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Note:

These lecture notes are intended to give a presentation of the course
”Modules and Homological Algebra” closer to the actual lectures than the
text book. They are almost self contained, only sometimes refer to the book
of Grillet, e.g. the proof of the long exact homology sequence is not given.
The essentially new contributions are

1. Group and quiver algebras.

2. Singular homology.

Furthermore, in order to make derived functors more digestible we de-
fine functorial free resp. injective resolutions, postponing the discussion of
arbitrary projective resolutions of a given module to a later section.

Finally, sections 6,7 and 8 as well as injective resolutions can presumably
not be discussed in detail during the course, they are intended for private
reading.

Uppsala, August 2012 Karl-Heinz Fieseler
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1 Base rings

The theory of modules requires the choice of a base ring. Our base ring
usually is denoted R and assumed to be ”unital”, i.e. to admit a unit element
1 ∈ R. In particular there is its group of units

R∗ := {a ∈ R;∃ b ∈ R : ab = ba = 1}.

We remark that an element a ∈ R is a unit iff it has both a left and a right
inverse.

Sometimes it is also useful to consider the ”opposite ring”:

Definition 1.1. Given the ring R, we denote Rop the ring, whose under-
lying additive group is that of R, but carries the ”opposite multiplicative
structure”: If (a, b) 7→ ab denotes the multiplication in R, then

a ∗ b := ba

is the multiplication in Rop.

Special cases we often are interested in are the following: The base ring R
is

1. commutative,

2. an integral domains, i.e. commutative without zero divisors 6= 0,

3. a principal ideal domain (PID), i.e. an integral domain where all ideals
are principal ideals,

4. an associative k-algebra with 1, where k denotes a field.

Definition 1.2. Let k be a field. A k-algebra is a k-vector space R together
with a bilinear map

R×R −→ R, (a, b) 7→ ab.

If in addition the above product is associative and there is a unit element
1 ∈ R, our k-algebra is a ring as well, and we call R an associative k-algebra
with 1.
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Example 1.3. 1. Matrix algebras: Let k be a field. We denote

Matn(k) or kn,n

the k-algebra of all n× n-matrices with entries in k. Note that

Matn(k)op ∼= Matn(k), A 7→ AT .

2. Endomorphism rings: For a vector space V the set

End(V ) := {f : V −→ V ; f linear}

of its endomorphisms, endowed with pointwise addition and the com-
position of linear maps as multiplication, is a ring with unit element
idV . If n := dimk V <∞, any choice of a base B = (v1, ..., vn) induces
an isomorphism

ΦB : End(V )
∼=−→ Matn(k), f 7→ A = (αij),

where

f(vj) =
n∑
j=1

αijvi.

3. The vector space generated by a set: Given a set M and a field
k, we consider the vector space

k[M ] := {f : M −→ k; |f−1(k∗)| <∞}

of all k-valued functions on M with finite support f−1(k∗), where k∗ :=
k \ {0}. With other words, a function f ∈ k[M ] satisfies f(a) = 0 for
all but finitely many a ∈M .

The Kronecker functions

ea, a ∈M, (i.e. we have ea(x) = δax)

constitute a basis of k[M ]. Indeed, because of the support condition
every f ∈ k[M ] admits the finite expansion

f =
∑

a∈M,f(a)6=0

f(a)ea =:
∑
a∈M

f(a)ea.

5



For convenience of notation one often writes simply a instead of ea,
such that any element in k[M ] is a finite ”formal” sum

f =
∑
a∈M

λaa,

where λa 6= 0 for at most finitely many a ∈ M . We thus regard M as
a subset M ⊂ k[M ], indeed a basis of the k-vector space k[M ].

4. Group algebras: For a group G we endow the vector space k[G] with
the following product

(fg)(a) :=
∑
xy=a

f(x)g(y);

the resulting ring is called the group ring (or algebra) of G over k. The
products of the base elements are easily computed

eaeb = eab.

For the additive group Z the above formula reads emen = em+n and we
obtain an isomorphism

k[Z] −→ k[T, T−1], en 7→ T n,

with the k-algebra

k[T, T−1] :=

{
s∑

n=r

anT
n; r, s ∈ N, an ∈ k

}
⊂ k(T ) := Q(k[T ])

of all Laurent polynomials with coefficients in k.

5. Quiver algebras to be discussed in the remaining part of this section:

Definition 1.4. A quiver Q consists of two finite sets V = V (Q) 6= ∅, A =
A(Q) together with two maps t, h : A −→ V . The elements x ∈ V are called
vertices, the elements α ∈ A are called arrows, the vertex h(α) is called the
head of the arrow α while t(α) is its tail.
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Example 1.5. 1. V = {x0}, A = {α}, i.e. there is exactly one vertex
and one arrow, together with the obvious maps t, h.

2. V = {x0}, A = {α, β}, i.e. there is exactly one vertex and two arrows,
together with the obvious maps t, h.

3. V = {x1, x2}, A = {α, β} with t(α) = t(β) = x1, h(α) = h(β) = x2.

Definition 1.6. 1. A path of length r > 0 in a quiver is a finite sequence
f = (αr, ..., α1) of arrows αi ∈ A(Q), such that t(αi+1) = h(αi) for
1 ≤ i < r. The vertex t(α1) is also called the origin (or starting point)
of the path and denoted S(f), and h(αr) its terminus (or end point)
E(f). Furthermore there is (by definition!) for every vertex x ∈ V (Q)
a path ex of length 0 having x both as its start and end point, the ”lazy
path at x ∈ V ”. We denote P(Q) the set of all paths in the quiver Q.

2. Paths f, g ∈ P(Q) with E(f) = S(g) can be concatenated to a new
path gf . Furthermore eyf := f , if y = E(f) and gex = g for x = S(g).

Example 1.7. 1. For the quiver Q with one vertex x and one arrow α
we have

P(Q) = {ex, α, α2, α3, ....}.

2. For the quiver Q with one vertex x and two arrows α, β we obtain the
following paths

ex, α, β, α
2, αβ, βα, β2, α3, α2β, αβα, βα2, αβ2, βαβ, β2α, β3, α4, ...... .

3. If Q has two different vertices x, y and one arrow α with tail x and
head y, we find

P(Q) = {ex, ey, α}.

4. We have |P(Q)| < ∞ if and only if there are no loops in Q, i.e. paths
of length > 0 with the same start and end point.

We want to make the vector space k[P(Q)] a ring. In order to define
a product we generalize the concatenation to arbitrary pairs of paths and
”extend it by linearity”.
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Definition 1.8. Let Q be a quiver.

1. If f, g ∈ P(Q), S(g) 6= E(f), we set

gf := 0 ∈ k[P(Q)].

2. The quiver algebra kQ is the vector space k[P(Q)] endowed with the
linear extension of the concatenation product

P(Q)× P(Q) −→ k[P(Q)], (g, f) 7→ gf.

Remark 1.9. 1. kQ is a ring with unit e :=
∑

x∈V (Q) ex.

2. dim kQ <∞ iff Q does not loops.

Example 1.10. 1. For the quiver Q with one vertex x and one arrow α
there is an isomorphism

k[T ] −→ kQ, 1 7→ ex, T
n 7→ αn,

with the ring of polynomials in one variable over the base fiield k.

2. For the quiver Q with one vertex x and two arrows α, β the k-algebra
kQ is the ”polynomial algebra in the two noncommuting variables α, β”.

3. If Q has two different vertices x, y and one arrow α with tail x and
head y, there is an isomorphism

kQ ∼=
(
k 0
k k

)
namely:

ex 7→
(

1 0
0 0

)
, ey 7→

(
0 0
0 1

)
, α 7→

(
0 0
1 0

)
.
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2 Modules

Definition 2.1. A (left/right) R-module M is a vector space where the base
field k is replaced with R as base ring. So there is an addition

M ×M −→M, (u, v) 7→ u+ v

endowing M with the structure of an (additively written) abelian group, and

1. a left scalar multiplication

R×M −→M, (λ, u) 7→ λu

resp.

2. a right scalar multiplication

M ×R −→M, (u, λ) 7→ uλ

satisfying the distributive law w.r.t. both arguments and

1. (a) 1u = u,∀u ∈M
(b) λ(µu) = (λµ)u

2. resp.

(a) u1 = u,∀u ∈M
(b) (uλ)µ = u(λµ).

Remark 2.2. The scalar multiplication of a left R-module M may also be
regarded as a right Rop-scalar multiplication:

M ×Rop −→M, (u, λ) 7→ λu.

Of course the corresponding reasoning works for right R-modules, and thus
we see, that left/rightR-modules correspond to right/leftRop-modules. Hence,
without loss of generality we may regard preferably left R-modules.

Example 2.3. 1. With the symbol 0 one denotes, by abuse of notation,
the R-module {0}, whose underlying additive group is trivial, together
with the obvious scalar multiplication.
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2. The most basic ring is undoutedly the ring Z of all integers. Indeed,
there is a one-to-one correspondence

Abelian groups←→ Z-modules.

To come from a Z-module to an abelian group simply forget the scalar
multiplication. On the other hand, given an abelian group A, we get a
scalar multiplication

Z× A −→ A, (n, a) 7→ na

as follows

na :=


n×︷ ︸︸ ︷

a+ ...+ a , for n > 0
0 , for n = 0
|n|(−a) , for n < 0

.

3. Let k be a field. A k-module is nothing but a k-vector space: If we
speak about a vector space, the base field is usually denoted k.

Let us compare linear algebra, i.e. the theory of vector spaces (and linear
maps), with the theory of modules.

Example 2.4. Consider Rn := R× ...×R︸ ︷︷ ︸
n times

with the componentwise addi-

tion. It carries both a left and right scalar multiplication:

(λ, (x1, ..., xn)) 7→ (λx1, ..., λxn)

and
((x1, ..., xn), λ) 7→ (x1λ, ..., xnλ).

Obviously it thus becomes a left/right R-module, denoted

RR
n

resp.
Rn
R,

and furthermore, any u ∈ Rn has a unique representation

u =
n∑
i=1

λi · ei
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resp.

u =
∑
i∈I

ei · λi,

where ei denotes the i-th ”unit vector” ei := (δi1, ..., δin) and the coefficients
λi are taken from the base ring: λi ∈ R. Indeed, if u = (u1, ..., un), then
λi = ui is the unique choice of coefficients.

In the following we only deal with left modules, leaving the right modules
to the reader.

Definition 2.5. A subset B = {ei; i ∈ I} ⊂ M of an R-module M is called
a basis if each u ∈M has a unique representation

u =
∑
i∈I

λi(u) · ei

as a finite(!) linear combination of elements in B with coefficients λi(u) ∈ R
in B. (For infinite B that means that for given u ∈M we have λi(u) 6= 0 for
all but finitely many i ∈ I.) An R-module admitting a basis is called free.

Example 2.6. 1. Rn is a free R-module.

2. From linear algebra we know: For a field k every k-module (i.e. k-
vector space) M is free, see also Th.14.6. Furthermore |B| = |B′| for
any two bases of M . The latter holds even for a free module over a
commutative ring R (by reduction to the field case, to be seen later
on), but not necessarily in the noncommutative case, where R ∼= R2

may occur.

3. The previous point may slightly be generalized: Modules over a division
ring D are free: A division ring D is a (not necessarily commutative)
ring, such that D∗ = D \ {0}, i.e. all nonzero elements are invertible,
have both a left and right inverse. Furthermore, any two bases of a
given module have the same cardinality.

4. For an integral domain R the R-module Q(R) is not free, if R is not
a field: Since any two elements are linearly dependent, a basis should
consist of one element a ∈ Q(R) only. But Q(R) = Ra implies that all
elements in R \ {0} are invertible.
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5. In order to construct free modules with infinite bases we consider first
for a set I the left or right R-module

RI := {f ; f : I −→ R}

of all R-valued functions on I - the scalar multiplication being

(λf)(i) := λ · f(i) resp.(fλ)(i) := f(i) · λ.

As a natural candidate for a basis one could consider the set B :=
{ei; i ∈ I} with the Kronecker functions ei : I −→ R, j 7→ δij. Unfortu-
nately, for infinite I the set B is not a basis of RI . Indeed a function
f : I −→ R is a finite linear combination of the Kronecker functions iff
f(i) = 0 for all but finitely many i ∈ I. Even worse: The module RI is
in general not free — e.g. if R is a PID, but not a field, a non-trivial
statement. On the other hand, for a field k the module kI is of course
free - but no human being has up to now found an explicit basis for kN!

So let us restrict our attention to the functions f ∈ RI , which are fi-
nite linear combinations of the Kronecker functions ei, i ∈ I. They form a
submodule:

Definition 2.7. A submodule L ⊂ M of a module M is a subgroup of the
additive group of M stable under scalar multiplication. We write also L ≤M
in order to express that L ⊂M is a submodule of M .

Example 2.8. 1. A subset a ⊂ R is a submodule of RR resp. RR iff it is
a left resp. right ideal.

2. The subset R[I] ⊂ RI of all R-valued functions on I with finite support
suppf := f−1(R \ {0}), i.e.

R[I] := {f ∈ RI ; f(i) 6= 0 for at most finitely many i ∈ I},

forms a submodule. Obviously R[I] is a free module with basis B :=
{ei; i ∈ I}. The module R[I] is also called the free R-module gen-
erated by the set I.

3. For I0 ⊂ I we may regard R[I0] as a submodule of R[I], extending a
function f : I0 −→ R to f̂ : I −→ R with f̂ |I\I0 = 0.
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4. If a ⊂ R is a left/right ideal and M a left/right R-module then

aM := {a1u1 + ...+ arur; ai ∈ a, ui ∈M}

resp.

Ma := {u1a1 + ...+ urar; ai ∈ a, ui ∈M}

is a submodule of M .

For an integral domain R there is the notion of the torsion submodule
T (M) of an R-module M :

Definition 2.9. Let R be an integral domain and M an R-module.

1. The rank rk(M) ∈ N∪{∞} of M is defined to be the maximal number
of linearly independent elements in M .

2. For q ∈ R \ {0} we define its q-torsion module

Tq(M) := {u ∈M ; qu = 0}.

3. The torsion submodule of M is

T (M) := {u ∈M ;∃q ∈ R \ {0} : qu = 0} =
⋃

q∈R\{0}

Tq(M).

4. The module M is called torsion free if T (M) = {0}.

If R is a k-algebra, any R-module is also a k-vector space. So in order
to describe such a module, one starts with a k-vector space and adds some
additional data. Here are some examples:

Example 2.10. 1. Any vector space V is a left module over its endomor-
phism ring End(V ) with the left scalar multiplication

End(V )× V −→ V, (f, v) 7→ f(v).

The only submodules are V and {0}.
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2. The dual space V ′ := Hom(V, k) of a vector space V is a right End(V )-
module with the scalar multiplication

V ′ × End(V ) −→ V ′, (v′, f) 7→ v′ ◦ f.

The only submodules are V ′ and {0}.

3. Denote k[T ] the polynomial ring in one variable over the field k. There
is a one-to-one correspondence

k[T ]-modules←→ pairs (V, f), V a k-vector space, f ∈ End(V ).

Indeed, given a k[T ]-module V we take

f := µT : V −→ V, v 7→ Tv,

to be scalar multiplication with the indeterminate T . Submodules are
nothing but f -invariant subspaces.

