is a m-dimensional vector. In this case, the

density pt(x) has the following explicit expression (see, for example, [3])

pt(x) =
Ẑt√
2πRt

exp

(

−
(x − x̂t)

2

2Rt

)

, C0(t)ψ0

(
x − x̂t√

Rt

)

, (6.12)

where x̂, Ẑ and R satisfy the following evolution equation:

dx̂t = (Ftx̂t + ft)dt + RtH
>
t (dYt − (Htx̂t + ht)dt),

dRt = (σtσ
>
t + FtRt + RtF

>
t − RtH

>
t HtRt)dt,

Ẑt = exp

(∫ t

0

(Hx̂s + h)>dYs −
∫ t

0

‖Hx̂s + h‖2ds

)

.

From (6.12) we can see that for this Kalman-Bucy filter, we can explicitly repre-

sent the density pt using the one-dimensional subspace of the (infinite dimensional)

space L2(R) with orthonormal basis {ψn}∞n=0. Then for general non-linear filtering

problem, as a natural extension, it may be possible to use finite dimensional (N)

subspace of L2(R) to characterise the approximation pN
t .

6.1.3 Finite Element Method

The idea of using finite element analysis is similar to the wavelet method. Again we

assume that the signal X and observation Y satisfy the same evolution equations as

before, and we know the existence and smoothness of the density pt of ρt with respect

to the Lebesgue measure. We consider the approximation sequence pn = {ρn
t , t ≥ 0}
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of p = {pt, t ≥ 0}. For any ϕ ∈ D(A), we can construct the approximation ρn of the

solution of the Zakai equation ρ as

ρn
t (ϕ) =

∫

Rd

ϕ(x)pn
t (x)dx. (6.13)

Similarly, we have for Aϕ and hϕ that

ρn
t (Aϕ) =

∫

Rd

(Aϕ)(x)pn
t (x)dx, ρn

t (hϕ) =

∫

Rd

h(x)ϕ(x)pn
t (x)dx. (6.14)

By using finite element method, we are essentially approximating functions on indi-

vidual element domain, or on a collection of element domains (mesh) which subdivide

a larger domain. The interpolation error |f −IT f | (see Definitions A.2.5 and A.2.6

in Appendix A.2 for details) should also be a major concern.

To be specific, for example, the global interpolation of pn
t can be written as

IT pn
t =

N∑

m=1

IKmpn
t =

N∑

m=1

km∑

i=1

Nm
i (pn

t )φm
i . (6.15)

Then obviously pn
t has the following expression

pn
t = IT pn

t + Err(pn
t ) =

N∑

m=1

km∑

i=1

Nm
i (pn

t )φm
i + Err(pn

t ), (6.16)

where Err(pn
t ) is the approximating error of the interpolation. Therefore we have

ρn
t (ϕ) =

∫

Rd

ϕ(x)pn
t (x)dx =

N∑

m=1

km∑

i=1

∫

Rd

ϕ(x) (Nm
i (pn

t )φm
i ) (x)dx +

∫

Rd

ϕ(x)Err(pn
t )(x)dx.

Similarly we can obtain that

ρn
t (Aϕ) =

N∑

m=1

km∑

i=1

∫

Rd

(Aϕ)(x) (Nm
i (pn

t )φm
i ) (x)dx +

∫

Rd

(Aϕ)(x)Err(pn
t )(x)dx;

ρn
t (hϕ) =

N∑

m=1

km∑

i=1

∫

Rd

(hϕ)(x) (Nm
i (pn

t )φm
i ) (x)dx +

∫

Rd

(hϕ)(x)Err(pn
t )(x)dx.

Then following the same procedure as we did for wavelets method, we should choose

appropriate forms of finite elements and their corresponding basis, so that the equa-

tion of the following form can be obtained:

dρn
t (ϕ) = ρn

t (Aϕ)dt + ρn
t (hϕ)dYt + “small terms”.
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6.2 Filtering the Solution of the Stochastic Navier-

Stokes Equation

In this section we will look at an application of the generalised particle filters dis-

cussed in the previous chapters. We consider the Navier-Stokes equation as an

example. Instead of solving the problem, we only present the filtering model in this

section. The content here is motivated by the work in [6].

6.2.1 Problem Setting

We consider the 2D Stochastic Navier-Stokes equation on the torus T2 , [0, L) ×

[0, L) with periodic boundary conditions:

∂u

∂t
− νΔu + u ∙ ∇u + ∇p = f + W (t, x) for all (x, t) ∈ T2 × (0,∞), (6.17)

∇u = 0 for all (x, t) ∈ T2 × (0,∞),

u(x, 0) = u0(x) for all x ∈ T2.

Here u : T2 × [0,∞) → R2 is a time-dependent vector field representing the velocity,

p : T2 × [0,∞) → R2 is a time-dependent scalar field representing the pressure,

f : T2 → R2 is a time-independent vector filed representing the forcing, and ν is the

viscosity, and W (t, x) is a coloured noise which will be described below. We define

H ,

{

L−periodic trigonometirc polynomials u :

[0, L)2 → R2
∣
∣
∣∇ ∙ u = 0,

∫

T2

u(x)dx = 0

}

and H as the closure of H with respect to the (L2(T2))2 norm. We then define

P : (L2(T2))2 → H to be the Leray-Helmholtz orthogonal projector.

Given k = (k1, k2)
>, define k⊥ = (k2,−k1)

>. Then an orthonormal basis for H

is given by ψk : R2 → C2, where

ψk(x) ,
k⊥

|k|
exp

(
2πik ∙ x

L

)

for k ∈ Z2 \ {0} and i =
√
−1. Thus for u ∈ H we may write

u =
∑

k∈Z2\{0}

uk(t)ψk(x)
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where, since u is a real-valued function, we have the reality constraint u−k = −uk.

We choose the coloured noise W (t, x) to be of the form

W (t, x) =
∑

k∈Z2\{0}

εkψt(x)W k
t , (6.18)

where {W k
t }(t≥0, k∈Z2\{0}) are mutually independent one-dimensional Brownian mo-

tions, and εks are chosen to have the following property

∑

k∈Z2\{0}

(4π2|k|2)sε2
k < ∞ for s ∈ R and s ≥ 1,

and then W (t, ∙) ∈ H.

Using the above Fourier decomposition of u, we can define the fractional Sobolev

space

Hs ,





u ∈ H :

∑

k∈Z2\{0}

(4π2|k|2)s|uk|
2 < ∞






with norm ‖u‖s = (
∑

k(4π
2|k|2)s|uk|2)

1/2
and s ∈ R.

The following proposition shows the stochastic Navier-Stokes equation can be

written as an stochastic ordinary differential equation by applying the projection P

in H.

Proposition 6.2.1. The Stochastic Navier-Stokes equation can be written as

du

dt
+ νAu + B(u, u) = f + W (t, x). (6.19)

Here A = −PΔ is the Stokes operator, the term B(u, u) = P (u ∙ ∇u) is the bilinear

form found by projecting the nonlinear term u ∙ ∇u into H, and f is the original

forcing projected into H.

Proof. Without loss of generality, we assume that u, f ∈ H. We take the inner

product of this equation with an element v ∈ H, to obtain
(

∂u

∂t
, v

)

−ν

∫

T2

(Δu)∙vdx+

∫

T2

(u∙∇u)∙vdx+

∫

T2

(∇p)∙vdx =

∫

T2

f ∙vdx+

∫

T2

W ∙vdx

(6.20)

By integrating the p term by parts we obtain
∫

T2

(∇p) ∙ vdx =

∫

T2

p(∇ ∙ v)dx = 0.
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Applying the projector P to both sides of (6.20), note that W ∈ H, we have for all

v ∈ H
(

∂u

∂t
, v

)

+ ν

∫

T2

((−PΔ)u) ∙ vdx +

∫

T2

P (u ∙ ∇u) ∙ vdx =

∫

T2

f ∙ vdx +

∫

T2

W ∙ vdx,

therefore by letting A = −PΔ and B(u, u) = P (u ∙∇u), we can rewrite this equation

as
du

dt
+ νAu + B(u, u) = f + W (t, x);

which is exactly (6.19). �

Remark 6.2.2. E, Mattingly, and Sinai (see [33]) studies the stochastically forced

Navier-Stokes equation with similar random forcing term. They proved the unique-

ness of the stationary measure under the condition that all “determining modes” are

forced by studying the Gibbsian dynamics of the low modes obtained by representing

the high modes as functionals of the time-history of the low modes.

Recall that

u =
∑

k∈Z2\{0}

uk(t)ψk(x). (6.21)

The following theorem gives the evolution equations satisfied by uk(t).

Theorem 6.2.3. Let (6.21) be the decomposition of the solution of the stochastic

Navier-Stokes equation. Then for each k ∈ Z2/{0}, uk(t) satisfies

duk(t) =

(

−νλkuk(t) − αl,j
k

∑

l+j=k

ul(t)uj(t) + fk

)

dt + εkdW k
t , (6.22)

where

αl,j
k =






2πi(l2j1−l1j2)(k1j1+k2j2)
L |k||l||j| if k = l + j,

0 otherwise.

(6.23)

Proof. From (6.21) we know that

du =
∑

k∈Z2/{0}

ψk(x)duk(t). (6.24)

Recalling (6.19), since the Stokes operator A can be diagonalised in the basis com-

prised of the {ψk}k∈Z2\{0} on H, and the eigenvalues of A are λk = 4π2|k|2/L2, we

know that

Au =
∑

k∈Z2\{0}

λkuk(t)ψk(x). (6.25)
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The bilinearity of B(u, u) implies

B(u, u) =
∑

l,j∈Z2\{0}

ul(t)uj(t)B(ψl, ψj) =
∑

l,j∈Z2\{0}

ul(t)uj(t)P (ψl ∙ ∇ψj)

=
∑

l,j∈Z2\{0}

ul(t)uj(t)
∑

k∈Z2\{0}

αl,j
k ψk(x)

=
∑

k∈Z2\{0}




∑

l,j∈Z2\{0}

ul(t)uj(t)



αl,j
k ψk(x); (6.26)

where αi,j
k is the inner product 〈P (ψl ∙∇ψj), ψk〉 written as (see Appendices D.1 and

D.2)

αl,j
k =

1

L2

∫

T2

(
(ψl ∙ ∇ψj) ∙ ψk

)
(x)dx. (6.27)

By (D.11) (see Appendix D.2) we know αl,j
k has the expression as in (6.23). Thus

B(u, u) =
∑

k∈Z2\{0}

αl,j
k

(
∑

l+j=k

ul(t)uj(t)

)

ψk(x); (6.28)

As f ∈ H, we can write it as

f(x) =
∑

k∈Z2\{0}

fkψk(x). (6.29)

Finally the decomposition of W (t, x) comes from its definition (6.18).

We then obtain the evolution equation for {uk(t)}t≥0 and each k ∈ Z \ {0} as

duk(t) =

(

−νλkuk(t) − αl,j
k

∑

l+j=k

ul(t)uj(t) + fk

)

dt + εkdW k
t ,

which is exactly (6.22). �

Remark 6.2.4. Figure 6.1 shows the values of αl,j
k over different indices k and l.

From Theorem 6.2.3, the evolution of each uk(t) depends on infinite number of

ul(t)s, which makes the analysis of this dynamic system difficult. We then define

the projection operators Pλ : H → H and Qλ : H → H by

Pλu =
∑

k∈Z2\{0}

|2πk|2<λL2

uk(t)ψk(x), Qλ = I − Pλ;
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Figure 6.1: Values of αl,j
k

and consider the projected eigenvalues, we obtain the following evolution equation

for the approximation of uk(t), which is denoted by ũk(t), for each k ∈ Z \ {0} with

|2πk|2 < λL2:

dũk(t) =

(

−νλkũk(t) − αl,j
k

∑

Γ

ũl(t)ũj(t) + fk

)

dt + εkdW k
t ; (6.30)

where the set Γ ,
{

(l, j)
∣
∣
∣l + j = k and |2πl|2 < λL2 and |2πj|2 < λL2

}
. The ap-

proximation ũ of u is then given by

ũλ =
∑

k∈Z2\{0}

|2πk|2<λL2

ũk(t)ψk(x).

Figure 6.2 shows the magnitudes and angles of the complex valued ũk(t) for different

k over time t (assuming fk and εk to be 0). It can be seen from the left hand side,

which plots the magnitudes, that almost all ũk decay to 0 very quickly (when t ≤ 20).

The right hand side are the angles of each ũk(t), which range from −π to π.

From the above simulation we can see that ũk(t) (or uk(t)) decays to 0 as k

and t increase. Heuristically ũk can converge to uk as k → ∞. Actually for the
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Figure 6.2: Magnitudes and angles of ũk(t)

deterministic Navier-Stokes equation, we have the following propositions, which was

proved by Foias, Manley, Rosa and Temam (see [37]):

Proposition 6.2.5. Suppose u satisfies (6.19) except that W (t, x) = 0, and u is

in the Gevrey space D(exp(σAs)) for σ > 0 and s = 1/2; where A is the Stokes

operator. Then u has the following decomposition

u =
∑

k∈Zd

uke
2πi k

L
∙x, uk ∈ Cd, u−k = ūk. (6.31)

Then the Fourier coefficients uk have upper bound

|uk|
2 ≤

M
√

2πL

∣
∣
∣
∣
k

L

∣
∣
∣
∣ e

−2πδ0| k
L |. (6.32)

Proof. See discussions in Appendix D.3. �

Proposition 6.2.6. Assume u satisfies (6.19) with W (t, x) = 0, and that u0 ∈ H1,

f ∈ H, then the equation satisfied by u has a unique strong solution on t ∈ [0, T ]

for any T > 0:

u ∈ L∞((0, T ); H1) ∩ L∞((0, T ); D(A)),
du

dt
∈ L2((0, T ); H).

Furthermore, the equation has a global attractor A and there exists K > 0 such that,

if u0 ∈ A, then

sup
t≥0

‖u(t)‖2
1,∞ ≤ K.
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Proof. See Theorems 9.5 and 12.5 in [60]. �

For the solution u of stochastic Navier-Stokes equation (6.19), the author would

like to prove the convergence as well as find the convergence rate of ũk to uk, and

then obtain similar results for ũk as in Propositions 6.2.5 and 6.2.6 (possibly) using

the techniques adopted in Section D.3. Once this is done, we can know the exact

error between uk and ũk, and it suffies to focus on ũk, which is a finite dimensional

system, to study various properties of u(t).

6.2.2 Filtering the Navier-Stokes Equations

In some cases the flow modelled by the stochastic Navier-Stokes equations is not

observable directly, which makes filtering a necessary tool to investigate the prob-

lem. From the discussions in the previous section, it is known that in order to study

(6.17) under the filtering framework, it suffices to investigate (6.22) or its truncated

version (6.30). We view (6.30) as the signal, and its observation will inevitably be

perturbed by certain noises. Our interests are therefore to find the conditional dis-

tribution of the signal process ũk(t) based on its noisy observations. In what follows

we will build up the filtering model based on this idea.

Recall the system of {ũk(t)}k satisfies (6.30), viz

dũk(t) =

(

−νλkũk(t) − αl,j
k

∑

Γ

ũl(t)ũj(t) + fk

)

dt + εkdW k
t ;

where the set Γ ,
{

(l, j)
∣
∣
∣l + j = k and |2πl|2 < λL2 and |2πj|2 < λL2

}
. For sim-

plicity, the corresponding system of the observation process {ym(t)}m is, for the

moment, modelled as linear:

dym(t) = hk,mũk(t)dt + dW̃m
t , (6.33)

where hk,m ∈ R, W̃m
t is a one-dimensional Brownian motion, and m = 1, . . . ,M .

We further assume that M is much smaller than the number of elements in Γ. This

is reasonable because in practice it is usually difficult to obtain and process the

observation process with dimensions as large as the signal process.
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From the simulation in the previous section, we can see that ũk(t)s decay to zero

very quickly as k and t increase; and thus, although a rigorous proof is still required,

it is reasonable to assume in the first instance that ũk(t) ≈ 0 as |k| ≥ M . This feature

enables us to reduce the system of signal processes ũk(t) into the following simplified

one which has the same dimension as the system of observation processes:

d˜̃uk(t) =

(

−νλk
˜̃uk(t) − αl,j

k

∑

ΓM

˜̃ul(t)˜̃uj(t) + fk

)

dt + εkdW k
t , (6.34)

where the set ΓM ,
{

(l, j)
∣
∣
∣(l, j) ∈ Γ, |l + j|2 = M2

}
. Then it can be seen that the

number of elements in ΓM is much smaller than that in Γ.

Now we have an idea of the construction of the filtering framework, and we will

now pose some further questions which can be looked into to gain a further insight.

First it is necessary to rigorously prove that the difference between ũk and ˜̃uk can

be controlled by some small terms. After that, it will be interesting to see how

generalised particle filters, especially the mixture of Gaussian measure, can be used

to approximate the solution of this filtering problem. This work is still ongoing and

the complete results will be obtained in the near future.

6.3 Suggestions for Future Research

Based on the discussion in Section 5.3, Sections 6.1 and 6.2, I would suggest the

following three aspects as possible directions for future research.

• As we can see from Chapters 4 and 5, L2-convergence results can be obtained

for both tree based branching algorithm (TBBA) and multinomial branching

algorithm; the central limit type result, however, can only be obtained for

the multinomial algorithm. It is worth investigating, both from theoretical

and practical point of view, how we can obtain convergence in distribution

result under TBBA; because this procedure has conditional minimal variance

property.

• As mentioned in Section 6.1, there are still several other possible tools to help

construct the generalised particles, including wavelets, orthonormal polynomi-

als, and finite elements. The key idea of constructing the approximations is
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similar to using the Gaussian mixtures. Again we denote the approximation

of the ρt by ρn
t , and aim to make the approximation ρn

t satisfy

dρn
t (ϕt) = ρn

t

(
∂ϕt

∂t
+ Aϕt

)

dt + ρn
t (ϕth

>)dYt + Rn
t (ϕt). (6.35)

Comparing (6.35) with the Zakai equation (2.20), it can be seen that these

two equations are “sufficiently” close to each other provided the remainder

term Rn
t (ϕt) in (6.35) is “sufficiently” small, in which case ρn

t will converge to

ρt (see Appendix B.2 for the rigorous statement and its proof). Once this is

done, a comparative theoretical analysis can be established in order to identify

the optimal methods within the class of generalised particle filters for various

classes of approximations.

• Filtering the (stochastic) Navier-Stokes equation is a relatively new area and

the known knowledge about it is still quite limited. From the discussions in

Section 6.2, we see that several gaps are waiting to be filled, and they are the

author’s ongoing and future work. To be specific, the convergence results of

ũk(t) to uk(t) and ˜̃uk(t) to ũk(t) (as k → ∞) should be proved before it can

be placed under the filtering framework with ˜̃uk(t) being viewed as the signal.

The following work is to apply the generalised particle filters, especially the

mixture of Gaussian measures, to the established filtering model; and prove

the corresponding convergence results.
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Chapter 7

Conclusions

In this thesis we have analysed a class of approximations of the posterior distribu-

tion under continuous time framework. In particular, we investigate in details the

case where Gaussian mixtures are used to approximate the posterior distribution.

The L2-convergence rate and a central limit type result of such approximation

are obtained. This method can be viewed as a natural extension of the classic par-

ticle filters, in the sense that the classic one is a special case of the generalised one.

In general, the approximating measure has a smooth density with respect to the

Lebesgue measure and this can enable us to study more properties of the posterior

measures than the classic particle filters do; especially this makes it possible to study

various properties about the density of ρt through its approximation ρn
t . Further-

more, the Gaussian mixture particle filters also reduces the computational efforts

by carrying more information on each (generalised) particle. It can also be seen

that the asymptotic behaviour (n → ∞) of the Gaussian mixtures approximation

is similar to the classic particle filters, which is not surprising. As the number of

(generalised) particles increases, the quantisation of the posterior distribution be-

comes finer and finer. Therefore, asymptotically, the positions and the weights of

the particles provide sufficient information to obtain a good approximation.

Finally, Chapter 6 outlined some possible directions for future research, which

include three other forms of generalised particles as well as the application to the

filtering of the Navier-Stokes equation.
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Appendix A

Convergence Analysis

A.1 Preliminary Results

Proposition A.1.1 (Gronwall’s inequality). Suppose that a continuous function

g(t) satisfies

0 ≤ g(t) ≤ α(t) + β

∫ t

0

g(s)ds, 0 ≤ t ≤ T,

with β ≤ 0 and α : [0, T ] → R integrable; then

g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s)ds, 0 ≤ t ≤ T.

Proof. See, for example, in Chapter 5 in [44]. �

Proposition A.1.2 (Jensen’s inequality for definite integrals). Suppose u ∈ Lp([0, T ])

is integrable for p ≥ 1, then the following inequality holds

(∫ t

0

usds

)p

≤ tp−1

∫ t

0

up
sds.

Proof. See, for example, [70]. �

Proposition A.1.3 (The Burkholder-Davis-Gundy inequality). Assume that M is

a continuous local martingale, then for every p > 0, there exists a universal constant

Kp such that

Ẽ

[(

sup
t≤T

|MT |

)p]

≤ KpẼ
[
〈M〉p/2

T

]
.

Proof. See, for example, Theorem 3.3.28 in [44]. �
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Definition A.1.4 (Markov Semigroup on Cb(Rd)). A one-parameter family (Pt)t≥0

of bounded linear operators on Cb(Rd) with norm ‖ ∙ ‖ is a semigroup if

• P0 = I (the identity operator),

• Pt+s(f) = Pt(Ps(f)) for any f ∈ Cb(Rd) (semigroup property).

A Markov semigroup (Pt)t≥0 on Rd is a semigroup associated to a Markov process

X = (Ω, (Ft)t≥0, (Xt)t≥0, (Pt)t≥0, {Px : x ∈ E})

where (Rd,B(Rd)) is a measurable space, (Ω, (Ft)t≥0) is a filtered space and Px is

the probability law for each point x ∈ Rd such that for 0 ≤ s ≤ t, f ∈ B(Rd), the set

of bounded B(Rd)-measurable functions, and x ∈ Rd

Ex[f(Xs+t)|Fs] = (Ptf)(Xs), Px − a.s..

An example of (Pt)t≥0 are the transition functions (see Definition 1.1 in Chapter

III.1 of [63] for details).

A.2 Proof of Theorem 4.2.6

Theorem A.2.1. Let μn = {μn
t : t ≥ 0} be a measure-valued process such that for

any ϕ ∈ Cm
b (Rd), m ≥ 6, any fixed α ≥ 1 and fixed s > t, we have

μn
t (ϕ) = μn

0 (as(ϕ)) +
α∑

l=1

Rn,ϕ
t,l +

β∑

k=1

∫ t

0

μn
r (ak

s,r(ϕ))dW k
r , (A.1)

where W = (W k)β
k=1 is an β-dimensional Brownian motion, and as, ak

s,r : Cm
b (Rd) →

Cm
b (Rd) are bounded linear operators with bounds c and Ck (k = 1, . . . , β) respec-

tively, i.e., ‖as(ϕ)‖m,∞ ≤ c‖ϕ‖m,∞ and ‖ak
s,r(ϕ)‖m,∞ ≤ Ck‖ϕ‖m,∞. If for any

T > 0 there exist constants γ0, γ1, . . . , γα such that for t ∈ [0, T ], p ≥ 2 and ql > 0

(l = 0, 1, . . . , α),

Ẽ [|μn
0 (as(ϕ))|p] ≤

γ0

nq0
‖ϕ‖p

m,∞, Ẽ
[
|Rn,ϕ

t,l |p
]
≤

γl

nql
‖ϕ‖p

m,∞, l = 1, . . . , α. (A.2)

Then for any t ∈ [0, T ], we have

Ẽ [|μn
t (ϕ)|p] ≤

ct

nq
‖ϕ‖p

m,∞, (A.3)

where ct is a constant independent of n and q = min(q0, q1, . . . , qα).
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Proof. We first show that for any t ∈ [0, T ]

‖μn
t (1)‖p

p = Ẽ [|μn
t (1)|p] < ∞.