4. Our interpretation of k[G]-modules is in terms of ”k-linear representa-
tions of G”, i.e. group homomorphisms from G to the general linear
group of some k-vector space V . There is a one-to-one correspondence

k[G]-modules←→ group homomorphisms G −→ GL(V ),

where V is a k-vector space. Given a k[G]-module with underlying
vector space V , the corresponding group homomorphism is obtained
as the restriction of the scalar multiplication to the standard basis
B = {ea; a ∈ G} ⊂ k[G], i.e. it is

G −→ GL(V ), a 7→ µea

with the scalar multiplication

µea : V −→ V, v 7→ eav.

On the other hand given ϕ : G −→ GL(V ), a 7→ ϕa, the scalar multi-
plication

k[G]× V −→ V

is the linear extension of

B × V −→ V, (ea, v) 7→ ϕa(v).
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5. Modules over a quiver algebra: A kQ-module V looks as follows: As
k-vector space it is a direct sum

V :=
⊕

x∈V (Q)

Vx

of k-vector spaces Vx, x ∈ V (Q), together with linear maps Fα : Vt(α) −→
Vh(α) for every α ∈ A(Q). The scalar multiplication is obtained as the
linear extension of

P(Q)× Vx −→ V, (f, v) 7→ fv,

where for a path f = (αr, ..., α1) of positive length r > 0 we define

fv :=

{
Fαr ◦ ... ◦ Fα1(v), if S(f) = x
0 , otherwise

,

while in the case of a path ey of length 0 we set instead

eyv :=

{
v, if y = x
0 , otherwise

.

In order to see that every kQ-module V is of that form take

Vx := exV,

and define Fα : Vx −→ Vy for x = t(α), y = h(α) by Fα := α · ..|Vx .
(Note that αex = α, hence α · ..|Vz = 0 for z 6= x because of exez = 0.)
A submodule is of the form U :=

⊕
x∈V (Q) Ux with subspaces Ux ⊂ Vx

such that Fα(Ut(α)) ⊂ Uh(α) for all arrows α ∈ A(Q).

Further modules can be obtained as factor modules:

Definition 2.11. Let L ≤ M . The factor module M/L is, as an additive
abelian group, the factor group endowed with the scalar multiplication

R×M/L −→M/L, (λ, u+ L) 7→ λu+ L.
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3 A survey of module theory

The final goal of every algebraic theory is to classify the objects of interest.
In order to compare different R-modules we need homomorphisms:

Definition 3.1. 1. A homomorphism ϕ : M −→ N between the left/right
R-modules M and N is a homomorphism of the underlying additive
groups such that

ϕ(λu) = λϕ(u)

resp.
ϕ(uλ) = ϕ(u)λ

holds for all λ ∈ R, u ∈M . We denote

Hom(M,N) := {ϕ;ϕ : M −→ N module homomorphism}

the set of all R-module homomorphisms and

End(M) := Hom(M,M)

the ring of all endomorphisms. If there is some ambiguity about the
choice of the base ring we write also

HomR(M,N),EndR(M).

2. A module homomorphism ϕ : M −→ N is called an isomorphism, if it
is bijective. We say that two modules are isomorphic, M ∼= N , if there
is an isomorphism ϕ : M −→ N .

Remark 3.2. 1. Hom(M,N) is an abelian group or rather a Z(R)-module,
where

Z(R) := {x ∈ R;xy = yx ∀ y ∈ R}
denotes the center of R. The module operations are argumentwise

(ϕ+ ψ)(u) := ϕ(u) + ψ(u), (λϕ)(u) := λ · ϕ(u).

2. If we think of elements of Rn
R as column vectors, homomorphisms

ϕ : Rm
R −→ Rn

R

are of the form
u 7→ Au

with a (unique) matrix A ∈ Rn,m.
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3. If we think of elements of RR
n as row vectors, homomorphisms

ϕ : RR
m −→ RR

n

are of the form
u 7→ uA

with a (unique) matrix A ∈ Rm,n.

4. If R is commutative, the homomorphism Rn −→ Rn, u 7→ Au, is an
isomorphism or, equivalently, A ∈ GLn(R) := Matn(R)∗, iff det(A) ∈
R∗. The implication ”=⇒” follows from the fact that given an invertible
matrix we have

1 = det(E) = det(AA−1) = det(A) det(A−1)

as well as det(A−1) det(A) = 1. On the other hand, assuming det(A) ∈
R∗, we have

A−1 = det(A)−1A∗

with the adjoint matrix A∗ ∈ Matn(R).

5. If F,N are R-modules and F free with basis B ⊂ F , then

Hom(F,N) −→ NB, f 7→ f |N

is bijective, i.e. a homomorphism is uniquely determined by its values
on the basis elements, and its values there can be prescribed arbitrarily.

6. Let V be a vector space. Show

EndEnd(V )(V ) = k · idV .

7. Homomorphisms ϕ : V −→ W of kQ-modules V,W : Call Fα : Vt(α) −→
Vh(α) resp. Gα : Wt(α) −→ Wh(α) the linear map corresponding to the
arrow α ∈ A(Q). Then a homomorphism ϕ : V −→ W can be identified
with a family (ϕx : Vx −→ Wx)x∈V (Q) of linear maps satisfying ϕh(α) ◦
Fα = Gα ◦ ϕt(α) for all α ∈ A(Q). Furthermore, ϕ is an isomorphism if
all maps ϕx : Vx −→ Wx are linear isomorphisms.

We start our investigations by looking for modules generated by one ele-
ment:
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Definition 3.3. A left/right R-module M is called cyclic if one of the fol-
lowing equivalent conditions is satisfied:

1. There is an element u ∈M , such that M = Ru resp. M = uR.

2. M ∼= R/a with a left/right ideal a ⊂ R.

Proof of the equivalence. Given the generator u ∈M the map R −→M,λ 7→
λu/uλ, induces an isomorphism

R/Ann(u) ∼= M

with the annihilator ideal

Ann(u) := {λ ∈ R;λu = 0} resp. Ann(u) := {λ ∈ R;uλ = 0}

of the element u ∈ M . On the other hand, for M = R/a we may take
u := 1 + a.

But from a systematic point of view it is more promising to look for even
more ”atomic” modules:

Definition 3.4. A nonzero module M is called simple if M, {0} are the only
submodules of M .

Remark 3.5. Simple modules are cyclic: If M is, say, a left module and
u ∈M \ {0}, then {0} 6= Ru ≤M , hence M = Ru.

Proposition 3.6. A (left/right) module M is simple iff

M ∼= R/m

with a maximal (left/right) ideal m ⊂ R.

Proof. We know already M ∼= R/a. Denote q : R −→ R/a the quotient map.
Then

R/a ≥ L 7→ q−1(L)

defines a bijective correspondence between the submodules of R/a and the
left/right ideals b ⊂ R containing a. Hence R/a is simple iff a is a maximal
left/right ideal.

Corollary 3.7. There are simple R-modules.
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Proof. There are maximal left/right ideals m ⊂ R, see Th.14.7.

Example 3.8. Let V be a finite dimensional k-vector space. The left ideals
of End(V ) := Endk(V ) are of the form

I(U) := {f ∈ End(V ); f |U = 0}

with a subspace U ⊂ V , and the right ideals look as follows

J(U) := {f ∈ End(V ); f(V ) ⊂ U},

again with a subspace U ⊂ V . In particular for a maximal left ideal we have
dimU = 1, and dimU = dimV − 1 for a maximal right ideal. In any case
we obtain V resp. V ′ as the only left/right simple End(V )-modules: Take
u ∈ U \ {0} resp. u′ ∈ V ′ \ {0}, u′|U = 0. Then

End(V ) −→ V, f 7→ f(u)

and
End(V ) −→ V ′, f 7→ u′ ◦ f

induce isomorphisms

End(V )/I(U) ∼= V,End(V )/J(U) ∼= V ′.

Example 3.9. 1. A vector space V is simple iff dimV = 1.

2. A vector space V is a simple End(V )-module.

3. A simple module M over an integral domain R, which is not a field, is
a torsion module M = T (M). In particular a torsion free module over
an integral domain does not admit simple submodules.

The following proposition could be taken as a starting point for the study
of general R-modules:

Proposition 3.10. Any module M is a factor module of a free module F .

Proof. The map

σ : F := R[M ] −→M, f 7→
∑
u∈M

f(u)u
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resp.

σ : F := R[M ] −→M, f 7→
∑
u∈M

uf(u)

is onto, hence
M ∼= F/L

with L := ker(σ). Note that σ : R[M ] −→M is the unique homomorphism of
left/right R-modules satisfying σ(eu) = u for the basis vectors (eu)u∈M .

The modules R[M ] are extremely large, unreasonably large:

Definition 3.11. 1. A subset G ⊂M is called a set of generators for M
iff

σ|R[G] : R[G] −→M

is surjective.

2. The module M is called finitely generated if there is a finite set G ⊂M
of generators. With other words, a left module M is finitely generated
if there are elements u1, ..., un ∈M , such that

M = R · u1 + ...+R · un := {λ1u1 + ...+ λnun;λ1, ..., λn ∈ R}.

Remark 3.12. 1. A free module F is finitely generated iff F ∼= Rn for
some n ∈ N. We have Rn = R · e1 + ...+R · en with the standard basis
vectors ei, i = 1, ..., n. On the other hand assume that F = R · u1 +
... + R · ur admits the basis B ⊂ F . Then the subset B0 ⊂ B of basis
vectors appearing with a nonzero scalar coefficient in the representation
of the elements ui, i = 1, ..., r, as a linear combination in B is finite and
generates F . Now a basis being a minimal set of generators we conclude
B = B0 and F ∼= R n with n = |B|.

2. If R is an integral domain any two bases of a free module have the same
cardinality. This follows from the vector space case since for any ideal
a ⊂ R we have

R[I]/aR[I] ∼= (R/a)[I]

and we may take a := m to be a maximal ideal. Then with K := R/m
we obtain that R[I] ∼= R[J ] implies K[I] ∼= K[J ], and LA tells us
|I| = |J |.
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So in order to understand arbitrary finitely generated modules one can
investigate submodules of Rn, an approach which works satisfactorily for a
PID R, see section 4.

In an other approach one assumes that all simple modules are known.
Then given a nonsimple module M , one hunts for submodules L ≤M , such
that either L or M/L is simple. Then we have to deal with the question:

Question: Given L ≤ M , what can be said about M , assuming that we
know the submodule L and the factor module M/L?

The discussion of that problem leads us to a central question of homolog-
ical algebra. We shall make a small detour and have a first glimpse at that
subject:

The modules L ≤ M and N := M/L are related by the ”short exact
sequence”

0 −→ L
ϕ−→M

ψ−→ N −→ 0,

where ϕ : L −→M is the inclusion and ψ : M −→ N the quotient map.

Definition 3.13. 1. A (finite or infinite) sequence of modules and module
homomorphism

.... −→Mi−1
ϕi−1−→Mi

ϕi−→Mi+1 −→ ...

is called exact at Mi if ker(ϕi) = ϕi−1(Mi−1) (such that in particular
ϕi ◦ ϕi−1 = 0). It is called exact if it is exact at all intermediate
positions.

2. A short exact sequence is a five term exact sequence

0 −→ L
ϕ−→M

ψ−→ N −→ 0,

i.e.

(a) ϕ is injective,

(b) ϕ(L) = ker(ψ),

(c) ψ is surjective.
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3. A short exact sequence is called split (or said to split), if the submod-
ule ϕ(L) ≤ M admits a complementary submodule M0 ≤ M , i.e. a
submodule M0 ≤M , such that

ψ|M0 : M0 −→ N

is an isomorphism.

Remark 3.14. 1. In a short exact sequence one has

L ∼= ϕ(L), N ∼= M/ϕ(L),

so one may always assume that ϕ : L −→ M is the inclusion of a
submodule L ≤M and N = M/L with ψ the quotient map.

In a split short exact sequence the middle term is the ”direct sum” of the
outer terms:

Definition 3.15. Let Mi, i ∈ I, be a family of R-modules.

1. The direct product of the Mi, i ∈ I, is∏
i∈I

Mi := {(ui)i∈I ;∀i ∈ I : ui ∈Mi},

the set of all families (ui)i∈I endowed with the componentwise module
operations.

2. The direct sum of the Mi, i ∈ I, is the submodule⊕
i∈I

Mi := {(ui)i∈I ∈
∏
i∈I

Mi;ui = 0 for all but finitely many i ∈ I}.

Example 3.16. 1. Let V be an n-dimensional vector space. Then we
have

End(V ) ∼= V n,

an isomorphism of End(V )-modules, the right hand side denoting the
n-fold direct sum of the End(V )-module V . Take a basis v1, ..., vn ∈ V ;
then

f 7→ (f(v1), ...., f(vn))

provides an isomorphism.
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2. Universal mapping property for the product: Homomorphisms ϕ :
L −→

∏
i∈IMi correspond to families (ϕi)i∈I of homomorphisms ϕi :

L −→Mi.

3. Universal mapping property for the direct sum: Homomorphisms ψ :⊕
i∈IMi −→ N correspond to families (ψi)i∈I of homomorphisms ψi :

Mi −→ N . Note that here it is essential that the families (ui)i∈I only
have finitely many nonzero components, since then we may define

ψ((ui)i∈I)) :=
∑
i∈I

ψi(ui)

for any family (ψi)i∈I of homomorphisms.

4. If L,M0 ≤M are submodules, we write

M = L⊕M0

if the natural map L ⊕M0 −→ M, (u, v) 7→ u + v, is an isomorphism.
In that case we say that M0 ≤M is a submodule complementary to L.
In particular

M0 ↪→M −→M/L

is an isomorphism.

5. For a split exact sequence

0 −→ L
ϕ−→M

ψ−→ N −→ 0,

the middle term is the direct sum of the outer terms: The map

L⊕N ∼= L⊕M0

∼=−→M, (x, y) 7→ ϕ(x) + y

is an isomorphism.

6. Let R = Z. The short exact sequence

0 −→ Z ϕ−→ Z ψ−→ Zn −→ 0,

where ϕ(x) = nx and ψ is the quotient map, is not split for n > 1, the
module Z being torsion free.
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So in particular L and M/L don’t determine the module M itself. But
there are modules, for which any short exact sequence having them as first
resp. third term splits:

Definition 3.17. 1. A module I is called injective if any short exact se-
quence

0 −→ I −→M −→ N −→ 0

splits or, equivalently, if whenever ϕ : I ↪→ M is injective, then there
is a submodule M0 ≤M with M = ϕ(I)⊕M0.

2. A module P is called projective if any short exact sequence

0 −→ L −→M −→ P −→ 0

splits or, equivalently, if whenever ψ : M −→ P is surjective, then
there is a submodule M0 ≤M with M = ker(ψ)⊕M0.

Remark 3.18. The above definitions differ slightly from the quite technical
standard definitions of projective resp. injective modules in the literature,
but they are equivalent, see Prop.11.1.

Example 3.19. 1. Free modules are projective: If F is free with basis
B = {ei, i ∈ I} ⊂ F and

0 −→ L
ϕ−→M

ψ−→ F −→ 0

a short exact sequence, choose vi ∈M with ψ(vi) = ei and set

M0 =
∑
i∈I

Rvi.

Obviously ψ|M0 : M0 −→ F is onto, while injectivity follows from the
fact that the elements ei, i ∈ I, are linearly independent.

2. Vector spaces are both injective and projective: Being free they are
projective; as a consequence any short exact sequence of vector spaces
splits, hence they are injective as well.