Observe that for ϕ = 1 and t ∈ [0, T ]

μn
t (1) = μn

0 (as(1)) +
α∑

l=1

Rn,1
t,l +

β∑

k=1

∫ t

0

μn
r

(
ak

s,r(1)
)
dW k

r ,

then Minkowski inequality and the fact that ‖1‖m,∞ = 1 imply

‖μn
t (1)‖p ≤ ‖μn

0 (at(1))‖p +
α∑

l=1

‖Rn,1
t,l ‖p +

[

Ẽ

∣
∣
∣
∣
∣

β∑

k=1

∫ t

0

μn
r

(
ak

s,r(1)
)
dW k

r

∣
∣
∣
∣
∣

p]1/p

≤ (α + 1)
( γ

nq

)1/p

+

[

Ẽ

∣
∣
∣
∣
∣

β∑

k=1

∫ t

0

μn
r

(
ak

s,r(1)
)
dW k

r

∣
∣
∣
∣
∣

p]1/p

where γ = max(γ0, γ1, . . . , γα). Then Burkholder-Davis-Gundy and Jensen’s in-

equalities we have that

‖μn
t (1)‖p

p ≤ 2p−1(α + 1)p γ

nq
+ 2p−1

[

Ẽ

∣
∣
∣
∣
∣

β∑

k=1

∫ t

0

μn
r

(
ak

s,r(1)
)
dW k

r

∣
∣
∣
∣
∣

p]

≤ 2p−1(α + 1)p γ

nq
+ 2p−1βp−1

β∑

k=1

Ẽ

[∣∣
∣
∣

∫ t

0

μn
r

(
ak

s,r(1)
)
dW k

r

∣
∣
∣
∣

p]

≤ 2p−1(α + 1)p γ

nq
+ 2p−1βp−1K

β∑

k=1

Ẽ

[〈∫ .

0

μn
r

(
ak

s,r(1)
)
dW k

r

〉p/2

t

]

= 2p−1(α + 1)p γ

nq
+ 2p−1βp−1K

β∑

k=1

Ẽ

[(∫ t

0

μn
r

(
ak

s,r(1)
)2

dr

)p/2
]

≤ 2p−1(α + 1)p γ

nq
+ 2p−1βp−1Ktp/2−1

β∑

k=1

Ẽ

[∫ t

0

∣
∣μn

r

(
ak

s,r(1)
)∣∣p dr

]

≤ 2p−1(α + 1)p γ

nq
+ 2p−1βp−1Ktp/2−1

β∑

k=1

Cp
k

∫ t

0

Ẽ [|μn
r (1)|p] dr

≤ 2p−1(α + 1)p γ

nq
+ 2p−1βpKtp/2−1Cp

∫ t

0

‖μn
r (1) ‖p

pdr (A.4)
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where C = max(C1, . . . , Cβ). Then from Gronwall’s inequality we have

Ẽ [|μn
s (1)|p] = ‖μn

s (1) ‖p
p

≤2p−1(α + 1)p γ

nq

(

1 + 2p−1βpKtp/2−1Cp

∫ t

0

exp
(
2p−1βpKtp/2−1Cp(t − r)

)
dr

)

=2p−1(α + 1)p γ

nq
exp

(
2p−1βpKtp/2Cp

)

,D < ∞.

Using a similar approach, with 1 replaced by ϕ, we can obtain a similar inequality

as in the third-from-the-last inequality in (A.4):

‖μn
t (ϕ)‖p

p ≤ 2p−1(α + 1)p γ

nq
‖ϕ‖p

m,∞ + 2p−1βp−1Ktp/2−1

β∑

k=1

∫ t

0

Ẽ
[∣∣μn

r

(
ak

s,r(ϕ)
)∣∣p] dr.

Now denote by

Ak
s,t ,

∫ t

0

Ẽ
[∣∣μn

r

(
ak

s,r(ϕ)
)∣∣p] dr =

∫ t

0

‖μn
r

(
ak

s,r(ϕ)
)
‖p

pdr, (A.5)

and Δ = (α + 1)p γ
nq , we have

‖μn
t (ϕ)‖p

p ≤ 2p−1Δ‖ϕ‖p
m,∞ + 2p−1βp−1Ktp/2−1

β∑

k=1

Ak
s,t. (A.6)

Similar to the penultimate inequality in (A.4), we can have that

‖μn
t (ϕ)‖p

p ≤2p−1(α + 1)p γ

nq
‖ϕ‖p

m,∞ + 2p−1βp−1Ktp/2−1

β∑

k=1

Cp
k

∫ t

0

Ẽ [|μn
r (ϕ)|p] dr

≤2p−1Δ‖ϕ‖p
m,∞ + 2p−1βp−1Ktp/2−1Cp

β∑

k=1

∫ t

0

‖ϕ‖p
m,∞Ẽ [|μn

r (1)|p] dr

≤2p−1Δ‖ϕ‖p
m,∞ + 2p−1βp−1Ktp/2−1Cpβ

∫ t

0

‖ϕ‖p
m,∞Ddr

=2p−1Δ‖ϕ‖p
m,∞ + 2p−1βpKtp/2CpD‖ϕ‖p

m,∞. (A.7)

Replacing ϕ by ak
s,r(ϕ) in (A.7), we get that

‖μn
r

(
ak

s,r(ϕ)
)
‖p

p ≤2p−1Δ‖ak
s,r(ϕ)‖p

m,∞ + 2p−1βpKrp/2CpD‖ak
s,r(ϕ)‖p

m,∞

≤2p−1ΔCp‖ϕ‖p
m,∞ + 2p−1βpKrp/2C2pD‖ϕ‖p

m,∞, (A.8)
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Substituting into (A.5) and denote by κ = p/2, we have for k = 1, . . . , β

Ak
s,t ≤ 2p−1ΔCpt‖ϕ‖p

m,∞ + 2p−1βpKC2pD
tκ+1

κ + 1
‖ϕ‖p

m,∞ (A.9)

and (A.6) becomes

‖μn
t (ϕ)‖p

p ≤2p−1Δ‖ϕ‖p
m,∞

+ 2p−1βp−1Ktp/2−1

β∑

k=1

[

2p−1ΔCpt‖ϕ‖p
m,∞ + 2p−1βpKC2pD

tκ+1

κ + 1
‖ϕ‖p

m,∞

]

≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 22(p−1)β2pK2C2pD
t2κ

κ + 1
‖ϕ‖p

m,∞.

(A.10)

Repeat what was done in (A.8) and (A.9), and from (A.10), we have that

Ak
s,t ≤2p−1CpΔt‖ϕ‖p

m,∞ + 22(p−1)βpKC2pΔ
tκ+1

κ + 1
‖ϕ‖p

m,∞

+22(p−1)β2pK2C3pD
t2κ+1

(κ + 1)(2κ + 1)
‖ϕ‖p

m,∞;

and then (A.6) becomes

‖μn
t (ϕ)‖p

p ≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 23(p−1)β2pK2C2p t2κ

κ + 1
Δ‖ϕ‖p

m,∞

+23(p−1)β3pK3C3pD
t3κ

(κ + 1)(2κ + 1)
‖ϕ‖p

m,∞.

Repeat the iteration process again, we have that

Ak
s,t ≤2p−1CpΔt‖ϕ‖p

m,∞ + 22(p−1)βpKC2pΔ
tκ+1

κ + 1
‖ϕ‖p

m,∞

+23(p−1)β2pK2C3pΔ
t2κ+1

(κ + 1)(2κ + 1)
‖ϕ‖p

m,∞

+23(p−1)β3pK3C4pD
t3κ+1

(κ + 1)(2κ + 1)(3κ + 1)
‖ϕ‖p

m,∞;

and that

‖μn
t (ϕ)‖p

p ≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 23(p−1)β2pK2C2p t2κ

κ + 1
Δ‖ϕ‖p

m,∞

+24(p−1)β3pK3C3p t3κ

(κ + 1)(2κ + 1)
Δ‖ϕ‖p

m,∞

+24(p−1)β4pK4C4pD
t4κ

(κ + 1)(2κ + 1)(3κ + 1)
‖ϕ‖p

m,∞.
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Once again we have

‖μn
t (ϕ)‖p

p ≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 23(p−1)β2pK2C2p t2κ

κ + 1
Δ‖ϕ‖p

m,∞

+24(p−1)β3pK3C3p t3κ

(κ + 1)(2κ + 1)
Δ‖ϕ‖p

m,∞

+25(p−1)β4pK4C4p t4κ

(κ + 1)(2κ + 1)(3κ + 1)
Δ‖ϕ‖p

m,∞

+25(p−1)β5pK5C5pD
t5κ

(κ + 1)(2κ + 1)(3κ + 1)(4κ + 1)
‖ϕ‖p

m,∞.

In general after kth−iteration, we have that

‖μn
t (ϕ)‖p,k

p ,‖μ
n
t (ϕ)‖p

p

≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 23(p−1)β2pK2C2p t2κ

κ + 1
Δ‖ϕ‖p

m,∞

+ ∙ ∙ ∙ +
2k(p−1)β(k−1)pKk−1C(k−1)pt(k−1)κ

(κ + 1)(2κ + 1)(3κ + 1) ∙ ∙ ∙ ((k − 2)κ + 1)
Δ‖ϕ‖p

m,∞

+2k(p−1)βkpKkCkpD
trκ

(κ + 1)(2κ + 1) ∙ ∙ ∙ ((k − 2)κ + 1)((k − 1)κ + 1)
‖ϕ‖p

m,∞.

Letting k → ∞, we get that1

Ẽ [|μn
t (ϕ)|p] =‖μn

t (ϕ)‖p
p

≤2p−1Δ‖ϕ‖p
m,∞ + 22(p−1)βpKCptκΔ‖ϕ‖p

m,∞ + 23(p−1)β2pK2C2p t2κ

κ + 1
Δ‖ϕ‖p

m,∞

+ ∙ ∙ ∙ +
2k(p−1)β(k−1)pKk−1C(k−1)pt(k−1)κ

(κ + 1)(2κ + 1)(3κ + 1) ∙ ∙ ∙ ((k − 2)κ + 1)
Δ‖ϕ‖p

m,∞

+ ∙ ∙ ∙ ∙ ∙ ∙

=2p−1(α + 1)p γ

nq
‖ϕ‖p

m,∞

∞∑

k=1

[

2(k−1)(p−1)β(k−1)pKk−1C(k−1)p t(k−1)κ

∏k−2
j=0(jκ + 1)

]

.

Let ηt,k = 2(k−1)(p−1)β(k−1)pKk−1C(k−1)p t(k−1)κ
∏k−2

j=0 (jκ+1)
, we know ξt ,

∑∞
k=1 ηt,k exists by

the following ratio test

lim
k→∞

ηt,k+1

ηt,k

= 2p−1βpKCp tκ

(k − 1)κ + 1
= 0 < 1.

Finally the result (A.3) follows by setting ct = 2p−1(α + 1)pγξt. �

1We use the convention that
∏−1

j=0 = 1.
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Appendix B

Central Limit Theorem

B.1 Limits of πn and ρn

Lemma B.1.1. If the approximation πn is defined by (3.7), in other words,

πn
t (ϕ) =

n∑

j=1

ān
j (t)

∫

R
ϕ
(
vn

j (t) + y
√

ωn
j (t)

) 1
√

2π
exp

(

−
y2

2

)

dy;

then we have

πt(ϕ) = lim
n→∞

πn
t (ϕ) = lim

n→∞

n∑

j=1

ān
j (t)ϕ(vn

j (t)). (B.1)

That is to say, asymptotically, the variances of the Gaussian measures do not con-

tribute to the approximation, and the combination of positions and weights provide

a good approximation.

Proof. Since

πn
t (ϕ) =

n∑

j=1

ān
j (t)

∫

R
ϕ
(
vn

j (t) + y
√

ωn
j (t)

) 1
√

2π
exp

(

−
y2

2

)

dy

=
n∑

j=1

ān
j (t)

{

ϕ(vn
j (t)) +

1

2
ωn

j (t)ϕ′′(vn
j (t)) + O

(
(ωn

j (t))2
)
}

,

and ωn
j (t) ∼ 1/

√
n, it suffices to show that for k ∈ N and k ≥ 1

lim
n→∞

∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣
= 0. (B.2)
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We know

Ẽ





∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣

4




=
1

n2k

{
n∑

j1=1

n∑

j2=1

n∑

j3=1

n∑

j4=1

Ẽ
[
ān

j1
(t)ān

j2
(t)ān

j3
(t)ān

j4
(t)ϕ(vn

j1
(t))ϕ(vn

j2
(t))ϕ(vn

j3
(t))ϕ(vn

j4
(t))
]
}

≤
‖ϕ‖4

0,∞

n2k

{
n∑

j1=1

n∑

j2=1

n∑

j3=1

n∑

j4=1

√

Ẽ
[(

ān
j1

(t)ān
j2

(t)
)2]
Ẽ
[(

ān
j3

(t)ān
j4

(t)
)2]
}

≤
‖ϕ‖2

0,∞

n2k

{
n∑

j1=1

n∑

j2=1

n∑

j3=1

n∑

j4=1

1

n4
e4c2t

}

=
‖ϕ‖2

0,∞e4c2t

n2k
;

and thus, for ε ∈
(
0, 1

4

)
, we have

Ẽ




∞∑

n=1

n4ε

∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣

4


 ≤ ‖ϕ‖2
0,∞e4c2t

∞∑

n=1

1

n2k−4ε
< ∞. (B.3)

Let

ψt
ε =




∞∑

n=1

n4ε

∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣

4




1
4

,

then ψt
ε is integrable, and by (B.3), it is finite a.s.. Also note that for every n ≥ 1,

[

nε

∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣

]4

≤
∞∑

n=1

[

nε

∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣

]4

=
(
ψt

ε

)4
,

therefore ∣
∣
∣
∣
∣

n∑

j=1

1

nk/2
ān

j (t)ϕ(vn
j (t))

∣
∣
∣
∣
∣
≤

ψt
ε

nε

and (B.2) follows immediately. �

As a direct consequence, we have the following corollary for the unnormalised

approximation ρn:

Corollary B.1.2. If the approximation ρn is defined as in (4.3), i.e.

ρn
t (ϕ) = ξn

t πn
t (ϕ) = ξn

t

n∑

j=1

ān
j (t)

∫

R
ϕ
(
vn

j (t) + y
√

ωn
j (t)

) 1
√

2π
exp

(

−
y2

2

)

dy;
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then we have

ρt(ϕ) = lim
n→∞

ρn
t (ϕ) = lim

n→∞
ξn
t

n∑

j=1

ān
j (t)ϕ(vn

j (t)). (B.4)

Remark B.1.3. By Lemma B.1.1 we know asymptotically as n → ∞, the Gaussian

mixture approximation performs just as good as the classic particle filters. Further-

more, from Chapter 8 in [3] and Lemma B.1.1, we know that

ρn
t (ϕ) → ρt(ϕ) and πn

t (ϕ) → πt(ϕ) almost surely.

B.2 Limits of the terms in ρn

Lemma B.2.1. Let ϕ ∈ C6
0 (R) be a test function, and define the measure-valued

processes

ρ̃n.1
t ,

1

n

n∑

j=1

ξn
iδa

n
j (t)δvn

j (t), ρ̃n.2
t ,

1

n

n∑

j=1

{
ξn
iδa

n
j (t)

}2
δvn

j (t) (B.5)

then for any t ∈ [0, T ],

ρ̃n,1
t → ρ̃1

t , ρ̃n,2
t → ρ̃2

t , P̃− a.s.,

where ρ̃1 and ρ̃2 are two measure-valued processes satisfying

ρ̃1
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(Aϕ) + πs(h) [πs(h)ρs(ϕ) − ρs(hϕ)]

+ ρs(h) [πs(hϕ) − πs(h)πs(ϕ)]
}

ds

+

∫ t

0

{
ρs(hϕ) − πs(h)ρs(ϕ) + πs(ϕ)ρs(h)

}
dYs; (B.6)

ρ̃2
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(1)ρs(Aϕ) − [ρs(1)ρs(hϕ) − ρs(h)ρs(ϕ)] πs(h)

+ πs(ϕ)(ρs(h))2 + 2
[
ρs(h)ρs(hϕ) − (ρs(h))2πs(ϕ)

] }
ds

+

∫ t

0

{ρs(1)ρs(hϕ) + ρs(h)ρs(ϕ)} dYs. (B.7)

Proof. We begin by noting that for t ∈ [iδ, (i + 1)δ)

ρ̃n,1
t (ϕ) =

1

n

n∑

j=1

ξn
iδa

n
j (t)ϕ(vn

j (t)),
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and that

ρ̃n,1
t (ϕ) =ρ̃n,1

0 (ϕ) +

[t/δ]−1∑

i=0

(
ρ̃n,1

(i+1)δ(ϕ) − ρ̃n,1
(i+1)δ−(ϕ)

)

+

[t/δ]−1∑

i=0

(
ρ̃n,1

(i+1)δ−(ϕ) − ρ̃n,1
iδ (ϕ)

)
+
(
ρ̃n,1

t (ϕ) − ρ̃n,1
[t/δ]δ(ϕ)

)
. (B.8)

By the fact that

d
(
an

j (t)ϕ(vn
j (t))

)
=an

j (t)dϕ(vn
j (t)) + ϕ(vn

j (t))dan
j (t) + d〈an

j (∙), ϕ(vn
j (∙))〉t

=an
j (t)

[
(Aϕ)(vn

j (t))dt + (hϕ)(vn
j (t))dYt + (ϕ′σ)(vn

j (t))dV
(j)
t

]

− αan
j (t)

[
(ϕ′σ)(vn

j (t))dV
(j)
t + (1 − α/2)(ϕ′′σ2)(vn

j (t))dt
]
;

(B.9)

where α ∝ 1√
n
. Then we have that, for t ∈ [iδ, (i + 1)δ),

ρ̃n,1
t (ϕ) − ρ̃n,1

iδ (ϕ)

=

∫ t

iδ

dρ̃n,1
s (ϕ) =

∫ t

iδ

ξn
iδ

1

n

n∑

j=1

d
(
an

j (s)ϕ(vn
j (s))

=

∫ t

iδ

ξn
iδ

1

n

n∑

j=1

{

an
j (s)

[
(Aϕ)(vn

j (s))ds + (hϕ)(vn
j (s))dYs + (ϕ′σ)(vn

j (s))dV (j)
s

]

− αan
j (s)

[
(ϕ′σ)(vn

j (s))dV (j)
s + (1 − α/2)(ϕ′′σ2)(vn

j (s))ds
]
}

=

∫ t

iδ

ρ̃n,1
s (Aϕ)ds +

∫ t

iδ

ρ̃n,1
s (hϕ)dYs +

√
1 − α

1

n

n∑

j=1

∫ t

iδ

ξn
iδa

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s .

Hence we have that, for any t ∈ [0, T ],

[t/δ]−1∑

i=0

(
ρ̃n,1

(i+1)δ−(ϕ) − ρ̃n,1
iδ (ϕ)

)
+
(
ρ̃n,1

t (ϕ) − ρ̃n,1
[t/δ]δ(ϕ)

)

=
∞∑

i=0

{∫ (i+1)δ∧t

iδ∧t

ρ̃n,1
s (Aϕ)ds +

∫ (i+1)δ∧t

iδ∧t

ρ̃n,1
s (hϕ)dYs

+

√
1 − α

n

n∑

j=1

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

}

. (B.10)

We now let

φn
t ,

1

n

n∑

j=1

an
j (t)δvn

j (t),
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and consider

[t/δ]−1∑

i=0

(
ρ̃n,1

(i+1)δ(ϕ) − ρ̃n,1
(i+1)δ−(ϕ)

)
=

[t/δ]−1∑

i=0

ξn
iδ

(
φn

(i+1)δ(ϕ) − φn
(i+1)δ−(ϕ)

)

=

[t/δ]−1∑

i=0

{
ξn
iδφ

n
(i+1)δ(ϕ) − Ẽ

[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]

+ Ẽ
[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]
− ξn

iδφ
n
(i+1)δ−(ϕ)

}
(B.11)

We now consider the two terms in the right hand side of (B.11).

For the first term

Mn,ρ̃n,1,ϕ
t ,

[t/δ]−1∑

i=0

{
ξn
iδφ

n
(i+1)δ(ϕ) − Ẽ

[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]}
, (B.12)

by Proposition A.4 and Lemma 4.7 in [56], it is a Ft-adapted martingale and

Ẽ

[

sup
t∈[0,T ]

∣
∣
∣Mn,ρ̃n,1,ϕ

t

∣
∣
∣
4
]

≤
CT

n2
‖ϕ‖4

m,∞; (B.13)

and then by virtue of the proof of Lemma B.1.1, we know that

sup
t∈[0,T ]

∣
∣
∣Mn,ρ̃n,1,ϕ

t

∣
∣
∣→ 0 as n → ∞.

Then, for the second term in (B.11), since an
j ((i + 1)δ) = 1, we have

ξn
iδφ

n
(i+1)δ(ϕ) =

ξn
iδ

n

n∑

j=1

an
j ((i + 1)δ)ϕ(vn

j ((i + 1)δ)) =
ξn
iδ

n

n∑

j=1

ϕ(vn
j ((i + 1)δ)),

and thus

Ẽ
[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]
=

ξn
iδ

n

n∑

j=1

Ẽ
[
ϕ(vn

j ((i + 1)δ))
∣
∣F(i+1)δ−

]

=
ξn
iδ

n

n∑

j=1

(
n∑

j′=1

ān
j′((i + 1)δ)ϕ(vn

j′((i + 1)δ))

)

=ξn
iδ

n∑

j′=1

ān
j′((i + 1)δ)ϕ(vn

j′((i + 1)δ)).
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Furthermore,

Ẽ
[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]
− ξn

iδφ
n
(i+1)δ−(ϕ)

=ξn
iδ

n∑

j=1

ān
j ((i + 1)δ)ϕ

(
vn

j ((i + 1)δ)
)
−

ξn
iδ

n

n∑

j=1

an
j ((i + 1)δ−)ϕ

(
vn

j ((i + 1)δ−)
)

=ξn
iδ

(
1

n

n∑

k=1

an
j ((i + 1)δ)

)
n∑

j=1

ān
j ((i + 1)δ)ϕ

(
vn

j ((i + 1)δ)
)

−
ξn
iδ

n

n∑

j=1

an
j ((i + 1)δ−)ϕ

(
vn

j ((i + 1)δ−)
)

(B.14)

We now obtain the stochastic differential equation for the terms in (B.14).

First notice that, if let St =
∑n

k=1 an
k(t), then

dSt =
n∑

k=1

an
k(t)h(vn

k (t))dYt;

and

dS−1
t = − S−2

t dSt + S−3
t d〈S∙〉t

= − S−2
t

n∑

k=1

an
k(t)h(vn

k (t))dYt + S−3
t

(
n∑

k=1

an
k(t)h(vn

k (t))

)2

dt.