Theorem 3.20. A module P is projective iff there is a module Q, such that
P ⊕Q is free.
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Proof. If ψ : F −→ P is onto with a free module F , then choose F0 ≤ F ,
s.th. ψ|F0 : F0 −→ P is an isomorphism. Then with Q := ker(ψ) we have

F = F0 ⊕Q ∼= P ⊕Q.

On the other hand, if ψ : M −→ P is surjective, consider ψ̂ := ψ ⊕ idQ :

M̂ := M ⊕Q −→ P ⊕Q. We find a submodule M̂0 ≤ M̂ , s.th.

M̂0 ↪→ M̂
ψ̂−→ P ⊕Q

is an isomorphism. Now choose M0 := {u ∈M ; (u, 0) ∈ M̂0}.

Remark 3.21. 1. From the previous point it follows that projective mod-
ules over an integral domain are torsion free.

2. A finite dimensional vector space V is a projective End(V )-module,
since V ⊕ V n−1 ∼= V n ∼= End(V ) with n = dimV . It is not free for
n > 1.

3. We mention without proof: Projective modules over

(a) a PID

(b) a polynomial ring k[T1, ..., Tn]

(c) a local ring

are free.

4. The integral domains which are closest to PIDs are the so called Dedekind
rings, i.e. noetherian integral domains integrally closed in their field of
fractions, with nonzero prime ideals being maximal. For such a ring R
all its ideals a ⊂ R are projective R-modules. In particular, if a is not
a principal ideal, then, being of rank one, it is not free. Indeed all the
ideals of R can be generated by two elements. As a consequence there
is always an R-module Q, s.th. a⊕Q ∼= R2.

In order to give explicit examples of injective modules we need

Definition 3.22. A module D over an integral domain R is called divisible
if

µa : D −→ D, x 7→ ax,

is surjective for all a ∈ R \ {0}.
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Theorem 3.23. 1. An injective module I over an integral domain is di-
visible.

2. A divisible module D over a PID is injective. In particular Q(R) and
Q(R)/R are injective.

Proof. 1.) For any a ∈ R\{0} and u ∈ I there is a module M ≥ I, such that
u ∈ aM . For example take M := (I ⊕ R)/R(u,−a); then I ↪→ I ⊕ 0 −→ M
is injective because of R(u,−a) ∩ (I ⊕ 0) = 0.

Since I is injective, we may write M = I ⊕M0. Now we have (u, 0) ∈
aM = aI ⊕ aM0, whence u ∈ aI.

2.) Consider a module M ≥ D. We have to show that D admits a
complementary submodule M0 ≤ M . By Zorn’s lemma there is a maximal
submodule satisfying M0 ∩ D = {0}. Then M0 ↪→ M −→ M/D is clearly
injective, and we have to show that it is surjective as well, or equivalently
D +M0 = M . If not, take u 6∈ D +M0. Since R is a PID, we have

{λ ∈ R;λu ∈ D +M0} = Rq

with a non-unit q ∈ R \R∗. If q = 0, then we have obviously

(M0 +Ru) ∩D = M0 ∩D = {0},

a contradiction to the maximality of M0. Now let us consider the case q 6= 0.
Since D is divisible, we may write

qu = v + d = v + qd0, v ∈M0, d, d0 ∈ D.

If we now replace u with ũ := u − d0, we have still ũ 6∈ D + M0. Again
hunting for the contradiction

(M0 +Rũ) ∩D = {0},

we consider an element w + λũ in that intersection, where w ∈ M0. In
particular

λu = λd0 − w ∈ D +M0,

hence λ = µq and thus

w + λũ = w + µv ∈ D ∩M0 = {0}.
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Finally we ask what can be said about a module M , such that any exact
sequence having M as middle term is split.

Theorem 3.24. For a module M the following statements are equivalent.

1. All exact sequences

0 −→ L
ϕ−→M

ψ−→ N −→ 0

are split.

2. Any submodule L ≤ M admits a complementary submodule M0 ≤ M ,
i.e. such that

M = L⊕M0.

3. The module M is the sum

M =
∑
i∈I

Mi

of simple submodules Mi ≤M .

4. The module M is a direct sum of simple modules, i.e.

M ∼=
⊕
i∈I

Mi

with simple modules Mi, i ∈ I.

A module M satisfying one of the above equivalent conditions is called semi-
simple.

Proof. Statement 2.) is just a reformulation of 1.
2.) =⇒ 3.): We consider the sum L ≤M of all simple submodules of M

and show L = M . If not, write M = L⊕M0 and pick u ∈M0\{0}. We show
that Ru ≤M0 contains a simple submodule, a contradiction to L∩M0 = {0}.
Denote m ⊃ Ann(u) a maximal left ideal containing the annihilator of u. We
may write

M = mu⊕N.

First of all mu $ Ru — otherwise we would have u = λu with some λ ∈ m,
hence 1 − λ ∈ Ann(u) ⊂ m resp. 1 ∈ m. Hence u = (µu, b) ∈ mu ⊕ N with
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µ ∈ m, b 6= 0 and mb = {0}. Thus Rb ∼= R/m is simple and Rb ≤ Ru because
of b = (1− µ)u.

3.) =⇒ 4.): Let Mi, i ∈ I, be the simple submodules of M . We consider
the subsets J ⊂ I, such that ∑

i∈J

Mi =
⊕
i∈J

Mi,

a relation which holds iff it holds for all finite subsets J1 ⊂ J . They form a
set T partially ordered by inclusion. If T0 ⊂ T is a linearly ordered subset,
then

J∞ :=
⋃
J∈T0

J

is an upper bound. Obviously J∞ ∈ T by the above remark.
4.) =⇒ 2.): We choose M0 ≤ M maximal with L ∩M0 = {0} and show

L + M0 = M . If not, we have Mj 6⊂ L ⊕M0 for some j ∈ I. Since Mj is
simple, it follows (L ⊕M0) ∩Mj = {0} and thus (L ∩ (M0 ⊕Mj) = {0}, a
contradiction to the maximality of M0.

Example 3.25. 1. Let V be a finite dimensional vector space. Then

R = End(V ) ∼= V n

is a semisimple module over itself.

2. For a PID R the module M := R/(a) is semisimple iff a 6= 0 is square
free, i.e. is the product of pairwise non-associated irreducible elements.

Semisimple modules (and rings) are studied in section 7. —
In order to achieve a classification of modules we try to decompose a

given module as a sum so far as possible, with summands not admitting any
further decomposition:

Definition 3.26. A module M is called indecomposable iff there are no non-
trivial submodules L,N ≤M , such that M = L⊕N .

Remark 3.27. An R-module M is indecomposable iff its endomorphism ring
End(M) := EndR(M) does not contain idempotents 6= 0, idM .

Example 3.28. 1. A torsion free module M of rank one over an integral
domain R is indecomposable: If M = P ⊕ Q is a nontrivial decompo-
sition, then P,Q are torsion free as well, hence M would have rank at
least 2.
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2. Let R be a PID and a ∈ R. The module R/(a) is

(a) simple iff a is irreducible, and

(b) indecomposable iff a = 0 or a is associated to a power of an
irreducible element: For an integral domain R we have

EndR(R/(a)) ∼= R/(a),

and the right hand side does not contain idempotents 6= 0, 1 iff
a = 0 or a is associated to a prime power: If a is of that form, all
zero divisors in R/(a) are nilpotent, while idempotents 6= 0, 1 are
non-nilpotent zero divisors. In the remaining cases we may write
a = bc with relatively prime non-units b, c and Th.4.12 gives the
decomposition R/(a) ∼= R/(b)⊕R/(c).

Often it is not difficult to show that a given module M is a finite di-
rect sum of indecomposable modules. But in general the summands are not
uniquely determined up to order: Take a Dedekind ring which is not a PID.
As we have mentioned in Ex.3.19.7, for any non-principal ideal a ⊂ R, we
have a ⊕ Q ∼= R ⊕ R, where a, Q,R are indecomposable. But for a PID
uniqueness up to order holds, cf. the next section, and as well for modules of
finite length, i.e. if there is a finite ascending sequence of submodules with
simple successive factor modules (Th.6.11).

Example 3.29. For the fan Q with one arrow α and two vertices x = t(α)
and y = h(α) the indecomposable modules V look up to isomorphy as follows

1. Vx = 0, Vy ∼= k, Fα = 0

2. Vx ∼= k, Vy = 0, Fα = 0

3. Vx ∼= k, Vy ∼= k, Fα = idk.

Note that V = Vx ⊕ Vy has dimension 1,1 or 2, so in the first two cases the
kQ-module V is simple, while in the third case 0 ⊕ Vy ⊂ V is a nontrivial
submodule.

Furthermore: Any kQ-module V is a direct sum of modules of the above
type: Choose a basis B = B0 ∪ B1 of Vx such that ker(Fα) = span(B0) and
a basis C = Fα(B1) ∪C2 of Vy. Then V is the direct sum of the submodules

1. 0⊕ kw,w ∈ C2
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2. kv ⊕ 0, v ∈ B0

3. kv ⊕ kF (v), v ∈ B1.

So we have obtained a complete classification of all kQ-modules.

4 Finitely generated Modules over a PID

A finitely generated module is a factor module F/L with a free module
F ∼= Rn. In order to understand it, we study submodules L ≤ F of a free
module F for a PID R. They are again free modules:

Lemma 4.1. Let R be a PID. Every submodule L ≤ F of a finitely generated
free R-module F ∼= R n is itself a free module: L ∼= Rm with some m ≤ n.

Remark 4.2. The condition ”finitely generated” is not really needed, it has
only been imposed in order to simplify the proof. See also Th.14.8.

Proof. We prove the lemma by induction on n assuming F = R n. For n = 1
it is true by assumption, the ring R being a PID. For n > 1 the exact sequence

0 −→ Rn−1 × {0} −→ Rn π−→ R −→ 0

with the projection π : Rn −→ R onto the last component induces a split
exact sequence

0 −→ L0 −→ L −→ π(L) = Rq −→ 0,

where L0 := L ∩ (R n−1 × {0}), the third term being free, either trivial or of
rank one. If q = 0, we have L = L0 ≤ Rn−1 × {0} ∼= Rn−1 and may apply
the induction hypothesis. Otherwise L ∼= L0 ⊕R.

The central result of this section assures the existence of a basis B ⊂ F
related in a simple way to a basis of L.

Theorem 4.3. Let R be a PID and L ≤ F a submodule of the finitely
generated free R-module F ∼= R n. Then there is a basis B = {b1, ..., bn} of
F together with elements q1, ..., qn ∈ R such that

1.
L = R · q1b1 ⊕ ....⊕R · qnbn,
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2. and qi|qi+1 for i = 1, ..., n− 1.

Remark 4.4. 1. We remark that the elements q1, ..., qn are, up to mul-
tiplication with a unit (or rather the descending sequence of ideals
ai = Rqi, i = 1, ..., n) uniquely determined by L ≤ F as a consequence
of Th.4.11. Note furthermore that there is some index r ≤ n, such that
qi = 0 iff i > r.

2. The condition ”finitely generated” is essential: Write Q(R) ∼= F/L
with a free module F ≥ L. Since Q(R) is torsion free we would obtain
qi = 0 or qi = 1 for all i. As a consequence Q(R) would be a free
R-module. Contradiction!

The proof of Th.4.3 is divided into several steps, formulated as lemmata.
We are doing induction on n and start hunting for the first vector b1 ∈ B.
In any case it has to be a primitive vector:

Lemma 4.5. Let F be a finitely generated free module over the PID R. Then
for a vector e ∈ F the following statements are equivalent:

1. The element e ∈ F is primitive, i.e.

e = λw, λ ∈ R, w ∈ F =⇒ λ ∈ R ∗.

2. There is a homomorphism π : F −→ R with π(e) = 1.

Proof. ”1) =⇒ 2)”: We may assume F = R n and e = (r1, ..., rn) with
gcd(r1, ..., rn) = 1. Hence R · r1 + ...+R · rn = R and thus there are elements
λ1, ..., λn ∈ R with λ1r1 + ... + λnrn = 1, so we may define π : F −→ R by
π(x1, ..., xn) = λ1x1 + ...+ λnxn.
”2) =⇒ 1)”: Obvious.

Definition 4.6. Let u ∈ F \ {0} be a free module. We write

cont(u) = λ

if u = λe with some primitive vector e ∈ F . For a nontrivial submodule
L ≤ F we define

cont(L) := gcd{cont(u);u ∈ L \ {0}}.
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Remark 4.7. The content cont(u) ∈ R \ {0} is defined only up to multipli-
cation with a unit. If u = (u1, ..., un) ∈ Rn, we have

cont(u) = gcd(u1, ..., un).

The essential argument in the proof of Th. 4.3 is the following:

Lemma 4.8. Let L ≤ F,L 6= {0}. If cont(L) = 1, there is a vector v ∈ L
with cont(v) = 1.

Proof. We are hunting for a projection π : F −→ R (= a surjective linear
map), such that π(L) = R and take v ∈ L with π(v) = 1 as the primitive
vector we are looking for.

Choose π ∈ F ∗ := Hom(F,R) with maximal π(L) ≤ R. Such a π exists,
since above an ideal a = Ra 6= {0} there are only finitely many ideals, the
ideals Rb with a divisor b of a. We have π(L) = Rq and want to show q ∈ R∗.
Pick v ∈ L with π(v) = q. Indeed q = cont(v). To see that write v = λe with
a primitive vector e ∈ F and some λ ∈ R. We show that λ ∈ R∗q, thus may
assume λ = q. By Lemma 4.5 there is π̃ ∈ F ∗ with π̃(e) = 1 resp. π̃(v) = λ,
while q = λπ(e). Thus π̃(L) ⊃ Rλ ⊃ Rq = π(L) resp. π̃(L) = π(L) because
of the maximality of π(L). With other words Rq = Rλ, i.e. λ and q differ
only by a unit.

Now with F0 := ker(π), L0 := L ∩ F0 we have direct sum decompositions

F = F0 ⊕Re

as well as
L = L0 ⊕R · qe.

Assume q 6∈ R∗. Then, since cont(L) = 1, there is a vector v0 = µe0 ∈ L0

with µ 6∈ Rq and primitive e0 ∈ F0. Now apply Lemma 4.1 once again and
obtain a projection π0 : F0 −→ R with π0(e0) = 1. Then

π̃ : F = F0 ⊕Re −→ R, u0 + λe 7→ π0(u0) + λ

is a linear form with µ, q ∈ π̃(L), in particular π(L) = Rq $ π̃(L), a contra-
diction.

Proof of 4.3. We use induction on n. Take q := cont(L). We may apply
Lemma 4.8 to q−1L ≤ F and find a primitive vector e ∈ q−1L. Choose a
projection π : F −→ R with π(e) = 1 and define F0 ≥ L0 as in the proof of
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4.8. By the induction hypothesis L0 ≤ F0
∼= R n−1 satisfies 4.3, so we find

a basis B0 = {b2, ...., bn} ⊂ F0 of F0, such that 4.3 is satisfied with suitable
q2, ..., qn ∈ R. Now set B := {b1 := e, b2, ..., bn} and q1 := q. Obviously
q|q2.

Remark 4.9. 1. Let

L = ARm = {Au;u ∈ Rm} ≤ Rn

with a matrix A = (αij) ∈ Rn,m, where we may assume m ≥ n. We de-
scribe how one can find the elements q1, ..., qn ∈ R and a corresponding
basis b1, ..., bn for F := Rn. Clearly

q1 = gcd(αij; 1 ≤ i ≤ n, 1 ≤ j ≤ m).

Write

B = (b1, ..., bn), Q =


q1 0 .. .. 0
0 q2 0 0
: :
0 0 qn−1 0
0 .. .. 0 qn

 .

Th.4.3 tells us that there is matrix T ∈ GLm(R), such that

AT = (q1b1, ..., qnbn, 0) = (BQ, 0)

with 0 ∈ Rn,m−n resp.
(Q, 0) = B−1AT.

Now (Q, 0) is obtained from A by elementary row and column opera-
tions corresponding to multiplication from the left with B−1 resp. to
multiplication with T from the right. In particular B−1 is obtained
from the unit matrix In by the row operations involved there. Hence
B is obtained from In by the inverse row operations in reversed or-
der: Ri 7→ Ri + λRj resp. Ri 7→ λRi with λ ∈ R∗ is replaced with
Ri 7→ Ri−λRj resp. Ri 7→ λ−1Ri, while an exchange of rows is inverse
to itself. Our first goal is to realize a transformation

A 7→
(
q1 0
0 A1

)
with A1 ∈ Rn−1,m−1. Now either A1 = 0 and 0 = q2 = ... = qn or q2 is
the greatest common divisor of the entries of A1 and we can proceed
with A1 as with A.
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2. Let us consider the case m = n. Since det(B), det(T ) ∈ R∗, we obtain
that det(A) and det(Q) only differ by a unit. In particular, for R = Z
and assuming qi > 0, i = 1, ..., n, we arrive at

|Zn/AZn| = q1 · ... · qn = | det(A)|.

Example 4.10. Let N = AZ3 with the matrix

A :=

 2 3 5
4 9 25
8 27 125

 .

Obviously q1 = 1. We first perform column operations: 2 3 5
4 9 25
8 27 125

 7→
 2 1 5

4 5 25
8 19 125

 7→
 0 1 0

6 5 0
30 19 30

 .

Subtract the first column from the second, then twice resp. 5 × the middle
column from the first resp. the third column and multiply finally the first
column with −1. Now interchanging the first and the second column we get 1 0 0

5 6 0
19 30 30

 .

Though one already can read of from that matrix everything we are looking
for - no coordinate change in R3 has been performed - , we follow the steps
described above: The row operations R2 7→ R2−5R1, R3 7→ R3−19R1, R3 7→
R3 − 5R2 result in the matrix 1 0 0

0 6 0
0 0 30

 .

Then we have

A0 =

(
6 0
0 30

)
,
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whence q2 = 6 as well as q3 = 30. Applying the row operations R3 7→
R3 + 5R2, R3 7→ R3 + 19R1, R2 7→ R2 + 5R1 to the unit matrix E finally gives

B =

 1 0 0
5 1 0
19 5 1

 .

As a corollary we obtain the classification of all finitely generated modules
over a PID:

Theorem 4.11. Fundamental Theorem on finitely generated mod-
ules over a PID: Given a finitely generated module M over a principal
ideal domain R, there are proper ideals ai $ R, i = 1, ..., n, such that M is
isomorphic to the finite direct product of the cyclic modules R/ai, i.e.:

M ∼= R/a1 ⊕ ...⊕R/an ,

where the ideals ai satisfy one of the following two conditions:

1. They form a descending sequence:

a1 ⊃ a2 ⊃ ... ⊃ an.

2. The ideals ai are powers of prime ideals:

ai = (pkii )

with prime elements pi ∈ R and ki ∈ N>0.

The ideals a1, ..., an are unique in the first case and unique up to order in
the second case 2). (PS: The number n need not be the same in both cases!).

Proof. Existence: 1.) Let us start with the first case: We have M ∼= F/L
and find a basis (b1, ..., bn) ⊂ F ∼= R n as in Th.4.3; hence with ai = (qi) we
have

M ∼=
R⊕ ...⊕R
a1 ⊕ ...⊕ an

∼= R/a1 ⊕ ...⊕R/an.

Here, obviously, w.l.o.g. ai 6= R.
2.) Fix an index i ≤ r and apply the below theorem to b = ai = (qi)

and bj = (p
kj
j ), where qi = pk11 · ... · pkss is the factorization of qi into prime

elements.
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Proposition 4.12 (Chinese Remainder Theorem). Let R be a commutative
ring and b1, ..., bs ⊂ R coprime ideals, i.e. bj + b` = R for ` 6= j, and
b :=

⋂s
j=1 bj. Then the natural map

ψ : R/b −→ R/b1 ⊕ ...⊕R/bs,

x+ b 7→ (x+ b1, ..., x+ bs)

is an isomorphism of rings.

Proof. Injectivity being obvious, we have only to show surjectivity, which
easily follows from the fact that every ”unit vector” ej := (δj` + b`)`=1,...,s ∈
R/b1 ⊕ ... ⊕ R/bs is in the image of ψ. Indeed for ` 6= j we can find x` ∈
b`, y` ∈ bj with x` + y` = 1. Then with x := x1 · ... · xj−1 · xj+1 · ... · xs we
have ψ(x+ b) = ej.

Uniqueness: 2.) Consider the power p` of a prime element p ∈ R. Then

Tp`+1(M)/Tp`(M) ∼= Ks,

where K = R/(p) and s = s(p, `) is the number of the ideals ai = (pj) with
j > `. Obviously the numbers s(p, `) determine the ideals ai 6= 0 up to order.
Finally the number of ideals ai = 0 is nothing but the the rank of M/T (M).

1.) Write ai = (qi). Using what we already have seen in the first part
we may assume qn 6= 0. Given a prime element p ∈ R, denote µ(p, i) ≥ 0
the multiplicity of p as divisor of qi. These numbers determine the qi up
to a unit, and can easily be read off from a decomposition of type 2 .) as
follows: Since qi|qi+1, we have µ(p, i) ≤ µ(p, i + 1), so the exponent µ(p, n)
necessarily is the highest exponent of a p-power occuring in a decomposition
of the second type. Now remove one highest p-power for all prime elements
p ∈ R and continue with what is left in the same spirit.

5 Chain conditions: Noetherian and artinian

modules

We start with the following easy observation:

Lemma 5.1. Let X be a set with a partial order ”�”. Then the following
statements are equivalent:
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1. Any non-empty subset Y ⊂ X admits a maximal element, i.e. there is
some y0 ∈ Y , such that ”y0 � y =⇒ y0 = y” holds all y ∈ Y .

2. The ”ascending chain condiition”: Any ascending sequence x1 � x2 �
...... of elements in X terminates, i.e. there is some index n0, such that
xn = xn0 holds for all n ≥ n0.

Proof. ”=⇒”: Take Y := {xn;n ∈ N>0}. If xn0 is a maximal element then
xn = xn0 for all n ≥ n0.
”⇐=”: If Y ⊂ X does not admit a maximal element, then there is for any
y ∈ Y some successor s(y) ∈ Y , i.e. y ≺ s(y). So take any x1 ∈ Y and define
recursively xn+1 := s(xn). We thus obtain a strictly ascending sequence.
Contradiction!

Definition 5.2. For an R-module Mdenote

Sub(M) := {L;L ≤M}

the set of its submodules. It is called

1. noetherian, if Sub(M) satisfies the ascending chain condition w.r.t. the
partial order ”�” given by the inclusion of submodules, i.e.

L � N ⇐⇒ L ⊂ N.

One says that M satisfies the ascending chain condition.

2. artinian, if Sub(M) satisfies the ascending chain condition w.r.t. the
partial order ”�” given by the reversed inclusion of submodules, i.e.

L � N ⇐⇒ L ⊃ N.

In that case one says that M satisfies the descending chain condition.

A ring R is called left/right noetherian/artinian if RR resp. RR is noethe-
rian/artinian.

Example 5.3. 1. A PID R is a noetherian: Since it is factorial, any non
unit 6= 0 has (up to multiplication with a unit) only finitely many
divisors. Hence for a nonzero ideal a there are only finitely many ideals
d ⊃ a above it, since

(a) = a ⊂ d = (d)⇐⇒ d|a.
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2. A field is both noetherian and artinian.

3. An integral domainR, which is not a field, is not artinian: For a nonunit
a 6= 0 the ideals an := (an) form a strictly decreasing sequence.

4. Let M :=
{
a

2n
∈ Q; a ∈ Z, n ∈ N

}
. Then the Z-module M/Z is ar-

tinian, but not noetherian, since it is not finitely generated. Indeed,
any proper submodule of M/Z is of the form Z · ( 1

2n
+ Z) ∼= Z2n . Note

that, as an abelian group, we have M/Z ∼= C2∞ =
⋃∞
n=1C2n .

The ascending chain condition admits an important reformulation:

Proposition 5.4. An R-module M is noetherian if and only if every sub-
module N ≤M is finitely generated:

N = Ru1 + ...+Rus (resp. = u1R + ...+ usR)

with suitable elements u1, ..., us ∈ N .

Proof. ”=⇒”: Take a submodule N ≤M and define Y ⊂ Sub(M) by

Y := {L ≤ N ;L finitely generated}.

Now a maximal element of Y can not be a proper submodule N0 < N , since
otherwise one can pick some u ∈ N \N0 and obtains with L := N0 +Ru ∈ Y
a module L > N0. So N ∈ Y , i.e. N is finitely generated.
”⇐=”: Consider an ascending chain of submodules L1 ≤ L2 ≤ ..... Then
L∞ :=

⋃∞
n=1 Ln is a submodule as well. Take a finite system u1, ..., ur of

generators of L∞ together with indices ni such that ui ∈ Lni
. Then for

n ≥ n0 := max(n1, ..., nr) we have Ln0 = L∞ = Ln.

Proposition 5.5. Let N ≤ M . Then M is noetherian/artinian if and only
if both N and M/N are noetherian/artinian.

Proof. The claim is an immediate consequence of the fact that for submodules
L, L̃ ≤M one has

L = L̃⇐⇒ L ∩N = L̃ ∩N ∧ %(L) = %(L̃).

Here % : M −→M/N, u 7→ u+N , denotes the quotient map.

Corollary 5.6. Assume R is left/right noetherian/artinian and M a left/right
R-module. Then M is
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1. noetherian if and only if M is finitely generated,

2. artinian if M is finitely generated.

Proof. By induction on n one shows that Rn is noetherian/artinian if R
is: Take M = Rn+1 and N = Rn × {0}. Furthermore recall that finitely
generated modules are isomorphic to factor modules Rn/N .

Theorem 5.7. The polynomial ring R[T ] over a commutative noetherian
ring is noetherian as well.

Remark 5.8. The corresponding statement for artinian rings is obviously
wrong: Consider the chain of ideals an := (T n).

Proof. We show that any ideal a ⊂ R[T ] is finitely generated. Consider the
chain of ideals bn ⊂ R

bn := {b ∈ R;∃ f = bT n +
n−1∑
ν=0

bνT
ν ∈ a}.

Choose n0 ∈ N, such that bn = bn0 for n ≥ n0, furthermore polynomials

fµn = bµnT
n + ..... ∈ bn, µ = 1, ...,mn,

such that bn = Rb1,n + ....+Rbmn,n. We leave it to the reader to check that
indeed

a =

n0∑
n=0

mn∑
µ=1

R[T ]fµ,n.

Corollary 5.9 (Hilberts Basissatz). The polynomial ring k[T1, ..., Tn] in
finitely many variables T1, ..., Tn over a field k is noetherian.

Proof. Do induction on n ∈ N using the fact that

k[T1, ..., Tn+1] = (k[T1, ..., Tn]) [Tn+1].
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6 Modules of finite length

In this section we study modules which are both noetherian and artinian.

Definition 6.1. Let M be an R-module. The length λ(M) ∈ N∪{∞} of M
is defined as

λ(M) := sup {r;∃ 0 = M0 < M1 < ... < Mr = M} ,

i.e. λ(M) is the supremum of the lengths of strictly increasing finite chains
of submodules in M .

Example 6.2. 1. A module M is simple iff λ(M) = 1.

2. For an algebraically closed field k a k[T ]-module V with dimk V < ∞
is indecomposable iff µT = λidV + N with a nilpotent homomorphism
N : V −→ V , NdimV−1 6= 0. It is simple if in addition dimV = 1 (and
hence N = 0).

Proposition 6.3. Let M0 ≤ M be a submodule of the R-module M . Then
we have λ(M) = λ(M0) + λ(M/M0).

Proof. Given ascending chains 0 = L0 < L1 < ... < Lr = M0 and 0 = N0 <
N1 < ... < Ns = M/M0, we get a chain 0 = L0 < ... < Lr = p−1(N0) < ... <
p−1(Ns) = M ; hence λ(M) ≥ λ(M0) + λ(M/M0).

On the other hand, given 0 = M0 < M1 < ... < Mt = M we have for all
i = 1, ..., t that Mi−1 ∩M0 < Mi ∩M0 or p(Mi−1) < p(Mi), where p : M −→
M/M0 is the quotient projection. Hence t ≤ λ(M0) + λ(M/M0).

Modules of finite length λ(M) < ∞ are obviously both noetherian and
artinian. Given such a module, we want to investigate maximal strictly
increasing chains of submodules:

Definition 6.4. A strictly increasing chain of submodules 0 = M0 < M1 <
M2 < ... < Mr = M is called a composition series for the module M if one
of the following equivalent conditions is satisfied:

1. The sequence can not be refined by inserting modules between two
successive modules Mi and Mi−1.
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2. The factor modules Mi/Mi−1, also called the factors of the composition
series, are (nonzero) simple modules.

Remark 6.5. 1. By 6.3 we see, that a module with a composition series
of length r has length λ(M) = r; in particular two different composition
series have the same length.

2. A module M which is both noetherian and artinian admits a compo-
sition series: Let L ⊂ M be any submodule. Since M/L is artinian as
well, there is a minimal nonzero submodule N ≤M/L - it is automat-

ically of length 1 - and set L̃ := p−1(N), where p : M −→ M/L is the

quotient homomorphism. Now take M0 := 0 and Mi+1 := M̃i. Since
M is noetherian as well, the chain terminates, but that is only possible
if we have Mn = M for some n ∈ N.

3. A module M is of finite length iff it is both noetherian and artinian.

4. Any finite strictly increasing chain of submodules in a module of finite
length can be refined to a composition series: If 0 = M0 < M1 < .... <
Mn = M , we take a composition series for each factor Mi/Mi−1 (being
artinian) and insert the inverse images of its members with respect to
p : Mi −→ Mi/Mi−1 between Mi−1 and Mi. Note that for L ≤ N ≤
Mi/Mi−1 we have

p−1(N)/p−1(L) ∼= N/L.

Hence the refined sequence is a composition series for M .

In order to compare the factors of different composition series we need
the following observation:

Remark 6.6. A homomorphism f : M −→ N between simple modules is
either an isomorphism or f = 0, since for ker(f) ≤ M and F (M) ≤ N we
have

f 6= 0 =⇒ ker(f) 6= M =⇒ ker(f) = 0

as well as

f 6= 0 =⇒ f(M) 6= 0 =⇒ f(M) = N.
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Corollary 6.7. For a simple R-module M we have

End(M) = Aut(M) ∪ {0}.

In particular the ring D := End(M) is a division ring, i.e. D\{0} is a group
with respect to the ring multiplication.

Remark 6.8. A commutative division ring is nothing but a field, a noncom-
mative one is also called a skew field.