It thus follows that

dān
j (t) =d

(
an

j (t)S−1
t

)
= an

j (t)dS−1
t + S−1

t dan
j (t) + d

〈
an

j (∙), S−1
∙

〉
t

=an
j (t)



−S−2
t

n∑

k=1

an
k(t)h(vn

k (t))dYt + S−3
t

(
n∑

k=1

an
k(t)h(vn

k (t))

)2

dt





+ S−1
t an

j (t)h(vn
j (t))dYt − S−2

t

[
n∑

k=1

an
k(t)h(vn

k (t))

]

an
j (t)h(vn

j (t))dt

=ān
j (t)





(
n∑

k=1

ān
k(t)h(vn

k (t))

)2

− h(vn
j (t))

(
n∑

k=1

ān
k(t)h(vn

k (t))

)

 dt

+ ān
j (t)

[

h(vn
j (t)) −

n∑

k=1

ān
k(t)h(vn

k (t))

]

dYt

=ān
j (t) [ηn

t dt + ζn
t dYt] , (B.15)
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where

ηn
t =

(
n∑

k=1

ān
k(t)h(vn

k (t))

)2

− h(vn
j (t))

(
n∑

k=1

ān
k(t)h(vn

k (t))

)

,

ζn
t = h(vn

j (t)) −
n∑

k=1

ān
k(t)h(vn

k (t)).

Also notice that

dϕ(vn
j (t)) =

[
(Aϕ)(vn

j (t)) + (α/2)(ϕ′′σ2)(vn
j (t))

]
dt +

√
1 − α(ϕ′σ)(vn

j (t))dV
(j)
t .

Then we have

d
[
ān

j (t)ϕ(vn
j (t))

]

=ān
j (t)dϕ(vn

j (t)) + ϕ(vn
j (t))dān

j (t) + d
〈
ān

j (∙), ϕ(vn
j (∙))

〉
t

=ān
j (t)

{[
(Aϕ)(vn

j (t)) + (α/2)(ϕ′′σ2)(vn
j (t))

]
dt +

√
1 − α(ϕ′σ)(vn

j (t))dV
(j)
t

}

+ ϕ(vn
j (t))

{
ān

j (t) [ηn
t dt + ζn

t dYt]
}

=ān
j (t)

{
[
(Aϕ)(vn

j (t)) + (α/2)(ϕ′′σ2)(vn
j (t)) + ϕ(vn

j (t))ηn
t

]
dt

+ ϕ(vn
j (t))ζn

t dYt +
√

1 − α(ϕ′σ)(vn
j (t))dV

(j)
t

}

; (B.16)

and

d
(
Stā

n
j (t)ϕ(vn

j (t))
)

=Std
(
ān

j (t)ϕ(vn
j (t))

)
+ ān

j (t)ϕ(vn
j (t))dSt +

〈
ān

j (∙)ϕ(vn
j (∙)), S∙

〉
t

=Stā
n
j (t)

{
[
(Aϕ)(vn

j (t)) + (α/2)(ϕ′′σ2)(vn
j (t)) + ϕ(vn

j (t))ηn
t

]
dt

+ ϕ(vn
j (t))ζn

t dYt +
√

1 − α(ϕ′σ)(vn
j (t))dV

(j)
t

}

+ ān
j (t)ϕ(vn

j (t))
n∑

k=1

an
k(t)h(vn

k (t))dYt

+ ān
j (t)ϕ(vn

j (t))

(

h(vn
j (t)) −

n∑

k=1

ān
k(t)h(vn

k (t))

)
n∑

k=1

an
k(t)h(vn

k (t))dt. (B.17)
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Therefore

ξn
iδ

n
S(i+1)δ

n∑

j=1

ān
j ((i + 1)δ)ϕ

(
vn

j ((i + 1)δ)
)

=
ξn
iδ

n
Siδ

n∑

j=1

ān
j (iδ)ϕ

(
vn

j (iδ)
)

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

d
[
Ssā

n
j (s)ϕ(vn

j (s))
]

=
ξn
iδ

n
Siδ

n∑

j=1

ān
j (iδ)ϕ

(
vn

j (iδ)
)

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

√
1 − αSsā

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

Ssā
n
j (s)ϕ(vn

j (s))

[

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

]

dYs

+
ξn
iδ

n

∫ (i+1)δ

iδ

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))dYs

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

Ssā
n
j (s)

{

(Aϕ)(vn
j (s)) + (α/2)(ϕ′′σ2)(vn

j (s))

+ ϕ(vn
j (s))





(
n∑

k=1

ān
k(s)h(vn

k (s))

)2

− h(vn
j (s))

(
n∑

k=1

ān
k(s)h(vn

k (s))

)



}

ds

+
ξn
iδ

n

∫ (i+1)δ

iδ

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))

(

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

)

ds.

(B.18)

Because of (B.9),

ξn
iδ

n

n∑

j=1

an
j ((i + 1)δ−)ϕ

(
vn

j ((i + 1)δ−)
)

=
ξn
iδ

n

n∑

j=1

an
j (iδ)ϕ

(
vn

j (iδ)
)

+
ξn
iδ

n

∫ (i+1)δ

iδ

an
j (t)

[
(Aϕ)(vn

j (t)) + (α/2)(ϕ′′σ2)(vn
j (t)

]
dt

+
ξn
iδ

n

∫ (i+1)δ

iδ

an
j (t)

√
1 − α(ϕ′σ)(vn

j (t))dV
(j)
t +

ξn
iδ

n

∫ (i+1)δ

iδ

an
j (t)(hϕ)(vn

j (t))dYt.

=
ξn
iδ

n

n∑

j=1

an
j (iδ)ϕ

(
vn

j (iδ)
)

+

∫ (i+1)δ

iδ

ρ̃n,1
s (Aϕ)ds +

∫ (i+1)δ

iδ

ρ̃n,1
s (hϕ)dYs

+ (α/2)

∫ (i+1)δ

iδ

ρ̃n,1
s (ϕ′′σ2)ds +

√
1 − α

n

n∑

j=1

∫ (i+1)δ

iδ

ξn
iδa

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s .
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Now we can see that

[t/δ]−1∑

i=0

(
ρ̃n,1

(i+1)δ(ϕ) − ρ̃n,1
(i+1)δ−(ϕ)

)

=Mn,ρ̃n,1,ϕ
t +

[t/δ]−1∑

i=0

{
Ẽ
[
ξn
iδφ

n
(i+1)δ(ϕ)

∣
∣F(i+1)δ−

]
− ξn

iδφ
n
(i+1)δ−(ϕ)

}

=Mn,ρ̃n,1,ϕ
t +

∞∑

i=0

{
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

√
1 − αSsā

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

Ssā
n
j (s)ϕ(vn

j (s))

[

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

]

dYs

+
ξn
iδ

n

∫ (i+1)δ

iδ

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))dYs

+
ξn
iδ

n

n∑

j=1

∫ (i+1)δ

iδ

Ssā
n
j (s)

{

(Aϕ)(vn
j (s)) + (α/2)(ϕ′′σ2)(vn

j (s))

+ ϕ(vn
j (s))





(
n∑

k=1

ān
k(s)h(vn

k (s))

)2

− h(vn
j (s))

(
n∑

k=1

ān
k(s)h(vn

k (s))

)



}

ds

+
ξn
iδ

n

∫ (i+1)δ

iδ

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))

(

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

)

ds

}

−
∞∑

i=0

{∫ (i+1)δ∧t

iδ∧t

ρ̃n,1
s (Aϕ)ds +

∫ (i+1)δ∧t

iδ∧t

ρ̃n,1
s (hϕ)dYs

+ (α/2)

∫ (i+1)δ∧t

iδ∧t

ρ̃n,1
s (ϕ′′σ2)ds +

1 − α

n

n∑

j=1

∫ (i+1)δ∧t

iδ∧t

ξn
iδa

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

}

.

(B.19)

Note the fact that
ξn
iδ

n
St = ξn

t ,
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then from (B.10) and (B.19), (B.8) becomes

ρ̃n,1
t (ϕ)

=ρ̃n,1
0 (ϕ) + Mn,ρ̃n,1,ϕ

t

+
∞∑

i=0

{
n∑

j=1

∫ (i+1)δ∧t

iδ∧t

√
1 − αξn

s ān
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

+
n∑

j=1

∫ (i+1)δ∧t

iδ∧t

ξn
s ān

j (s)ϕ(vn
j (s))

[

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

]

dYs

+

∫ (i+1)δ∧t

iδ∧t

ξn
iδ

n

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))dYs

+
n∑

j=1

∫ (i+1)δ∧t

iδ∧t

ξn
s ān

j (s)

{

(Aϕ)(vn
j (s)) + (α/2)(ϕ′′σ2)(vn

j (s))

+ ϕ(vn
j (s))





(
n∑

k=1

ān
k(s)h(vn

k (s))

)2

− h(vn
j (s))

(
n∑

k=1

ān
k(s)h(vn

k (s))

)



}

ds

+

∫ (i+1)δ∧t

iδ∧t

ξn
iδ

n

n∑

k=1

an
k(s)h(vn

k (s))
n∑

j=1

ān
j (s)ϕ(vn

j (s))

(

h(vn
j (s)) −

n∑

k=1

ān
k(s)h(vn

k (s))

)

ds

}

.

(B.20)

Similar to the proof of Lemma B.1.1, we have

sup
t∈[0,T ]

∣
∣
∣
∣
∣
1

n

n∑

j=1

∫ t

iδ

ξn
iδa

n
j (s)(ϕ′σ)(vn

j (s))dV (j)
s

∣
∣
∣
∣
∣
→ 0 as n → ∞; (B.21)

and

sup
t∈[0,T ]

∣
∣
∣Mn,ρ̃n,1,ϕ

t

∣
∣
∣→ 0 as n → ∞. (B.22)

For ρ̃n,1
0 (ϕ), since an

j (0) = 1, then

ρ̃n,1
0 (ϕ) =

1

n

n∑

j=1

ξn
0 an

j (0)ϕ(vn
j (0)) =

1

n

n∑

j=1

ϕ(vn
j (0));

by Lemma B.1.1 we obtain

lim
n→∞

ρ̃n,1
0 (ϕ) = π0(ϕ).
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Finally, using Lemma B.1.1 and Corollary B.1.2, the limiting process

ρ̃1
t , lim

n→∞
ρ̃n,1

t

satisfies

ρ̃1
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(Aϕ) + πs(h) [πs(h)ρs(ϕ) − ρs(hϕ)]

+ ρs(h) [πs(hϕ) − πs(h)πs(ϕ)]
}

ds

+

∫ t

0

{
ρs(hϕ) − πs(h)ρs(ϕ) + πs(ϕ)ρs(h)

}
dYs. (B.23)

Similarly, for the second process

ρ̃n,2
t (ϕ) =

1

n

n∑

j=1

(ξn
iδ)

2 (an
j (t)

)2
ϕ(vn

j (t));

by using exactly the same approach as for {ρ̃n,1}n, we obtain the equation satisfied

by its limiting process

ρ̃2
t (ϕ) , lim

n→∞
ρ̃n,2

t

to be

ρ̃2
t (ϕ) = π0(ϕ) +

∫ t

0

{
ρs(1)ρs(Aϕ) − [ρs(1)ρs(hϕ) − ρs(h)ρs(ϕ)] πs(h)

+ πs(ϕ)(ρs(h))2 + 2
[
ρs(h)ρs(hϕ) − (ρs(h))2πs(ϕ)

] }
ds

+

∫ t

0

{ρs(1)ρs(hϕ) + ρs(h)ρs(ϕ)} dYs. (B.24)

The proof is now completed. �

B.3 Limits of
√

nMn,ϕ
[t/δ] and

√
nBn,ϕ

t

In order to prove that {Un}n converges in distribution to a unique process, we should

first investigate the limiting processes in the right hand side of

Un
t (ϕ) =Un

0 (ϕ) +

∫ t

0

Un
s (Aϕ)ds +

∫ t

0

Un
s (hϕ)dYs +

√
nAn,ϕ

[t/δ] +
√

nGn,ϕ
[t/δ]

+
1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)

[
R1

s,j(ϕ)ds + R2
s,j(ϕ)dYs + R3

s,j(ϕ)dV (j)
s

]
; (B.25)

which are what the following lemmas have done.
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Lemma B.3.1. Assume the conditions in Proposition 5.1.6 hold, then

lim
n→∞

〈√
nAn,ϕ

.