Remark 6.9. Let us comment briefly on division rings D: A division ring
D is a vector space over its center

Z(D) := {a ∈ D; ab = ba ∀ b ∈ D} ,

a field. Hence, given a field k one looks for ”central k-division algebras”,
i.e. division rings D with Z(D) ∼= k. Then D is a k-vector space, and we
shall discuss here the finite dimensional situation dimkD < ∞. For a finite
or an algebraically closed field, there are no nontrivial finite dimensional
division algebras, i.e. one has necessarily D = Z(D) = k. For k = R the
quaternion algebra H is the only nontrivial example. In general one knows
that dimkD = n2 is a square, and for k = Qp, the p-adic numbers, there
are ϕ(n) (with Eulers ϕ-function) pairwise non-isomorphic central k-division
algebras of dimension n2 over k.

Finite dimensional central Q-division algebras then can be classified using
their ”base extensions” DR := R ⊗Q D and DQp := Qp ⊗Q D. That process
of base extension is as follows: Take an isomorphism D ∼= Qm (with m = n2)
and use for the multiplication in DK := Km (with K = R,Qp) the same
”structure constants c`ij ∈ Q” as in D ∼= Qm, i.e. multiplication looks as
follows

eiej =
m∑
`=1

c`ije`

both in D and DK . In this way we get a central K-algebra DK (i.e. Z(DK) =
K), which either is again a central K-division algebra or a matrix algebra
Matr(E) with some central K-division algebra E. The technique of base
extension is also behind the statement, that dimkD is a square for an arbi-
trary central k-division algebra: If K ⊃ k is the algebraic closure of k, then
dimkD = dimK(DK) and DK

∼= Matn(K) for some n ∈ N>0.
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Proposition 6.10. Theorem of Jordan-Hölder (Camille Jordan, 1838-
1922, and Otto Hölder, 1859-1937) Let M be an R-module admitting compo-
sition series 0 = L0 < L1 < ... < Lr = M as well as 0 = N0 < N1 < ... <
Nr = M . Then there is a permutation f ∈ Sr, such that for j = f(i) we have

Li/Li−1
∼= Nj/Nj−1 .

Proof. We prove the statement for generalized composition serious, i.e. se-
ries, whose factors are either simple or 0. Assume first r = 2. Then our
composition series are of the form 0 ≤ L ≤ M and 0 ≤ N ≤ M . If M
itself is simple or N = L, nothing remains to be shown. Otherwise we have
L ∩ N ( N . But then, N being simple, the proper submodule L ∩ N is
trivial. Now consider the injective homomorphism L ↪→ M −→ M/N : Its
image is a nontrivial submodule of M/N , hence L ∼= M/N . By symmetry
we have N ∼= M/L as well.

In the general case we consider the submodules

Mij := Li ∩Nj ⊂M

and generalized composition series of length r + s starting with M00 and
ending with Mrr and inclusion steps

Mij ⊂Mi+1,j or Mij ⊂Mi,j+1.

Then the generalized composition series

M00 ⊂M10 ⊂ ... ⊂Mr0 ⊂Mr1 ⊂ .... ⊂Mrr

and
M00 ⊂M01 ⊂ ... ⊂M0r ⊂M1r ⊂ .... ⊂Mrr

have the same non-trivial factors as N0 < N1 < ... < Nr resp. L0 < L1 <
... < Lr, and the first one can be connected to the second one by a chain of
generalized composition series of length 2r, such that two successive series
differ only in two successive inclusions:

Mij ⊂Mi+1,j ⊂Mi+1,j+1

is replaced with
Mij ⊂Mi,j+1 ⊂Mi+1,j+1.

But then it is clear from our initial argument (applied to the factor module
Mi+1,j+1/Mij) that the two successive generalized composition series have the
same simple factors taken with multiplicities.
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So we may speak about the simple factors of an R-module M and their
multiplicities in M (:= the number of times it shows up as a factor in a com-
position series). But, as we already have seen in section 3, the simple factors
do not determine the module itself. Instead we have to consider indecompos-
able modules instead of simple ones. A decomposition as a finite direct sum
of indecomposable modules is obviously possible for artinian modules. If it is
even of finite length there is an analogue to the Jordan-Hölder theorem 6.10:

Theorem 6.11 (Theorem of Krull-Schmidt). (Wolfgang Krull, 1899-
1971) Let M be a module of finite length,

M = L1 ⊕ ...⊕ Lr = N1 ⊕ ...⊕Ns

with indecomposable submodules Li, Nj ≤ M . Then s = r, and there is a
permutation f ∈ Sr, such that for j = f(i) we have

Li ∼= Nj .

Example 6.12. If V is a k-vector space with basis e1, ..., en, then we get

End(V ) =
n⊕
i=1

End(V )Pi

where Pi : V −→ V, ej 7→ δijei.

Remark 6.13. The assumption that M be of finite length is important;
while for a PID and finitely generated M it holds as well (as we shall see
later on), it is definitely false for arbitrary integral domains (though explicit
counter examples are not easy at hand).

We need some preparatory lemmata dealing with the endomorphism ring
of artinian resp. indecomposable modules:

Lemma 6.14. For an endomorphism f : M −→ M of a module of finite
length the following statements are equivalent

1. f is bijective.

2. f is injective.
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3. f is surjective.

Proof. Assume f : M −→ M is injective and y ∈ M . Then M ≥ f(M) ≥
f 2(M) ≥ ... is a strictly decreasing chain of submodules, so there is some
n ∈ N with fn+1(M) = fn(M). In particular fn(y) = fn+1(x) with some
x ∈M . But then already y = f(x), since with f its iterate fn is injective as
well.

Now assume that f : M −→ M is surjective and consider the ascending
chain 0 ≤ ker f ≤ ker f 2 ≤ .... For some n ∈ N we have ker fn = ker fn+1.
Hence f |fn(M) = f |M is injective.

Lemma 6.15. For an endomorphism f : M −→ M of a module of finite
length there is a positive natural number such that

M = fn(M)⊕ ker(fn).

In particular, if M is indecomposable, an endomorphism is either an auto-
morphism or nilpotent.

Proof. Assume first that g : M −→ M satisfies ker g2 = ker g as well as
g2(M) = g(M). Then M = g(M) ⊕ ker g. The first condition is equivalent
to ker(g) ∩ g(M) = 0. On the other hand, given any y ∈ M , we find some
x ∈M with g(y) = g2(x). Then

y = g(x) + (y − g(x)) ∈ g(M) + ker g = g(M)⊕ ker g.

Now, since both chains (f i(M))i∈N and (ker f i)i∈N terminate, we can take
g = fn with a sufficiently big n ∈ N. Finally, for indecomposable M we have
either fn(M) = 0 or ker fn = 0. It follows fn = 0 or ker f = 0; in the second
case we obtain, according to 6.14, that f is an isomorphism.

As a result of our discussion we obtain an algebraic characterization of
the endomorphism ring End(M) of an indecomposable R-module, a general-
ization of Corollary 6.7:

Corollary 6.16. For an indecomposable module M of finite length we have

End(M) = Aut(M) ∪ Nil(M).

Furthermore the set Nil(M) of nilpotent endomorphisms is even a two-sided
ideal.

45



Proof. The first part is a consequence of Lemma 6.15, while Lemma 6.14
yields fg ∈ Aut(M) =⇒ f, g ∈ Aut(M). Hence

Aut(M) ◦ Nil(M), Nil(M) ◦ Aut(M) ⊂ Nil(M).

It remains to show that Nil(M) is additively closed. So take f, g ∈ Nil(M).
If f + g 6∈ Nil(M), it is an automorphism, and thus we may even assume
f + g = idM - replace f, g with f(f + g)−1, g(f + g)−1. But then we get

f 2 + fg = f(f + g) = f = (f + g)f = f 2 + gf

and hence fg = gf . So, in order to compute (f + g)n we may use the
binomial formula, and doing so we see easily that f + g is nilpotent as well,
contradiction!

Proof of 6.11. We show by induction on k, that after a suitable permutation
of the Nj we have

M = N1 ⊕ ...⊕Nk ⊕ Lk+1 ⊕ ...⊕ Lr

where Ni
∼= Li for i = 1, ..., k. For k = 0 nothing has to be shown. Denote

pi : M −→ Ni, i = 1, ..., k and pi : M −→ Li, i = k + 1, ..., r the projections
belonging to the above direct sum decomposition, qj : M −→ Nj, j = 1, ..., s
the projections for M = N1 ⊕ ... ⊕ Ns. ( We shall identify the projections
pi, qj with the endomorphisms of M obtained by composing them with the
injections pi(M), qj(M) ↪→M .)

We are now looking for an ` > k with Lk+1
∼= N`. Look at the following

endomorphism

End(Lk+1) 3 idLk+1
=

s∑
j=1

(pk+1 ◦ qj)|Lk+1
=

s∑
j=k+1

(pk+1 ◦ qj)|Lk+1
,

since pk+1|Nj
= 0 for j = 1, ..., k. The left hand side is not nilpotent, so

by Corollary 6.16 there is an index ` ≥ k + 1, such that (pk+1 ◦ q`)|Lk+1
∈

End(Lk+1) is not nilpotent either and hence (pk+1 ◦ q`)|Lk+1
∈ Aut(Lk+1).

Obviously q`|Lk+1
: Lk+1 −→ N` is injective, but (q` ◦pk+1)|N`

is not nilpotent
either - otherwise (pk+1 ◦ q`)|Lk+1

would be nilpotent as well! So as before
(q` ◦ pk+1)|N`

∈ Aut(N`) and hence q` is also surjective resp. N`
∼= Lk+1. Of

course, after a reordering of the Nj, j ≥ k + 1, we may assume ` = k + 1.
Finally

M = N1 ⊕ ...⊕Nk ⊕Nk+1 ⊕ Lk+2 ⊕ ...⊕ Lr
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is an immediate consequence of the direct sum decomposition

M = N1 ⊕ ...⊕Nk ⊕ Lk+1 ⊕ Lk+2 ⊕ ...⊕ Lr

and the fact that qk+1|Lk+1
: Lk+1 −→ Nk+1 is an isomorphism.

7 Semisimple modules and rings

A module of finite length which is isomorphic to the direct sum of its simple
factors (taken with multiplicities) is called semisimple. Indeed semisimplicity
can be defined for any module (finite length is not needed): Semisimple
modules are those ones which can be obtained as a (not necessarily finite)
direct sum of simple modules. For details see Grillet, Ch, IX.2.

Here we prove a characterization of all rings which are semisimple as (left
or right) module over itself.

Theorem 7.1 (Theorem of Artin-Wedderburn). For a ring R the following
statements are equivalent:

1. RR is a semisimple.

2. RR is a semisimple.

3. There are natural numbers n1, ..., nr ∈ N>0 and division rings D1, ..., Dr,
such that

R ∼= Matn1(D1)× ...×Matnr(Dr).

Proof. First of all we have isomorphisms

R ∼= End(RR), a 7→ µa : x 7→ ax

and
Rop ∼= End(RR), a 7→ µ̃a.x 7→ xa.

On the other hand for a direct sum

M =
r⊕
i=1

Mi

of left/right R-modules we have

End(M) ∼=
⊕

1≤i,j≤r

End(Mj,Mi), ϕ 7→ (ϕij := pri ◦ ϕ|Mj
),
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where the right hand side is considered as a ring, namely endowed with
”matrix multiplication”. Now write

R =
r⊕
i=1

ani
i

with simple pairwise non-isomorphic left/right ideals ai. Since End(ai, aj) =
0 for i 6= j and Di = End(ai) is a division ring, we arrive at

End(R) ∼=
r⊕
i=1

Matni
(Di),

where End(R) means either End(RR) or End(RR). Combining with the first
isomorphism we obtain the implication ”2) =⇒ 3)”, while for ”1) =⇒ 3)” we
get Rop ∼= .... resp.

R ∼=
r⊕
i=1

Matni
(Dop

i ),

since
Matn(Dop) −→ Matn(D)op, A 7→ AT

is an isomorphism.
”3) =⇒ 1), 2)”: Since a direct sum of semisimple rings is semisimple as
well, it suffice to show that Matn(D) is both right and left semisimple. For
P` := (δi`δj`) ∈ Matn(D) we have

Matn(D) =
n⊕
`=1

Matn(D)Pi =
n⊕
`=1

PiMatn(D),

where each summand is isomorphic to the simple module Dn. Here we view
the elements in Dn either as column or as row vectors: In the first case
Matn(D) acts by multiplication from the left, in the second one by multipli-
cation from the right.

8 The Jacobson radical

For rings the artinian property is not completely analogous to the noetherian
property. Indeed, in this section we shall see, that a ring which is left artinian
automatically is left noetherian as well. The proof uses a new characterization
of simple modules via the Jacobson radical of a ring.
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Definition 8.1. 1. The nilradical
√

0 ⊂ R of a ring R is defined as the
set of all nilpotent elements:

√
0 := {x ∈ R;∃ r ∈ N;xr = 0}.

2. The Jacobson radical J(R) ⊂ R of a ring R is defined as the intersection
of all maximal left ideals:

J(R) :=
⋂

m≤RR

m.

Remark 8.2. 1. For a commutative ring R the nilradical
√

0 is an ideal,
since obviously R ·

√
0 ⊂
√

0 and xm = 0 = yn =⇒ (x + y)n+m = 0 as
a consequence of the binomial formula. One can even prove that

√
0 =

⋂
p⊂R prime ideal

p

is the intersection of all prime ideals. Hence in particular

√
0 ⊂ J(R).

2. On the other hand, in the noncommutative case it can happen that
√

0
is not additively closed and that R ·

√
0 6⊂
√

0.

In order to get a more rewarding description of the Jacobson radical we
need:

Remark 8.3. 1. For any left R-module M its annihilator

Ann(M) := {x ∈ R;xM = {0}}

is a two sided ideal.

2. Denote a ⊂ R a left ideal. For M = R/a we have

Ann(R/a) ⊂ a

with equality for a commutative ring R.
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Proposition 8.4. The Jacobson radical is the intersection of the annihilator
ideals of simple R-modules:

J(R) =
⋂

M simple R-module

Ann(M).

In particular J(R) ⊂ R is a two sided ideal.

Proof. The inclusion ”⊃” follows from m ⊃ Ann(R/m) and the fact that a
simple left R-module is of the form R/m. On the other hand, given λ ∈ J(R)
we have to show that λx = 0 for any element x ∈ M in a simple module
M . For x = 0 this is obvious. Otherwise M = Rx ∼= R/Ann(x), hence
m := Ann(x) is a maximal left ideal and thus λ ∈ Ann(x).

Lemma 8.5. The Jacobson radical J(R) of a ring R consists of all x ∈ R,
such that 1 + λx has a left inverse for all λ ∈ R, i.e.

J(R) = {x ∈ R;R(1 + λx) = R, ∀λ ∈ R}.

Proof. ”⊂”: If x ∈ J(R), but R(1 + λx) 6= R, then R(1 + λx) ⊂ m for some
maximal left ideal m. But λx ∈ J(R) ⊂ m as well, hence 1 = (1+λx)−λx ∈
m, a contradiction.
”⊃”: If R(1 + λx) = R for all λ ∈ R, but x 6∈ m for some maximal left ideal
m, then R = m + Rx resp. 1 = y + λx for some y ∈ m, λ ∈ R. But then
y = 1 + (−λ)x ∈ m has no left inverse, contradiction!

The fact that the Jacobson radical is a two sided ideal motivates the
question, whether it can be described without making a choice between ”left”
and ”right”. So it is, indeed:

Proposition 8.6. For the Jacobson radical J(R) of a ring R we have

1 + J(R) ⊂ R∗,

and J(R) contains all two sided ideals with that property, i.e. if a ⊂ R is a
two sided ideal, then

1 + a ⊂ R∗ =⇒ a ⊂ J(R).

So J(R) is the unique maximal two sided ideal a satisfying 1 + a ⊂ R∗. In
particular

J(Rop) = J(R).
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Proof. For x ∈ J(R) we have R = R(1 + x), thus there is some y ∈ R with
1 = y(1 + x). But y = 1 − yx has a left inverse z ∈ R as well according to
Lemma 8.5. That implies

z = z(y(1 + x)) = (zy)(1 + x) = 1 + x,

with other words (1 +x)y = 1 as well and thus 1 +x ∈ R∗. Finally, for x ∈ a
we have Rx ⊂ a, hence 1 +Rx ⊂ R∗ and thus in particular x ∈ J(R).

Definition 8.7. A left (or right) ideal n ⊂ R is called nilpotent if there is
some r ∈ N with nr = {0}, i.e.

x1, ..., xr ∈ n =⇒ x1 · .... · xr = 0.

Remark 8.8. Note that
n ⊂
√

0

holds for a nilpotent ideal, but an ideal consisting of nilpotent elements only
need not be nilpotent.

The relation between nilpotent ideals and the Jacobson radical is the
following:

Lemma 8.9. 1. For a nilpotent left ideal n ⊂ R we have n ⊂ J(R).

2. The Jacobson radical J(R) of a left artinian ring R is itself nilpotent.

Proof. 1) Assume nr = {0}. We show that n ⊂ Ann(M) for any simple left
R-module M. If not, we find nM = M and thus n`M = M for all ` ∈M . In
particular {0} = nrM = M 6= {0}, a contradiction.
2) First of all the descending sequence J ⊃ J2 ⊃ ... for J := J(R) terminates,
hence we find m ∈ N with Jm = Jm+1. We claim that Jm = {0}. Assume the
contrary. The set of left ideals a ≤ RR with Jma 6= {0} admits a minimal
element, the ring R being artinian and a = R being such an ideal. Take
some element a ∈ a with Jma 6= {0}. Then we find a = Ra because of the
minimality of a and even Jma = Ra, using once again the minimality of a
together with the inclusion Jma ⊂ a and

Jm(Jma) = J2ma = Jma 6= 0.

Hence xa = a for some x ∈ Jm resp. 0 = (1 − x)a. But that implies a = 0,
since 1− x ∈ R∗ is a unit. Contradiction!
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Remark 8.10. 1. J(R1×...×Rs) = J(R1)×...×J(Rs), since the maximal
left ideals of R1×...×Rs are of the form R1×...×Ri−1×mi×Ri+1....×Rs

with a maximal left ideal mi ⊂ Ri.

2. J(R/J(R)) = {0}, since the maximal left ideals of R/J(R) are of the
form m/J(R) with a maximal left ideal m ≤ RR.

3. For a division ring D we have J(Matn(D)) = {0}, since the maximal
left ideals of Matn(D) are of the form

m = I(L) := {A ∈ Matn(D));A|L = 0}

with a ”right line” L ⊂ Dn, i.e. L = zD for some z ∈ Dn \ {0}.

4. For a semisimple ring R we have J(R) = {0}.

Theorem 8.11. For a ring R the following statements are equivalent:

1. R is semisimple.

2. R is left artinian and J(R) = {0}

3. R is left artinian and has no nilpotent left ideals n 6= {0}.

Proof. ”1) =⇒ 2)”: A semisimple ring is the direct sum of matrix rings over
a division ring; hence Rem.8.10.1 and 3 give the result.
”2) =⇒ 1)”: The Jacobson radical J(R) of a left artinian ring R is the
intersection of finitely many maximal left ideals

{0} = J(R) = m1 ∩ .... ∩ms,

since otherwise one could construct an infinite strictly descending chain of
left ideals (But that does not imply that m1, ...,ms are the only maximal left
ideals!). Then

RR ∼= R/m1 × ....×R/ms

by the chinese remainder theorem Prop.4.12, hence RR is semisimple as a
direct sum of simple modules.
”2) =⇒ 3)”: Follows from the fact that nilpotent ideals are contained in the
Jacobson radical.
”3) =⇒ 2)”: The Jacobson radical J(R) of a left artinian ring R is nilpotent
according to Lemma 8.9.
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Proposition 8.12. A left module over a left artinian ring is semisimple iff
J(R)M = {0}.

Proof. ”=⇒”: Write M =
⊕s

i=1 Mi as a direct sum of simple modules Mi, i =
1, ..., s. Then we have

J(R) ⊂
s⋂
i=1

Ann(Mi),

hence J(R)M = {0}.
”⇐=”: If J(R)M = {0}, the module M can be regarded as a R/J(R)-
module. But R/J(R) is a semisimple ring according to ...., hence M a
semisimple R/J(R)- resp. R-module.

Theorem 8.13. For a left module M over a left artinian ring R the following
statements are equivalent:

1. M is noetherian.

2. M is artinian.

3. M is of finite length.

Proof. It suffices to prove the equivalence of 1) and 2).
”1) =⇒ 2)”: If M is noetherian, it is in particular finitely generated and
thus M ∼= RR/K with some submodule K ≤ RR. Since RR is artinian, that
implies that M is artinian as factor module of an artinian module.
”2) =⇒ 1)”: Since J = J(R) is nilpotent according to ...., say with Jm = {0},
we have a descending sequence

M ⊃ JM ⊃ J2M ⊃ ... ⊃ Jm−1M ⊃ {0} = JmM

with factors Qi := J iM/J i+1M annihilated by J . Thus they are as artinian
semisimple modules finite direct products of simple modules. It follows that

λ(M) ≤
m−1∑
i=0

λ(Qi) <∞.

Taking M = RR we obtain finally:

Corollary 8.14. A left artinian ring is left noetherian as well.
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9 Tensor product

The cartesian product M × N of two modules is the underlying set for the
direct sum (or product) M ⊕N of M and N . In this section we introduce a
new construction, the tensor product M ⊗ N of M and N . It is an abelian
group defined for a right R-module M and a left R-module N , its essential
feature is that it transforms ”bihomomorphisms” into homomorphisms.

Definition 9.1. Let M be a right R-module, N a left R-module and A an
additively written abelian group. A map

σ : M ×N −→ A

is called a ”bihomomorphism” if

1. σ is “biadditive”, i.e. for u ∈M, v ∈ N the maps

σ(u, ..) : N −→ A, σ(.., v) : M −→ A

are homomorphism of abelian groups,

2. and
σ(uλ, v) = σ(u, λv)

holds for u ∈M, v ∈ N, λ ∈ R.

Example 9.2. 1. The map σ : RR × RR −→ R, (x, y) 7→ axyb, with
a, b ∈ R is a bihomomorphism.

2. A bihomomorphism σ : RR × RR −→ A is of the form σ(x, y) = ϕ(xy)
with a group homomorphism ϕ : R −→ A. Given σ, take ϕ(λ) :=
σ(λ, 1).

3. The bihomomorphisms form an abelian group w.r.t. argumentwise ad-
dition.

4. Let I, J be sets. The bihomomorphisms

σ : R[I]R × RR[J ] −→ A

correspond to families of group homomorphisms ϕij : R −→ A, i ∈
I, j ∈ J , as follows: Given σ we define

ϕij : R −→ A, λ 7→ σ(eiλ, ej).
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On the other hand, given a family ϕij : R −→ A, we take

σ(f, g) :=
∑
i,j

ϕij(f(i)g(j)),

a finite sum. Remember that f, g are finite sums

f =
∑
i∈I

f(i)ei, g =
∑
j∈J

g(j)ej.

Definition 9.3. Let M be a right R-module, N a left R-module. The tensor
product of M and N is the pair (M ⊗N, β) with the abelian group

M ⊗N := Z[M ×N ]/I(M,N),

where I(M,N) is the subgroup (Z-submodule) generated by three different
families of generators

1. e(u+ũ,v) − e(u,v) − e(ũ,v), u, ũ ∈M, v ∈ N,

2. e(uλ,v) − e(u,λv), u ∈M, v ∈ N, λ ∈ R,

3. e(u,v+ṽ) − e(u,v) − e(u,ṽ), u ∈M, v, ṽ ∈ N,

and the bihomomorphism

β : M ×N −→M ⊗N, (u, v) 7→ u⊗ v := e(u,v) + I(M,N).

Remark 9.4. The map β : M ×N −→M ⊗N in general is not surjective:
Not every element in M ⊗ N is of the form u ⊗ v, but these elements are
generators:

M ⊗N =

{
r∑
i=1

ui ⊗ vi, u1, ..., ur ∈M, v1, ..., vr ∈ N, r ∈ N

}
.

The observation that the subgroup I(M,N) is the minimal subgroup
H ≤ Z[M ×N ] making the composition

M ×N −→ Z[M ×N ] −→ Z[M ×N ]/H
(u, v) 7→ e(u,v)

a bihomomorphism leads to a very useful description of the tensor product:
It satisfies the following universal mapping property:
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Proposition 9.5. Assume σ : M × N −→ A is a bihomomorphism to the
abelian group A. Then there is a unique group homomorphism σ̂ : M⊗N −→
A making the following diagram commutative:

M ⊗N σ̂−→ A
β ↑ ↗ σ

M ×N

Proof. Existence: The homomorphism Z[M × N ] −→ A, e(u,v) 7→ σ(u, v)
annihilates I(M,N) and thus factors through M ⊗N .
Uniqueness: The commutativity of the above triangle means nothing but

σ̂(u⊗ v) = σ(u, v),∀(u, v) ∈M ×N,

and the elements u⊗ v, u ∈M, v ∈ N , generate M ⊗N .

In order to do explicit calculations in a tensor product, it turns out to be
convenient to refer only to its universal mapping property - handling factor
modules is sometimes a bit tricky. Indeed, it determines the tensor product
up to an isomorphism:

Proposition 9.6. Let τ : M ×N −→ T be a bihomomorphism satisfying the
universal mapping property of Prop. 9.5. Then the homomorphism

τ̂ : M ⊗N −→ T, u⊗ v 7→ τ(u, v),

is the unique isomorphism making the diagram

M ⊗N
∼=−→ T

β ↑ ↑ τ
M ×N = M ×N

commutative.

Proof. Given a bihomomorphism σ : M ×N −→ A denote σ̃ : T −→ A the
corresponding homomorphism. Then the commutative diagram

M ⊗N β̂−→ M ⊗N
|| ||

M ⊗N τ̂−→ T
β̃−→ M ⊗N

↑ ↑ ↑
M ×N = M ×N = M ×N
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gives idM⊗N = β̂ = β̃ ◦ τ̂ , while

T
τ̃−→ T

|| ||
T

β̃−→ M ⊗N τ̂−→ T
↑ ↑ ↑

M ×N = M ×N = M ×N

yields idT = τ̃ = τ̂ ◦ β̃.

Remark 9.7. In order to check the universal mapping problem for τ : M ×
N −→ T , one shows the existence of a factorization, while uniqueness usually
follows from the fact that the elements τ(u, v), u ∈ M, v ∈ N , generate the
abelian group T .

Example 9.8. 1. Tensor product of free modules: We have

R[I]R ⊗ RR[J ] ∼= R[I × J ],

an isomorphism of abelian groups. (Of course R[I×J ] can be regarded
as a left and a right R-module - how to understand that phenomenon
in a general setting we shall discuss soon.) The isomorphism is given
by

R[I]⊗R[J ]
∼=−→ R[I × J ], f ⊗ g 7→ f ∗ g,

where

f ∗ g : I × J −→ R, (i, j) 7→ f(i)g(j),

in particular

ei ∗ ej = e(i,j).

Indeed the map

τ : R[I]×R[J ] −→ T := R[I × J ], (f, g) 7→ f ∗ g

is a bihomomorphism satisfying the universal mapping property: If
σ : R[I]×R[J ] −→ A is a bihomomorphism with corresponding group
homomorphisms ϕij : R −→ A, the map

σ̂ : R[I × J ] −→ A
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is defined by the finite(!) sum

σ̂(h) :=
∑
i,j

ϕij(h(i, j)).

Uniqueness is a consequence of the fact that the functions of the form
f ∗ g generate R[I × J ] as abelian group.

2. Let a, b ∈ R with a PID R and write Rc := R/(c). Then we have

Ra ⊗Rb
∼= Rd with d := gcd(a, b),

with the map

(x+ (a))⊗ (y + (b)) 7→ xy + (d).

For a proof we consider the bihomomorphism

τ : Ra ×Rb −→ T := Rd, (x+ (a), y + (b)) 7→ xy + (d).

and check, that it satisfies the universal mapping property. Assume
σ : Ra × Rb −→ A is a bihomomorphism. Then define σ̂(z + (d)) :=
σ(z + (a), 1 + (b)). The main point is to show that σ̂ is well defined:
The map R −→ A, z 7→ σ(z + (a), 1 + (b)) annihilates d:

σ(d+ (a), 1 + (b)) = σ(ra+ sb+ (a), 1 + (b)) = σ(sb+ (a), 1 + (b))

= σ((s+ (a))b, 1 + (b)) = σ(s+ (a), b(1 + (b))) = σ(s+ (a), 0) = 0.

3. For M = RR/a with a right ideal a ≤ RR we have

RR/a⊗N ∼= N/aN,

where aN ⊂ N is the additive subgroup generated by the products
av, a ∈ a, v ∈ N . In particular

R⊗N ∼= N.

The tensor product behaves naturally with respect to module homomor-
phisms:
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Proposition 9.9. Denote f : M −→ M̃ and g : N −→ Ñ homomorphisms
of right resp. left R-modules. Then there is a homomorphism

f ⊗ g : M ⊗N −→ M̃ ⊗ Ñ

of abelian groups satisfying

(f ⊗ g)(u⊗ v) = f(u)⊗ g(v).

Remark 9.10. For a general element
∑r

i=1 ui ⊗ vi ∈M ⊗N we have

f ⊗ g

(
r∑
i=1

ui ⊗ vi

)
=

r∑
i=1

f(ui)⊗ g(vi).

But a priori we can not take this as a definition, since the LHS sum rep-
resentation is not unique. The problem to show that the RHS indeed does
not depend on the representation of an element as a finite sum of ”tensor
products” is circumvented by the use of the universal mapping property –
see the below easy and short proof.

Proof. We consider the diagram

M ⊗N σ̂−→ M̃ ⊗ Ñ
β ↑ ↗ ↑ β̃

M ×N (f,g)−→ M̃ × Ñ
,

where the skew arrow σ : M ×N −→ M̃ ⊗ Ñ is

σ := β̃ ◦ (f, g)

and define

f ⊗ g := σ̂.

In certain situations the tensor product carries in a natural way not only
the structure of an abelian group. For this we need bimodules:
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Definition 9.11. Let S,R be rings. An (S,R)-bimodule M , abbreviated
as M = SMR, is an abelian group together with a left and a right scalar
multiplication

S ×M −→M

and
M ×R −→M,

such that
(µu)λ = µ(uλ)

holds for all u ∈M,µ ∈ S, λ ∈ R.

Since for M = SMR scalar multiplication with elements in S is by R-
module homomorphisms and scalar multiplication with elements in R is by
S-module homomorphisms, we obtain from Prop. 9.9 the following corollary:

Corollary 9.12. If M = SMR and N = RNT , then

M ⊗N = S(M ⊗N)T .