〉
t
=

[t/δ]∑

i=1

(ρiδ(1))2 [πiδ−(ϕ2) − (πiδ−(ϕ))2] . (B.26)

If we let

Āϕ
t ,

[t/δ]∑

i=1

ρiδ(1)

√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi, (B.27)

where {Υi}i∈N is a sequence of independent identically distributed, standard nor-

mal random variables, and

{√
πiδ−(ϕ2) − (πiδ−(ϕ))2Υi

}

i

are mutually independent

given the σ-algebra Y; then we have 〈Āϕ
∙ 〉t = limn→∞ 〈

√
nAn,ϕ

. 〉t .

Proof. Note that An,ϕ is a discrete time martingale, then

lim
n

〈√
nAn,ϕ

.

〉
t

= lim
n

〈
[./δ]∑

i=1

ξn
iδ

1
√

n

n∑

j=1

[(
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
]
〉

t

= lim
n

1

n

[t/δ]∑

i=1

(ξn
iδ)

2Ẽ





(
n∑

j=1

[(
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

j (iδ))
]
)2 ∣∣
∣
∣
∣
Fiδ−





= lim
n

1

n

[t/δ]∑

i=1

(ξn
iδ)

2Ẽ

[
n∑

j=1

(
on,iδ

j − nān
j (iδ−)

)2 (
ϕ(Xn

j (iδ))
)2

+
∑

l 6=j

(
on,iδ

l − nān
l (iδ−)

)(
on,iδ

j − nān
j (iδ−)

)
ϕ(Xn

l (iδ))ϕ(Xn
j (iδ))

∣
∣
∣
∣
∣
Fiδ−

]

= lim
n

1

n

[t/δ]∑

i=1

(ξn
iδ)

2

[
n∑

j=1

nān
j (iδ−)

(
1 − ān

j (iδ−)
) (

ϕ(Xn
j (iδ))

)2

−
∑

l 6=j

nān
l (iδ−)ān

j (iδ−)ϕ(Xn
l (iδ))ϕ(Xn

j (iδ))

]

= lim
n

[t/δ]∑

i=1

(ρn
iδ(1))2




n∑

j=1

ān
j (iδ−)

(
ϕ(Xn

j (iδ))
)2

−

(
n∑

j=1

ān
j (iδ−)ϕ(Xn

j (iδ))

)2




=

[t/δ]∑

i=1

(ρiδ(1))2 [πiδ−(ϕ2) − (πiδ−(ϕ))2] ,

here we made use of Lemma B.1.1 and Remark B.1.3 in Appendix C.

The second part of the lemma is obvious. �
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Lemma B.3.2. Assume the conditions in Proposition 5.1.6 hold, then

lim
n→∞

∣
∣
∣
√

nGn,ϕ
[t/δ]

∣
∣
∣ = 0 a.s.. (B.28)

Proof. For Gn,ϕ, we know that

√
nGn,ϕ

[t/δ] =

[t/δ]∑

i=1

n∑

j=1

√
nξn

iδā
n
j (iδ−)

[
ϕ(Xn

j (iδ)) − Ẽ
(
ϕ(Xn

j (iδ))
)]

,

first note that Xn
j (iδ) ∼ N

(
vn

j (iδ), ωn
j (iδ)

)
and Xn

j s are mutually independent (j =

1, . . . , n), also not the fact that ω ∼ O(1/
√

n); if we let Zn
j (iδ) , Xn

j (iδ)−Ẽ
(
Xn

j (iδ)
)

then Zn
j (t) ∼ N (0, ωn

j (t)), and then by making use of the central moments of Gaus-

sian random variables, we have

Ẽ








[t/δ]∑

i=1

n∑

j=1

√
nξn

iδā
n
j (iδ−)

[
ϕ(Xn

j (iδ)) − Ẽ
(
ϕ(Xn

j (iδ))
)]




12 ∣
∣
∣
∣
∣
Yiδ−





≤2‖ϕ′‖12
0,∞Ẽ








[t/δ]∑

i=1

n∑

j=1

√
nξn

iδā
n
j (iδ−)Zn

j (iδ)





12 ∣
∣
∣
∣
∣
Yiδ−





≤CT (‖ϕ′‖0,∞ξn
iδ)

12
n6n6

n∑

j=1

(
ān

j (iδ−)
)8

(ωn
j (iδ−))6

≤CT‖ϕ‖12
1,∞‖σ‖12

0,∞δ6α6n12

n∑

j=1

(
ξn
iδā

n
j (iδ−)

)12

=CT‖ϕ‖12
1,∞‖σ‖12

0,∞δ6n9

n∑

j=1

(
ξn
iδā

n
j (iδ−)

)12
;

then by taking the expectation on both sides, we have

Ẽ

[(√
nGn,ϕ

[t/δ]

)12
]

≤CT‖ϕ‖12
1,∞‖σ‖12

0,∞δ6n9

n∑

j=1

Ẽ
[(

ξn
iδā

n
j (iδ−)

)12
]

≤CT‖ϕ‖12
1,∞‖σ‖12

0,∞δ6n9

n∑

j=1

√

Ẽ [(ξn
iδ)

24] Ẽ
[(

ān
j (iδ−)

)24
]

≤CT‖ϕ‖12
1,∞‖σ‖12

0,∞δ6n9

n∑

j=1

√

ct,24
1

ec24t

n24

=
βT

ϕ,σ,δ

n2
,
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where

βT
ϕ,σ,δ = CT

√
cT,24
1 ec24T‖ϕ‖12

1,∞‖σ‖12
0,∞δ6

is a constant independent of n. Then similar to the proof of Lemma B.1.1 in Ap-

pendix C, we have the result. �

Lemma B.3.3. Assume the conditions in Proposition 5.1.6 hold, then

lim
n→∞

1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)R1

s,j(ϕ)ds = ΛR1,ϕ
t , (B.29)

where

ΛR1,ϕ
t = cω

∫ t

0

ρ̃1
s(Ψϕ)ds; (B.30)

cω is a constant, and the operator Ψ is defined by

Ψϕ =
fϕ′′′

2
+

σϕ(4)

4
−

3(Aϕ)′′

2
.

Proof. Since

lim
n→∞

1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)R1

s,j(ϕ)ds

= lim
n→∞

1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)

{

ωn
j (s)

[(
fϕ′′′

2
+

σϕ(4)

4

)

(vn
j (s)) − Ij(Aϕ)

]}

ds

= lim
n→∞

1
√

n

n∑

j=1

∫ t

0

ξn
[s/δ]δa

n
j (s)

{

ωn
j (s)

[(
fϕ′′′

2
+

σϕ(4)

4
−

3(Aϕ)′′

2

)

(vn
j (s))

]}

ds

= lim
n→∞

cω

n

∫ t

0

n∑

j=1

ξn
[s/δ]δa

n
j (s)

{(
fϕ′′′

2
+

σϕ(4)

4
−

3(Aϕ)′′

2

)

(vn
j (s))

}

ds

= lim
n→∞

cω

∫ t

0

ρ̃n,1
s (Ψϕ)ds = cω

∫ t

0

ρ̃1
s(Ψϕ)ds,

we have the required result. �

Lemma B.3.4. Assume the conditions in Proposition 5.1.6 hold, then

lim
n→∞

〈
1
√

n

n∑

j=1

∫ ∙

0

ξn
[s/δ]δa

n
j (s)R2

s,j(ϕ)dYs

〉

t

=
〈
ΛR2,ϕ

∙

〉

t
, (B.31)

where

ΛR2,ϕ
t = cω

∫ t

0

(
ρ̃1

s(hϕ′′ − (hϕ)′′)
)
dB(2)

s , (B.32)

cω is a constant and B(2) is a Brownian motion independent of Y .

122



Proof. Observe that

lim
n→∞

〈∫ ∙

0

1
√

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)R2

s,j(ϕ)dYs

〉

t

= lim
n→∞

∫ t

0

(
1
√

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)R2

s,j(ϕ)

)2

ds

= lim
n→∞

∫ t

0

(
1
√

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)ωn

j (s)
(hϕ′′

2
(vn

j (s)) − Ij(hϕ)
)
)

ds

= lim
n→∞

∫ t

0

(
1

2
√

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)ωn

j (s)
[
(hϕ′′ − (hϕ)′′)(vn

j (s))
]
)2

ds

= lim
n→∞

c2
ω

∫ t

0

(
1

n

n∑

j=1

ξn
[s/δ]δa

n
j (s)

[
(hϕ′′ − (hϕ)′′)(vn

j (s))
]
)2

ds

= lim
n→∞

c2
ω

∫ t

0

(
ρ̃n,1

s (hϕ′′ − (hϕ)′′)
)2

ds

=c2
ω

∫ t

0

(
ρ̃1

s (hϕ′′ − (hϕ)′′)
)2

ds =
〈
ΛR2,ϕ

∙

〉

t
;

and then we have the result. �

Lemma B.3.5. Assume the conditions in Proposition 5.1.6 hold, then

lim
n→∞

〈
1
√

n

n∑

j=1

∫ ∙

0

ξn
[s/δ]δa

n
j (s)R3

s,j(ϕ)dV (j)
s

〉

t

=
〈
ΛR3,ϕ

∙

〉

t
, (B.33)

where

ΛR3,ϕ
t =

∫ t

0

√
ρ̃2

s ((σϕ′)2)dB(3)
s ,

B(3) is a Brownian motion independent of B(2) and Y .

Proof. Bearing in mind that ωn
j ∝ 1

√
n
, then using exactly the same approach as in
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the proof of Lemma B.1.1 in Appendix C, we have

lim
n→∞

〈
1
√

n

n∑

j=1

∫ ∙

0

ξn
[s/δ]δa

n
j (s)R3

s,j(ϕ)dV (j)
s

〉

t

= lim
n→∞

∫ t

0

1

n

n∑

j=1

(
ξn
[s/δ]δa

n
j (s)

)2 (
R3

s,j(ϕ)
)2

ds

= lim
n→∞

∫ t

0

1

n

n∑

j=1

(
ξn
[s/δ]δa

n
j (s)

)2 (
(σϕ′)(vn

j (s))
)2

ds

= lim
n→∞

∫ t

0

ρ̃n,2
s

(
(σϕ′)2

)
ds =

∫ t

0

ρ̃2
s

(
(σϕ′)2

)
ds =

〈
ΛR3,ϕ

∙

〉

t
. (B.34)

We then have the result. �

Remark B.3.6. From the above arguments we can see that, asymptotically, the

variances {ωn
j }

n
j=1 do not contribute to the approximating system.
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Appendix C

Generalised Particle Filters

C.1 Wavelets

A wavelet is a wave-like oscillation with an amplitude that starts out at zero, in-

creases, and then decreases back to zero. Mathematically speaking, a wavelet is

a function used to divide a given function or continuous-time signal into different

scale components. Usually one can assign a frequency range to each scale compo-

nent. Each scale component can then be studied with a resolution that matches

its scale. A wavelet transform is the representation of a function by wavelets. The

wavelets are scaled and translated copies (known as daughter wavelets) of a finite-

length or fast-decaying oscillating waveform (known as the mother wavelet). The

main purpose of the mother wavelet is to provide a source function to generate

daughter wavelets which are translated and dilated versions of the mother wavelet.

In formal terms, this representation is a wavelet series representation of a square-

integrable function by a complete and orthonormal set of basis functions for the

Hilbert space of square integrable functions; and this orthonormal series is gener-

ated by the mother wavelet. Wavelet transforms are classified into discrete wavelet

transforms (DWTs) and continuous wavelet transforms (CWTs). Note that both

DWT and CWT are continuous-time transforms, and thus can both be used to

represent continuous-time signals.

Definition C.1.1. The continuous wavelet transform of a function f ∈ L2(R) with
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respect to some mother wavelet ψ is defined as

Wψf(a, b) =

∫ ∞

−∞
f(t)ψa,b (t)dt, (C.1)

where

ψa,b(t) =
1

√
|a|

ψ

(
t − b

a

)

. (C.2)

The parameters a and b are called dilation and translation parameters respectively.