Remark 9.13. For a commutative ringR anR-module is an (R,R)-bimodule
with the given scalar multiplication. Then

M ⊗N = R(M ⊗N)R,

with the same left and right scalar multiplication. Hence it is again just an
R-module. Obviously β : M × N −→ M ⊗ N is R-bilinear. We leave it to
the reader to check that (M ⊗N, β) satisfies the universal mapping property
w.r.t. R-bilinear maps to R-modules A, transforming them to R-linear maps
with the same target.

Example 9.14. 1. Tensor product of k-vector spaces: If V,W are
k-vector spaces with bases ei, i ∈ I, and ẽj, j ∈ J , the k-vector space
V ⊗W has the basis ei ⊗ ẽj, i ∈ I, j ∈ J .

2. Base change: Consider a ring homomorphism ϕ : R −→ S and a left
R-module N . We have S = SSR with the right scalar multiplication

S ×R −→ S, (s, λ) 7→ sϕ(λ).

Then
S ⊗N = S(S ⊗N)
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is a left S-module. In the same way for M = MR and S = RSS we find

M ⊗ S = (M ⊗ S)S.

3. Tensor product of R-algebras: Let R be a commutative ring and
ϕ : R −→ A,ψ : R −→ B ring homomorphisms, such that the elements
in ϕ(R) resp. ψ(R) commute with all elements in A resp. B (one says,
that A resp. B is an R-algebra). Regard A = AR and B = RB as right
resp. left R-module. Then A ⊗ B carries as well the structure of an
R-algebra. The product satisfies

(a⊗ b) · (x⊗ y) = (ax)⊗ (by).

Once again, this is not a definition: We have to make sure that there
is a (unique) product on A⊗B behaving in that way. The map

µ : A×B −→ EndR(A⊗B), (a, b) 7→ µa ⊗ µb,

is R-bilinear, thus gives rise to an R-module homomorphism

µ̂ : A⊗B −→ EndR(A⊗B), u 7→ µ̂u.

Then
A⊗B × A⊗B −→ A⊗B, (u, v) 7→ µ̂u(v),

is an R-bilinear map sending (a⊗ b, x⊗ y) to (ax)⊗ (by). As a conse-
quence we see that it induces on A⊗B the structure of a ring resp. an
R-algebra with the homomorphism

R −→ A⊗B, λ 7→ λ(1A ⊗ 1B).

10 Categories and Functors

If one considers a complicated mathematical problem it is often useful to
simplify or reformulate the given situation in a ”natural way”. What this
exactly means is encoded in the Category-Functor language described in this
section.

In the below definition the word ”class” denotes an ”entity” which con-
tains as elements certain mathematical ”objects”. In particular classes may
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be quite big - for example all sets should constitute the elements of a class.
That is the reason why one does not use anymore the term ”set”, since
then we could speak about the set of all sets and would have trouble with
self-contradictory constructions of the type ”the set of all sets which do not
contain themselves as elements”. So one introduces instead the notion of a
”class” extending that of a set: Classes are, similar as sets are, completely
determined by their elements, but the possibilities to produce new classes
from given ones are much more limited than in the case of sets.

We shall not make that precise here, but instead remain at a more or less
naive point of view.

Definition 10.1. A category C is determined by the following data:

1. A class Ob(C), the elements X, Y ∈ Ob(C) being called the objects of
the category C,

2. A set Mor(X, Y ) for any two objects X, Y ∈ Ob(C), its elements being
called ”morphisms from X to Y ” (with the notation f : X −→ Y
meaning nothing but f ∈ Mor(X, Y )),

3. A map

Mor(Y, Z)×Mor(X, Y ) −→ Mor(X,Z), (g, f) 7→ gf

for any three objects X, Y, Z,

4. A distinguished element idX ∈ Mor(X,X) for any X ∈ Ob(C),

being subject to the following conditions

1. For f ∈ Mor(X, Y ) we have

idY f = f, f idX = f

2. For f ∈ Mor(X, Y ), g ∈ Mor(Y, Z), h ∈ Mor(Z,W ) one has

h(gf) = (hg)f

3. We have
Mor(X, Y ) ∩Mor(Z,W ) = ∅

except if Z = X and W = Y .
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Example 10.2. 1. The category SET : Its objects are the sets, while

Mor(X, Y ) := {(f, Y ); f ∈ Y X},

i.e., a morphism is a map from X to Y with the additional datum of Y
as target. This is in order to make the last condition in 10.1 hold. A
similar convention is understood in all the following examples, where
we usually only give the first component f when describing morphisms.

2. The category T OP := (topological spaces, continuous maps) of topo-
logical spaces with the continuous maps as morphisms.

3. The category GRO := (groups, group homomorphisms), i.e. the ob-
jects are the groups and the morphisms are the group homomorphisms
(with prescribed source and target).

4. The categoryAB := (abelian groups, group homomorphisms) of abelian
groups and group homomorphisms between such groups as morphisms.

5. For a ring R denote R-MOD := (left R-modules, module homomor-
phisms) the category of left R-modules with the module homomor-
phisms as morphisms. Note that AB = Z-MOD.

6. Denote C∗(R-MOD) the category whose objects are (homological) R-
module complexes

(M∗, ∂∗) := (Mn, ∂n)n∈Z,

i.e. Z-families of R-modules Mn and R-module homomorphisms ∂n :
Mn −→Mn−1, such that

∂n−1 ◦ ∂n = 0.

The maps ∂n are also called boundary maps or differentials, and often
simply denoted ∂, the correct index n ∈ Z being understood. The
morphisms

ϕ∗ : M∗ −→ M̃∗

are the chain maps, i.e. families (ϕn)n∈Z of R-module homomorphisms

ϕn : Mn −→ M̃n satisfying

∂̃nϕn = ϕn−1∂n

for all n ∈ Z.
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7. In order to make certain operations on complexes more natural one
also considers the category C∗(R-MOD) of cohomological complexes

(M∗, ∂∗) := (Mn, ∂n)n∈Z

with R-modules Mn and R-module homomorphisms ∂n : Mn −→
Mn+1, such that

∂n+1 ◦ ∂n = 0.

Definition 10.3. Let C be a category, X, Y ∈ Ob(C). A morphism f : X −→
Y is called an isomorphism, if it has a left and right inverse g : Y −→ X, i.e.
gf = idX as well as fg = idY . We call the objects X, Y isomorphic, written
as X ∼= Y , if there is an isomorphism f : X −→ Y .

Note that if f : X −→ Y has a left inverse g : Y −→ X and a right
inverse h : Y −→ X then necessarily g = g(fh) = (gf)h = h.

Definition 10.4. A (covariant) functor F : C −→ C ′ between the categories
C, C ′ is given by the following data

1. A map F : Ob(C) −→ Ob(C ′), X 7→ F (X),

2. Maps FX,Y : Mor(X, Y ) −→ Mor(F (X), F (Y )) for all X, Y ∈ Ob(C)
(we write simply F (f) = FX,Y (f), if there is no danger of confusion)

satisfying

1. F is compatible with the ”composition” of morphisms f : X −→ Y, g :
Y −→ Z, i.e.

F (gf) = F (g)F (f).

2. F (idX) = idF (X).

In particular X ∼= Y =⇒ F (X) ∼= F (Y ).

Example 10.5. 1. The ”forgetful functor” R-MOD −→ SET associates
to a module its underlying set, forgetting the module operations.
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2. There is the functor

R[ ] : SET −→ R-MOD, A 7→ R[A], ϕ 7→ ϕ∗,

which associates to a set A the free (left or right) R-module R[A] gen-
erated by it (consisting of all functions f : A −→ R with finite sup-
port) and to a map ϕ : A −→ B the push forward homomorphism
ϕ∗ : R[A] −→ R[B] defined as follows

ϕ∗(f)(b) =
∑
ϕ(a)=b

f(a).

Indeed for the basis elements ea, a ∈ A, that means simply

ϕ∗(ea) = eϕ(a).

3. ”Abelization” A : GRO −→ AB, G 7→ A(G) := G/C(G) is a functor
with the obvious maps on the level of morphisms. Note that the passage
f 7→ A(f) preserves surjectivity, but not injectivity, e.g. A(An) is
trivial for n ≥ 5, while A(Cn) = Cn. Then for odd n consider f :
Cn −→ An, e

2πi/n −→ σ, where σ = (1, 2, ..., n).

4. Denote A a right R-module. Then

M 7→ A⊗M,ϕ 7→ idA ⊗ ϕ

defines a functor
A⊗ .. : R-MOD −→ AB.

In the same way, given a left R-module B, there is a functor ...⊗B from
the category of all right R-modules to the category of abelian groups.
Furthermore, if R is commutative, we may replace AB with R-MOD.

5. For a left R-module A

Hom(A, ..) : R-MOD −→ AB,M 7→ Hom(A,M)

is a functor with the following action on the level of morphisms:

Hom(A, ..) : Mor(M,N) −→ Mor(Hom(A,M),Hom(A,N)),

f 7→ (Hom(A, f) : ϕ 7→ f ◦ ϕ).

The passage f 7→ Hom(A, f) preserves injectivity, but not surjectivity:
Consider R = Z, A = Z2 and f : Z −→ Z2, n 7→ n, the quotient
projection.
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6. The base change functor: Let ψ : R −→ R̂ be a ring homomorphism.
Then

R-MOD −→ R̂-MOD,M 7→ R̂⊗M,ϕ 7→ R̂⊗ ϕ
is called the base change functor w.r.t. ψ. For the quotient map ψ :
R −→ R/a with a two sided ideal a, there is a functorial isomorphism

(R/a)⊗M ∼= M/aM.

Finally, if R is an integral domain and and S ⊂ R\{0} a multiplicative
subset and ψ : R ↪→ S−1R the inclusion, then the base change functor
may be described as well more down to earth: There is a functorial
isomorphism

S−1R⊗M ∼= S−1M.

7. The n-th homology functor

Hn : C∗(R-MOD) −→ R-MOD,M∗ 7→ Hn(M∗)

associates to a complex its n-th homology module

Hn(M∗) := Zn(M∗)/Bn(M∗),

where
Zn(M) := ker ∂n ≤Mn

is the submodule of ”n-cycles” and

Bn(M) := ∂n+1(Mn+1) ≤ Zn(M∗)

the submodule of ”n-boundaries”. A complex is called acyclic, ifHn(M∗) =
0 holdes for all n ∈ Z.

8. The n-th cohomology (module) of a cohomological complex M∗ is

Hn(M∗) := Zn(M∗)/Bn(M∗),

where
Zn(M) := ker ∂n ≤Mn

is the submodule of ”n-cocycles” and

Bn(M) := ∂n−1(Mn−1) ≤ Zn(M∗)

the submodule of ”n-coboundaries”.
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In the above examples we have seen some ”functorial isomorphisms”. In
technical terms one calls them ”natural equivalences”:

Definition 10.6. Let F,G : C −→ C ′ be functors.

1. A natural transformation Φ : F −→ G from F to G is a collection

Φ := (ΦA)A∈Ob(C)

of morphisms
ΦA : F (A) −→ G(A)

such that given any morphism ϕ : A −→ B, the diagram

F (A)
ΦA−→ G(A)

F (ϕ) ↓ ↓ G(ϕ)

F (A)
ΦB−→ G(B)

is commutative.

2. A natural equivalence between two functors is a natural transformation,
such that all the morphisms ΦA : F (A) −→ G(A) are isomorphisms.

Let us come back to the abelian group Hom(M,B). It depends on
two variables: If we fix the first variable M we obtain the functor B 7→
Hom(M,B), whileM 7→ Hom(M,B) is a ”contravariant” functor fromR-MOD
to AB: A module homomorphism f : M −→ N induces a homomorphism in
the opposite direction:

Hom(f,B) : Hom(N,B) −→ Hom(M,B), ϕ 7→ ϕ∗(f) := ϕ ◦ f.

Definition 10.7. A (contravariant) functor F : C −→ C ′ between the cate-
gories C, C ′ is given by the following data

1. A map F : Ob(C) −→ Ob(C ′), X 7→ F (X),

2. Maps FX,Y : Mor(X, Y ) −→ Mor(F (Y ), F (X)) for all X, Y ∈ Ob(C)
(we write simply F (f) = FX,Y (f), if there is no danger of confusion)
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satisfying

1. F is compatible with the ”composition” of morphisms f : X −→ Y, g :
Y −→ Z, i.e.

F (gf) = F (f)F (g).

2. F (idX) = idF (X).

Example 10.8. 1. There is the functor

SET −→ R-MOD, A 7→ RA, ϕ 7→ ϕ∗,

which associates to a set A the (left or right) module of all R-valued
functions on A and to a map ϕ : A −→ B the pull back homomorphism

ϕ∗ : RB −→ RA, f 7→ f ◦ ϕ.

2. For an R-module B

Hom(.., B) : R-MOD −→ AB,M 7→ Hom(M,B)

is a functor with the following action on the level of morphisms:

Hom(f,B) : Mor(M,N) −→ Mor(Hom(B,N),Hom(B,M)),

f 7→ (Hom(B, f) : ϕ 7→ ϕ ◦ f).

The passage f 7→ Hom(f,B) transforms surjective homomorphisms
into injective ones, but not necessarily injective homomorphisms into
surjective ones: Consider R = Z, B = Z and f : Z −→ Z, n 7→ 2n.

The following class of functors is of particular importance:

Definition 10.9. A functor

F : R-MOD −→ AB

is called additive if

1. for covariant F the maps

Hom(L,N) −→ Hom(F (L), F (N))

f 7→ F (f)

are homomorphisms of abelian groups for all L,N ∈ R-MOD,
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2. for contravariant F the maps

Hom(L,N) −→ Hom(F (N), F (L))

f 7→ F (f)

are homomorphisms of abelian groups for all L,N ∈ R-MOD.

Example 10.10. 1. For A,B ∈ R-MOD the functors Hom(A,−) and
Hom(−, B) are additive.

2. For a right R-module A the functor A⊗− is additive.

3. For a commutative ring R we may define the functor R-MOD −→
R-MOD,M 7→M ⊗M, f 7→ f ⊗f , and obtain a non-additive functor.

4. The (restricted) functor R[ ] : R-MOD −→ R-MOD is not additive,
since R[f ] 6= 0 for any homomorphism f because of R[f ](e0) = ef(0) =
e0.

Remark 10.11. For an additive functor one has F (0) = 0, where 0 repre-
sents the trivial R-module resp. trivial abelian group. Indeed a module M
is trivial if and only if idM = 0 and in that case we have idF (M) = F (idM) =
F (0) = 0.

Proposition 10.12. 1. Given an additive covariant functor F : R-MOD −→
AB we may extend it to a functor

C∗(R-MOD) −→ C∗(AB),M∗ 7→ F (M∗),

where

F (M∗) := (F (Mn), F (∂n))n∈Z.

2. Given an additive contravariant functor F : R-MOD −→ AB we may
extend it to a functor

C∗(R-MOD) −→ C∗(AB),M∗ 7→ F (M∗),

where

F (M∗) := (F (Mn), F (∂n))n∈Z.

69



Proof. We have

F (∂n) ◦ F (∂n+1) = F (∂n ◦ ∂n+1) = F (0) = 0.

An additive functor need not commute with the homology functors, i.e.
in general we have

Hn(F (M∗)) 6∼= F (Hn(M∗)).