In order to reconstruct the original function f(x), inverse continuous wavelet trans-

form is given as

f(t) =

∫ ∞

−∞

∫ ∞

−∞

1

a2
[Wψf(a, b)]

1
√
|a|

ψ̃

(
t − b

a

)

db da, (C.3)

where ψ̃ is the dual of ψ satisfying

∫ ∞

−∞

∫ ∞

−∞

1

|a3|
ψ

(
t1 − b

a

)

ψ̃

(
t − b

a

)

db da = δ(t − t1).

Usually ψ̃(t) = C−1
ψ ψ(t), where the constant Cψ satisfying

Cψ =

∫ ∞

−∞

∣
∣
∣ψ̂(ξ)

∣
∣
∣
2

ξ
dξ < ∞

is called the admissibility condition, and ψ̂ is the Fourier transform of ψ.

Definition C.1.2. A discrete wavelet transform is any wavelet transform for which

the wavelets are discretely sampled. Specially, this is done by modifying the wavelets

(C.2) into the following expression

ψj,k(t) =
1

√
|a|j

ψ

(
t − kbaj

aj

)

= |a|−
j
2 ψ(a−jt − kb) (C.4)

where a is the fixed dilation step and b is the translation step which depends on the

dilation step a. The discrete wavelet series can be made orthonormal by the choices

of dilation and translation parameters and the mother wavelet. By orthonormality

we mean that it can be used to define a Hilbert basis:

〈
ψj,k, ψm,n

〉
=

∫ ∞

−∞
ψj,k(x)ψm,n(x)dx =

{
1 if j = m and k = n

0 otherwise
(C.5)
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Now an arbitrary function f(x) can be reconstructed in the following way

f(t) =
∞∑

j=−∞

∞∑

k=−∞

〈
f, ψj,k

〉
ψj,k(t). (C.6)

This expression is the inverse wavelet transform for discrete wavelets.

In the following, I will list some examples of (mother) wavelet functions.

Example C.1.3 (Haar wavelet). The Haar wavelet is the simplest possible wavelet,

its mother wavelet function ψ(x) is defined as

ψ(x) =






1, if 0 < x ≤ 1
2

−1, if 1
2

< x ≤ 1

0, otherwise

(C.7)

The support of ψ is [0, 1]. We dilate ψ by powers of 2, and translate the dilate by

2−j times an integer, in order to get the daughter wavelets

ψj,k(x) = 2
j
2 ψ(2jx − k).

It is easy to show that {ψj,k : j, k ∈ Z} is an orthonormal family. However, the dis-

continuity, and therefore the non-differentiability, is the main technical disadvantage

of the Haar wavelet.

Example C.1.4 (Daubechies wavelets). The system of Daubechies wavelets is an

expansion of Haar wavelets with the scaling function ϕ(x) = 1[0,1](x). Note that for

the wavelet function defined in (C.7), we have

ψ(x) = ϕ(2x) − ϕ(2x − 1), ϕ(x) = ϕ(2x) + ϕ(2x − 1).

It is observed that ϕ on a larger scale is essentially the same as ϕ on a smaller scale.

The scaling function for the Daubechies wavelets satisfies a more complicated scaling

function:

ϕ(x) =
N∑

k=0

akϕ(2x − k), (C.8)

where the coefficients ak must be chosen with great care. Once the values of ϕ on

integers are known, the values on half-integers can be obtained; and inductively so
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are the values of ϕ at dyadic rationals m2−j. This, by continuity, determines ϕ(x)

for all x. Hence the wavelet ψ is determined by the identity

ψ(x) =
N∑

k=0

(−1)kaN−kϕ(2x − k). (C.9)

Example C.1.5 (Harmonic wavelets). The harmonic wavelet is defined as:

ψ(x) =
exp(i4πx) − exp(i2πx)

i2πx
, (C.10)

and we can conclude that the wavelets series defined by

ψ(2jx − k) =
exp(i4π(2jx − k)) − exp(i2π(2jx − k))

i2π(2jx − k)
(C.11)

forms an orthogonal set.

C.2 Finite Elements

The definition of a finite element was initially given by Ciarlet in 1978.

Definition C.2.1. A finite element consists of a triple (K,P ,N ) where:

1. K is a compact, connected, Lipschitz subset of Rd with non-empty interior;

2. P is a finite-dimensional space of functions on K, i.e. p ∈ P : K 7→ Rm;

3. N = {N1, N2, . . . , Nk} is a basis for P ′, where P ′ is the dual space of P, that

is, a set of linear functionals on the Banach space P.

In the definition, K is called the element domain, P is called the space of shape

functions; and N is the set of nodal variables.

Definition C.2.2. Let (K,P ,N ) be a finite element. Then the basis {φ1, φ2, . . . , φk}

of P dual to N (i.e. Ni(φj) = δij) is called the nodal basis of P.

The following proposition simplifies the verification of the third condition of

Definition C.1.

Proposition C.2.3. Let P be a d-dimensional vector space and let {N1, N2, . . . , Nd}

be a subset of the dual space P ′, then the following two statements are equivalent.
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• {N1, N2, . . . , Nd} is a basis for P ′.

• Given v ∈ P with Niv = 0 for i = 1, 2, . . . , d, then v ≡ 0.

Proof. See Lemma 3.1.4 in [5]. �

Definition C.2.4 (Mesh). Let Ω be a domain in Rd. A mesh is a union of a

finite number (N) of compacted, Lipschitz sets Km with non-empty interior such

that {K1, K2, . . . , KN} forms a partition of Ω,i.e.,

Ω = ∪N
m=1Km and intKm ∩ intKn = φ for m 6= n.

The subsets Km are called mesh cells or mesh elements. A mesh {K1, K2, . . . , KN}

is denoted by Th. The subscript h = maxK∈Th
hK , where ∀K ∈ Th, hK = diam(K) =

maxx1,x2∈K ‖x1 − x2‖d .

Now we introduce the interpolants, we begin by defining the local interpolant.

Definition C.2.5. Given a finite element (K,P ,N ), let the set {φ1, φ2, . . . , φk} ⊆ P

be the basis dual to N . If v is a function for which all Ni ∈ N , i = 1, . . . , k, are

defined, then we define the local interpolant by

IKv ,
k∑

i=1

Ni(v)φi (C.12)

Definition C.2.6. Suppose Ω is a domain with a mesh T . Assume each element

domain, K ∈ T , is equipped with some type of shape functions P and nodal variables

N , such that (K,P ,N ) forms a finite element. Let m be the order of the highest

partial derivatives involved in the nodal variables. For f ∈ Cm(Ω), the global

interpolant is defined by

IT f =
N∑

m=1

IKmf =
N∑

m=1

km∑

i=1

Nm
i (f)φm

i , for all Km ∈ T . (C.13)

In the applications of the global interpolation, it is essential to find a uniform

bound for the norm of the local interpolation operator IT . It is therefore necessary

to compare the local interpolation operators on different elements. The following

notion of affine equivalent can be shown as an equivalent relation (see Exercise

(3.4.4) in [5]).
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Definition C.2.7. Let (K,P ,N ) be a finite element and let F (x) = Ax + b be an

affine map. The finite element (K̂, P̂ , N̂ ) is affine equivalent to (K,P ,N ) if

• F (K) = K̂;

• F ∗P̂ = P, where F ∗(f̂) , f̂ ◦ F ;

• F∗N = N̂ , where (F∗N)(f̂) , N(F ∗(f̂)).

We write (K,P ,N ) 'F (K̂, P̂ , N̂ ) if they are affine equivalent.

Definition C.2.8. The finite elements (K,P ,N ) and (K,P , Ñ ) are interpolation

equivalent if

INf = IÑf, ∀f sufficiently smooth, (C.14)

and is written as (K,P ,N ) 'I (K,P , Ñ ).

Several examples of finite elements can be found in [5] and [34].
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Appendix D

Navier-Stokes Equation

D.1 The Inner Product on H

Recall we have defined

H ,

{

L − periodic trigonometirc polynomials u :

[0, L)2 → R2
∣
∣
∣∇ ∙ u = 0,

∫

T2

u(x)dx = 0

}

and H as the closure of H with respect to the (L2(T2))2 norm. We also defined

P : (L2(T2))2 → H to be the Leray-Helmholtz orthogonal projector.

Proposition D.1.1. Given u = (u1, u2) ∈ H, v = (v1, v2) ∈ H, (i.e. x 7→ u(x) :

[0, L)2 7→ C2 and x 7→ v(x) : [0, L)2 7→ C2; x 7→ u1(x), u2(x), v1(x) or v2(x) :

[0, L)2 7→ C) we define the function 〈∙, ∙〉 : H × H → C as follows:

〈u, v〉 =
1

L2

∫

T2

(u ∙ v)(x)dx, (D.1)

where u ∙ v = u1v1 +u2v2, x = (x1, x2) ∈ T2 = [0, L)2. Then 〈∙, ∙〉 is an inner product

on H.

Proof. First we know that for u, v, w ∈ H and α, β ∈ C

〈u, αv + βw〉 =
1

L2

∫

T2

(u ∙ αv + βw)(x)dx =
1

L2

∫

T2

(u ∙ (α v + β w))(x)dx

= α
1

L2

∫

T2

(u ∙ v)(x)dx + β
1

L2

∫

T2

(u ∙ w)(x)dx

= α〈u, v〉 + β〈u,w〉; (D.2)
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similarly we have

〈αu + βv, w〉 = α〈u,w〉 + β〈v, w〉. (D.3)

It is obvious that

〈u, v〉 =
1

L2

∫

T2

(u ∙ v)(x)dx =
1

L2

∫

T2

(v ∙ u)(x)dx = 〈v, u〉; (D.4)

and

〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇔ u = (0, 0). (D.5)

Then by definition we have 〈∙, ∙〉 is an inner product. �

Given k = (k1, k2)
>, define k⊥ = (k2,−k1)

>. Then under the above defined inner

product, an orthonormal basis for H is given by ψk : R2 → C2, where

ψk(x) ,
k⊥

|k|
exp

(
2πik ∙ x

L

)

for k ∈ Z2 \ {0}.

D.2 Calculation of αl,j
k

From the definition of the inner production, we should have

αl,j
k =

1

L2

∫

T2

(
P (ψl ∙ ∇ψj) ∙ ψk

)
(x)dx,

but note that ψl ∙ ∇ψj ∈ H (see (D.9) below), so we can write αl,j
k as

αl,j
k =

1

L2

∫

T2

(
(ψl ∙ ∇ψj) ∙ ψk

)
(x)dx, (D.6)

where k = (k1, k2)
> and x = (x1, x2). In order to calculate αl,j

k , we firstly write

ψk(x) as

ψk(x) =

(
k2

|k|
exp

(
2πi(k1x1 + k2x2)

L

)

,−
k1

|k|
exp

(
2πi(k1x1 + k2x2)

L

))>

,
(
ψ1

k(x), ψ2
k(x)

)>
;
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and therefore

ψk(x)

=

(
k2

|k|
exp

(
2πi(−k1x1 − k2x2)

L

)

,−
k1

|k|
exp

(
2πi(−k1x1 − k2x2)

L

))>

,
(
ψ1
−k(x), ψ2

−k(x)
)>

= ψ−k(x);

Letting l = (l1, l2)
> ∈ Z2 \ {0} and j = (j1, j2)

> ∈ Z2 \ {0}, similarly for ψl and ψj

we have

(ψl ∙ ∇)ψj = (ψ1
l

∂

∂x1

+ ψ2
l

∂

∂x2

)
(
ψ1

j , ψ
2
j

)>

=

(

ψ1
l

∂ψ1
j

∂x1

+ ψ2
l

∂ψ1
j

∂x2

, ψ1
l

∂ψ2
j

∂x1

+ ψ2
l

∂ψ2
j

∂x2

)>

(D.7)

and

(ψl ∙ ∇ψj) ∙ ψk = ψ1
−k

(

ψ1
l

∂ψ1
j

∂x1

+ ψ2
l

∂ψ1
j

∂x2

)

+ ψ2
−k

(

ψ1
l

∂ψ2
j

∂x1

+ ψ2
l

∂ψ2
j

∂x2

)

. (D.8)

Simple calculation gives us

∂ψ1
j

∂x1

=
2πi j1j2

L |j|
exp

(
2πij ∙ x

L

)

,
∂ψ1

j

∂x2

=
2πi j2

2

L |j|
exp

(
2πij ∙ x

L

)

,

∂ψ2
j

∂x1

= −
2πi j2

1

L |j|
exp

(
2πij ∙ x

L

)

,
∂ψ2

j

∂x2

= −
2πi j1j2

L |j|
exp

(
2πij ∙ x

L

)

;

and

(ψl ∙ ∇ψj)(x) =
2πi(l2j1 − l1j2)

L |l|
exp

(
2πil ∙ x

L

)

exp

(
2πij ∙ x

L

)(
j2

|j|
,
−j1

|j|

)>

=
2πi(l2j1 − l1j2)

L |l|
exp

(
2πil ∙ x

L

)

ψj(x); (D.9)

and

ψ1
−k

(

ψ1
l

∂ψ1
j

∂x1

+ ψ2
l

∂ψ1
j

∂x2

)

=
2πi(l2j1 − l1j2)k2j2

L |k||l||j|
exp

(
2πi(l + j − k) ∙ x

L

)

ψ2
−k

(

ψ1
l

∂ψ2
j

∂x1

+ ψ2
l

∂ψ2
j

∂x2

)

=
2πi(l2j1 − l1j2)k1j1

L |k||l||j|
exp

(
2πi(l + j − k) ∙ x

L

)

.
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Then by (D.8) we know that

(ψl ∙ ∇ψj) ∙ ψk

=
2πi(l2j1 − l1j2)(k1j1 + k2j2)

L |k||l||j|
exp

(
2πi(l + j − k) ∙ x

L

)

.

=
2πi(l2j1 − l1j2)(k1j1 + k2j2)

L |k||l||j|
exp

(
2πi((l1 + j1 − k1)x1 + (l2 + j2 − k2)x2)

L

)

(D.10)

We therefore obtain

αl,j
k =

1

L2

∫

T2

(
(ψl ∙ ∇ψj) ∙ ψk

)
(x)dx =

1

L2

∫ L

0

∫ L

0

(
(ψl ∙ ∇ψj) ∙ ψk

)
(x)dx1dx2,

in other words,

αl,j
k =






2πi(l2j1−l1j2)(k1j1+k2j2)
L |k||l||j| if k = l + j;

0 otherwise.

(D.11)

D.3 The Decay of the Fourier Coefficients

In this section, we show in the periodic case (for deterministic Navier-Stokes equa-

tion), for an initial condition in the space V , the corresponding strong solution

becomes analytic both in space and time. After establishing the space analyticity

of the solutions in the 2-dimensional periodic case, we derive, as a consequence, the

exponential decay of the Fourier coefficients with respect to their Fourier mode. The

content of this section can be found in [37].

For each σ, s > 0, the Gevrey space D(exp(σAs)) is defined as the domain of

the exponential of σAs, where A is the Stokes operator. We will give a precise

characterisation of this space by means of Fourier series as follows. We know that a

vector field u ∈ H is characterised in terms of Fourier series as a function

u =
∑

k∈Zd

uke
2πi k

L
∙x, uk ∈ Cd, u−k = ūk, (D.12)

such that

k

L
∙ uk = 0 for all k ∈ Zd; and |u|2 =

∑

k∈Zd

|uk|
2 < ∞. (D.13)
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For the Gevrey space, we can define the operator exp(σAs) in Fourier space by

exp(σAs)u =
∑

k∈Zd

exp

(

σ

(

2π
k

L

)2s
)

uk exp

(

2πi
k

L
∙ x

)

. (D.14)

The domain D(exp(σAs)) is defined as usual by

D(exp(σAs)) =
{
u ∈ H : eσAs

u ∈ H
}

.

Therefore, a vector field u ∈ D(exp(σAs)) can be characterised in terms of Fourier

series representation by the divergence-free condition and by the condition that the

Fourier coefficients decay exponentially fast in the sense that
∑

k∈Zd

e2σ|2π k
L |

2s

|uk|
2 = |eσAs

u|2 < ∞. (D.15)

The norm in the space D(exp(σAs)) is given by

|u|D(eσAs ) = |eσAs

u| for u ∈ D(eσAs

). (D.16)

The space D(exp(σAs)) is actually a Hilbert space, and the associated inner product

is given by

〈u, v〉D(eσAs ) = 〈eσAs

u, eσAs

v〉 for u, v ∈ D(eσAs

). (D.17)

In what follows, we will be mostly concerned with the case s = 1/2. An-

other Gevrey-type space that we will consider is D(A1/2 exp(σA1/2)), which is also

a Hilbert space; its inner product is given by

〈u, v〉D(A1/2 exp(σA1/2)) = 〈A1/2eσA1/2

u,A1/2eσA1/2

v〉 (D.18)

for u, v ∈ D(A1/2 exp(σA1/2)); the associated norm is given by

|u|2
D(A1/2eσA1/2

)
= |A1/2eσA1/2

u|2 = 2π
∑

k∈Zd

∣
∣
∣
∣
k

L

∣
∣
∣
∣

2

e4πσ| k
L ||uk|

2 (D.19)

for u ∈ D(A1/2 exp(σA1/2)).

The following inequality is satisfied by the bilinear term B(u, v) for u, v and w

in D(A1/2 exp(σA1/2)) with σ > 0:

|〈eσA1/2

B(u, v), eσA1/2

Aw〉|

≤c2|A
1/2eσA1/2

u||A1/2eσA1/2

v||A1/2eσA1/2

w|

(

1 + log
|AeσA1/2

u|2

λ1|A1/2eσA1/2u|2

)1/2

(D.20)

135



where c2 depends only on the shape of the domain T2; and this inequality implies

that the bilinear term B(u, v) belongs to D(exp(σA1/2)).

Because we want to establish the analyticity in time of the solutions as functions

with values in Gevrey space, we must assume that the forcing term f itself belongs

to a Gevrey space. Hence, we assume that

f ∈ D(eσ1A1/2

)

for some σ1 > 0. The NSE can then be written for complex times ξ ∈ C as

du

dξ
+ νAu + B(u, u) = f, (D.21)

where u = u(ξ).

In the 2-dimensional case, owing to the uniform bound on the enstrophy of the

strong solutions, the domain of analyticity can be extended to a neighbourhood of

the whole positive real axis. We fix θ ∈ [−π/4, π/4], 0 ≤ s ≤ T0(‖u0‖), where

T0(‖u0‖) = T0(‖u0‖, |f |σ1 , ν,T
2)

=

[

c8νλ1

(

1 +
|f |σ1

ν2λ1

+
‖u0‖2

ν2λ1

)

log c9

(

1 +
|f |σ1

ν2λ1

+
‖u0‖2

ν2λ1

)]−1

(D.22)

(c8 and c9 are constants depending only on the shape of the domain T2), and consider

the time ξ = seiθ for s > 0; then the following estimate holds:

‖u(seiθ)‖2
ϕ(s cos θ) ≤ c7λ1ν

2 + 2‖u0‖
2, (D.23)

where c7 depends only on the shape of the domain T2. The function ϕ is chosen to

be

ϕ(ξ) = min(νλ
1/2
1 ξ, σ1)

for ξ ≥ 0. Then we define the region

Δ0
σ1

(‖u0‖) = Δ0
σ1

(‖u0‖, |f |σ1 , ν,T
2)

=
{

ξ = seiθ : |θ| <
π

4
, 0 < s < T0(‖u0‖, |f |σ1 , ν,T

2), νλ
1/2
1 s| sin θ| < σ1

}

(D.24)
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This set is a domain of analyticity of the solution u = u(ξ) of the complex Navier-

Stokes equations. The origin ξ = 0 belongs to the closure of Δ0
σ1

(‖u0‖). Moreover,

on the closure of this domain we have

|u(ξ)|2
D(A1/2eϕ(s cos θ)A1/2

)
≤ c7λ1ν

2 + 2‖u0‖
2 for ξ ∈ Δ0

σ1
(‖u0‖, |f |σ1 , ν,T

2). (D.25)

In the 2-dimensional case, the strong solutions exist for all positive time and their

enstrophy is uniformly bounded. Hence, the domain of analyticity of the solutions

can be extended to a neighbourhood of the positive real axis. Indeed, we know that

for each t ≥ 0,

‖u(t)‖2 ≤ ‖u0‖
2 +

1

ν2λ1

|f |2. (D.26)

Then at time t0 ≥ 0, we obtain the analyticity of the solution on the domain

t0 + Δ0
σ1

((‖u0‖
2 + |f |2/(ν2λ1))

1/2) ⊂ t0 + Δ0
σ1

(‖u(t0)‖).

By taking the union for all t0 > 0 of the domains in the LHS of this expression, we

obtain the analyticity in an open, pencil-like domain

Δ+
σ1

(‖u0‖) =
⋃

t0>0

{
t0 + Δ0

σ1
((‖u0‖

2 + |f |2/(ν2λ1))
1/2)
}

; (D.27)

this is a neighbourhood of the positive real axis and has ξ = 0 on its boundary.

Moreover, our estimates extend to all of Δ+
σ1

(|u0|) in the sense that

|u(ξ)|2
D(A1/2eϕ(s cos θ)A1/2

)
≤ c7λ1ν

2 + 2‖u0‖
2 + |f |2 (D.28)

for ξ = seiθ ∈ Δ+
σ1

(‖u0‖, |f |σ1 , ν,T
2).

From (D.22), (D.24), and (D.26), we can write the domain of analyticity as

Δ+
σ1

(‖u0‖) = Δ+
σ1

(‖u0‖, |f |σ1 , ν,T
2) = {ξ ∈ C; |Im ξ| ≤ min{Re ξ, δ0}} , (D.29)

where δ0 is the largest width of the pencil-like domain Δ+
σ1

, estimated by

δ0 ≥ min

{
σ1

νλ
1/2
1

,

[

c10νλ1

(

1 +
|f |2σ1

ν4λ2
1

)

log

(

c11

(

1 +
|f |2σ1

ν4λ2
1

))]−1
}

, (D.30)

where c10 and c11 depend only on the shape of the domain T2.
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An immediate consequence of the space analyticity of NSE solution in the 2-

dimensional periodic case just derived is the exponential decrease of the Fourier

coefficients of each solution with respect to the wave number. We have proven that

for a forcing term f in the Gevrey space D(exp(σ1A
1/2)) with σ1 > 0, and for an

initial velocity filed u0 in H, the corresponding flow u = u(t) is analytic in both space

and time. Moreover, after some short transient time when the radius of analyticity

of the solution u(t) increases, we find u(t) in the Gevrey space D(exp(δ0A
1/2)) with

δ0 as in (D.30). According to (D.28), the norm of u(t) in this space is bounded

uniformly in time:

|u(t)|2
D(A1/2eσA1/2

)
≤ c7λ1ν

2 + 2‖u0‖
2 +

2

ν2λ1

|f |2 for t ≥ δ0. (D.31)

From the Fourier series characterisation (D.19) of the space D(exp(δ0A
1/2)), we

obtain

|u(t)|2
D(A1/2eσA1/2

)
= 2π

∑

k∈Zd

∣
∣
∣
∣
k

L

∣
∣
∣
∣ e

4πδ0| k
L ||uk(t)|

2 ≤ M2, (D.32)

where M2 is the bound on the RHS of (D.31). Therefore, it is straightforward to

deduce the following (crude) bound:

|uk|
2 ≤

M
√

2πL

∣
∣
∣
∣
k

L

∣
∣
∣
∣ e

−2πδ0| k
L |. (D.33)
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