Only for exact functors that turns out to be true, see Prop.12.5. Here is the
definition:

Definition 10.13. A covariant/contravariant additive functor F : R-MOD −→
AB is called

1. left exact if given a short exact sequence

0 −→ L −→M −→ N −→ 0

the sequence
0 −→ F (L) −→ F (M) −→ F (N)

resp.
0 −→ F (N) −→ F (M) −→ F (L)

is exact,

2. right exact if given a short exact sequence as above the sequence

F (L) −→ F (M) −→ F (N) −→ 0

resp.
F (N) −→ F (M) −→ F (L) −→ 0

is exact. It is called exact if it is both left and right exact, i.e. if it
transforms short exact sequences into short exact sequences.

Example 10.14. 1. For a multiplicative subset S ⊂ R\{0} of an integral
domain R the localization functor

S−1(−) : R-MOD −→ S−1R-MOD

is exact.
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2. The functor Hom(A,−) : R-MOD −→ AB is left exact. It is exact if
and only if with f also Hom(A, f) is surjective.

3. The (contravariant) functor Hom(−, A) : R-MOD −→ AB is left ex-
act. It is exact if and only if injective f gives surjective Hom(f, A).

Proposition 10.15. Let

L
f−→M

g−→ N −→ 0

be an exact sequence of left/right R-modules, i.e. ker(g) = f(L) and g(M) =
N , and A a right/left R-module. Then the induced sequence

A⊗ L idA⊗f−→ A⊗M idA⊗g−→ A⊗N −→ 0

resp.

L⊗ A f⊗idA−→ M ⊗ A g⊗ida−→ N ⊗ A −→ 0

is exact as well.

Proof. We consider the case of left R-modules L,M,N only. It is clear that
g̃(A⊗M) = A⊗N and that the composition of f̃ := idA⊗f and g̃ := idA⊗g
is trivial, or, with other words, that f̃(A⊗ L) ⊂ ker(g̃). Now let us consider
the homomorphism

(A⊗M)/f̃(A⊗ L) −→ A⊗N.

induced by g̃. We construct an inverse: Consider the following bihomomor-
phism

σ : A×N −→ (A⊗M)/f̃(A⊗ L), (a, v) 7→ a⊗ u+ f̃(A⊗ L),

where u ∈ M, g(u) = v. It is well defined, since if g(ũ) = v as well, then
ker g = f(L) shows that ũ− u = f(t) for some t ∈ L, hence a⊗ ũ− a⊗ u =
a⊗ f(t) ∈ f̃(A⊗ L). So there is a homomorphism

σ̂ : A⊗N −→ (A⊗M)/f̃(A⊗ L),

a left inverse to the map induced by g̃. Hence that map is injective and thus
f̃(A⊗ L) = ker(g̃).
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Example 10.16. The tensor product does not preserve injectivity: The map

µ2 : Z −→ Z

induces the zero map

0 = idZ2 ⊗ µ2 : Z2 −→ Z2.

Definition 10.17. A right/left R-module is called flat if the functor
A⊗− : R-MOD −→ AB resp. −⊗ A : R-MOD −→ AB is right exact or,
equivalently, preserves injectivity.

Remark 10.18. There are also names for modules P resp. I, such that
Hom(P,−) resp. Hom(−, I) is an exact functor: We know them already,
injective and projective modules. For the proof that Def.3.17 is equivalent
to the exactness of the Hom-functors we refer to the next section.

Example 10.19. Free modules, more generally projective modules are flat.
Namely

R[I]⊗M ∼= M [I],

where
M [I] :=

⊕
i∈I

Mi, with Mi = M ∀ i ∈ I.

Furthermore
(P ⊕Q)⊗M ∼= (P ⊗M)⊕ (Q⊗M).

Finally coming back to the general situation, we show, that exact functors
transform exact sequences into exact sequences in general:

Proposition 10.20. Let F : R-MOD −→ AB be an exact co(ntra)variant
functor. If L −→ M −→ N is exact, so is F (L) −→ F (M) −→ F (N) resp.
F (N) −→ F (M) −→ F (L).

Proof. We only consider the covariant case and leave the contravariant one
to the reader. Denote M0 ≤M the image of the first arrow and N0 ≤ N the
image of the second one. Apply the functor F to the following diagram

N
↗ ↑

0 −→ M0 ↪→ M � N0 −→ 0
↑ ↗
L
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with the horizontal sequence being short exact, and obtain

F (N)
↗ ↑

0 −→ F (M0) ↪→ F (M) � F (N0) −→ 0
↑ ↗

F (L)

.

Since the left vertical arrow remains surjective when applying the exact func-
tor F and the right one injective, the exactness of the horizontal short exact
sequence implies the exactness of the skew sequence at the middle position.

11 Projective and injective modules

For the construction of complexes associated to an R-module we need some
considerations about injective and projective modules:

Proposition 11.1. 1. An R-module P is projective iff, given a surjective
module homomorphism ψ : M −→ N , for any module homomorphism
σ : P −→ N there is a homomorphism σ̂ : P −→ M with σ = ψ ◦ σ̂,
i.e. the following diagram

M
ψ
� N

σ̂ ↖ ↑ σ
P

is commutative.

2. An R-module I is injective iff, given an injective module homomorphism
ϕ : L −→ M , for any module homomorphism σ : L −→ I there is a
homomorphism σ̂ : M −→ I with σ = σ̂ ◦ϕ, i.e. the following diagram

L
ϕ
↪→ M

σ ↓ ↙ σ̂
I

is commutative.
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Corollary 11.2. 1. The functor Hom(A,−) : R-MOD −→ AB is exact
iff A is projective.

2. The functor Hom(−, A) : R-MOD −→ AB is exact iff A is injective.

Proof of Prop.11.1. ”⇐=”:

1. Let ψ : M −→ P be surjective. Taking N = P and σ = idP gives
the defining property of a projective module: M0 := σ̂(P ) then is a
submodule complementary to ker(ψ).

2. Let ϕ : I −→ M be injective. Taking L := I and σ = idI gives
the defining property of an injective module: M0 := ker(σ̂) then is a
submodule complementary to ϕ(L).

”=⇒”:

1. Let ψ : M −→ N be a surjective homomorphism. We define

M ×N P := {(u, p) ∈M ⊕ P ;ψ(u) = σ(p)}

and obtain a commutative diagram

M
ψ
� N

↑ ↑ σ
C ↪→ M ×N P � P

where the arrows emanating from the ”fibred product” M ×N P are
the respective projections, the horizontal one being onto. So we find a

submodule C ≤M ×N P , such that C
∼=−→ P and define

σ̂ := prM ◦ (prP |C)−1.

2. Let ϕ : L −→M be an injective homomorphism. We define

I ⊕LM := (I ⊕M)/∆,

where

∆ := {(ϕ(`),−σ(`)); ` ∈ L}
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as well as ι1 : I −→ I⊕LM, i 7→ (i, 0)+∆ and ι2 : M −→ I⊕LM,u 7→
(0, u) + ∆. and obtain a commutative diagram

L
ϕ
↪→ M

σ ↓ ↓
I −→ I ⊕LM = ι2(I)⊕ C

where the arrows pointing to the ”fibred sum” I ⊕L M are the maps
ι1 resp. ι2, the horizontal one, ι1, being into. So we find a submodule
C ≤ I ×LM complementary to ιI(I) and define

σ̂ := pr ◦ ι2

with the projection pr : ι1(I)⊕ C −→ ι1(I) ∼= I.

The main result of this section is:

Theorem 11.3. There are functors

R[ ] : R-MOD −→ R-MOD

and
I : R-MOD −→ R-MOD

taking free resp. injective modules as values together with a surjective resp.
injective natural transformation

σ : R[ ] −→ idR-MOD

and
ε : idR-MOD −→ I.

Proof. Let us assume that we are considering left modules. The first functor
has already been defined on SET , compose it with the forgetful functor
R-MOD −→ SET , the natural transformation is given by

σM : R[M ] −→M, f 7→
∑
u∈M

f(u)u,

or, equivalently eu 7→ u holds for the elements of the basis (eu)u∈M . (For a
right R-module we take the map f 7→

∑
u∈M uf(u).)
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For the second part we first of all need the contravariant exact character
dual functor

M 7→M∗

transforming left/right modules into right/left modules together with the
injective biduality natural transformation

βM : M −→M∗∗

to be explained below. Now given M take

I(M) := R[M∗]∗

with
εM = (σM∗)

∗ ◦ βM : M −→M∗∗ −→ R[M∗]∗ = I(M)

and σM∗ : R[M∗] −→M∗.

Definition 11.4. The ”character dual” L∗ (no standard terminology!) of an
abelian group L is defined as

L∗ := HomZ(L,Q/Z).

Remark 11.5. If L is even a left/right R-module, it is a right/left R-module
with the scalar multiplication (χλ)(u) := χ(λu) resp. (λχ)(u) := χ(uλ).
Furthermore, given u ∈ L \ {0} we find χ ∈ L∗ with χ(u) 6= 0, namely:
There is a homomorphism Zu −→ Q/Z, u 7→ d−1 + Z, with some d ∈ N>1:
If u has infinite order we may take any d > 1, otherwise d := ord(u). And
that homomorphism extends to a ”character form” χ : L −→ Q/Z due to
the injectivity of Q/Z.

As a consequence the evaluation

εu : L∗ −→ Q/Z, χ 7→ χ(u),

of functionals at a given element u ∈ L is nontrivial for u 6= 0. With other
words: The biduality homomorphism

βL : L −→ L∗∗, u 7→ εu,

is an injective homomorphism of left/right R-modules.

Proposition 11.6. For a projective (left/right) R-module P the (right/left)
R-module P ∗ is injective.
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Proof. Given an injection
j : P ∗ ↪→M

the dual map
j∗ : M∗ −→ P ∗∗

is onto, since Q/Z is injective. Hence, P being projective, there is a map β̂P
making the diagram

M∗ j∗

� P ∗∗

β̂P ↖ ↑ βP
P

commutative. If we dualize it we obtain (β̂P )∗ ◦ j∗∗ = (βP )∗. Now we shall
show that the map

π := (β̂P )∗ ◦ βM : M −→M∗∗ −→ P ∗

satisfies
π ◦ j = idP ∗ ,

hence M0 := ker(π) is a complementary submodule for j(P ∗). In order to
see that we consider the commutative diagram

P ∗
j−→ M

βP ∗ ↓ ↓ βM

P ∗∗∗
j∗∗−→ M∗∗

(βP )∗ ↓ ↓ (β̂P )∗

P ∗
id−→ P ∗

.

The upper square is commutative since β is a natural transformation, the
commutativity of the lower one we have already seen above. Finally use the
following lemma:

Lemma 11.7. For any module P we have

idP ∗ = (βP )∗ ◦ βP ∗ : P ∗
βP∗−→ P ∗∗∗

(βP )∗−→ P ∗.

Proof. Take some ϕ ∈ P ∗, i.e. a homomorphism ϕ : P −→ Q/Z. It is first
mapped to εϕ ∈ (P ∗)∗∗, then we have to compose it with βP and to show
that it is just ϕ. In order to see that we evaluate at sume u ∈ P and obtain

(εϕ ◦ βP )(u) = εϕ(βP (u)) = εϕ(εu) = εu(ϕ) = ϕ(u).
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12 Construction of Complexes

In this section we construct functors

T OP , R-MOD −→ C∗(R-MOD).

They associate with a topological space or an R-module a complex, which
itself is a quite big and unwieldy object, but the compositions with the ho-
mology functors

Hn : C∗(R-MOD) −→ R-MOD

lead to interesting information about the original objects.

12.1 Singular homology groups

Here we construct a functor

C∗ : T OP −→ C∗(R-MOD), X 7→ C∗(X) := C∗(X,R),

which associates to a topological space its ”singular chain complex with co-
efficients in the ring R”.

Definition 12.1. Let X be a topological space.

1. The standard n-simplex ∆n ⊂ Rn+1 is defined as the convex hull of the
standard base vectors e0, ..., en ∈ Rn+1, i.e. the set

∆n :=
{

(t0, ..., tn) ∈ Rn+1; ti ≥ 0, t0 + ...+ tn = 1
}
.

2. A singular n-simplex σ in a topological space X is a continuous map

σ : ∆n −→ X.

We denote
Sn(X) := {σ : ∆n −→ X continuous}

the set of all singular n-simplices in X (in particular S0(X) = X).
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3. The n-th singular chain module of X, n ≥ 0, with coefficients in
R, is the free R-module with basis Sn(X), i.e.

Cn(X) := Cn(X;R) := R [Sn(X)]

=

 ∑
σ∈Sn(X)

λσeσ;λσ ∈ R and = 0 for almost all σ ∈ Sn(X)


=

{
r∑
i=1

λiσi;λi ∈ R, σi ∈ Sn(X)

}
,

replacing, for convenience of notation, eσ with σ. Furthermore

Cn(X) := 0, n < 0.

The boundary homomorphism: Now let us describe the boundary ho-
momorphisms

∂n : Cn(X) −→ Cn−1(X), n > 0.

Necessarily ∂n = 0 for n ≤ 0. There are natural embeddings

εni : ∆n−1 −→ ∆n, (t0, ..., tn−1) 7→ (t0, ..., ti−1, 0, ti, ..., tn−1)

of ∆n−1 as the facet opposite to the vertex ei ∈ ∆n. Now, for a singular
n-simplex σ we set

∂nσ :=
n∑
i=0

(−1)iσ ◦ εni ∈ Cn−1(X)

and extend by linearity to Cn(X). To see that ∂n−1∂n = 0 we may assume
n ≥ 2 and consider for 0 ≤ k < ` ≤ n the maps

εk` : ∆n−2 −→ ∆n,

(t0, ..., tn−2) 7→ (t0, ..., tk−1, 0, tk, ..., t`−2, 0, t`−1, ..., tn−2)

and remark

εni ◦ εn−1
j =

{
εi,j+1 , if i ≤ j
εji , if j < i

.

79



So

∂n−1∂nσ =
n∑
i=0

(−1)i∂n−1(σ ◦ εni ) =
n∑
i=0

n−1∑
j=0

(−1)i+jσ ◦ εni ◦ εn−1
j

=
∑

0≤k<`≤n

((−1)k+`−1 + (−1)k+`)σ ◦ εk` = 0 .

Thus we obtain the singular chain complex

C∗(X) := (Cn(X), ∂n)n∈Z

of the topological space X. Its n-th homology module

Hn(X) := Hn(X;R) := Hn(C∗(X))

is called the n-th (singular) homology module with coefficients in R (or ho-
mology group, if R = Z) of the topological space X.

Note that a continuous map f : X −→ Y induces a chain map

C∗(f) : C∗(X) −→ C∗(Y ),

where
Cn(f) : Cn(X) −→ Cn(Y )

is the linear extension of

Sn(X) −→ Sn(Y ), σ 7→ f ◦ σ,

and thus a homomorphism

fn : Hn(X) −→ Hn(Y ).

12.2 Derived Functors

Here we construct two functors

P∗ : R-MOD −→ C∗(R-MOD)

and
I∗ : R-MOD −→ C∗(R-MOD),
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which associate to an R-module its natural free resp. injective resolution
P∗(M) resp. I∗(M).

To begin with we define in general what we mean by a projective or free
resolution: First of all we may regard modules as complexes concentrated in
degree 0: The functor

∆∗ : R-MOD −→ C∗(R-MOD), L 7→ ∆∗(L),

where ∆∗(L) denotes the complex with

∆n(L) =

{
L , if n = 0
0 , if n 6= 0

(and, necessarily, trivial differential) identifies R-MOD with a subcategory
of C∗(R-MOD). It has as a left inverse the zeroth homology functor

H0 : C∗(R-MOD) −→ R-MOD,M∗ 7→ H0(M∗).

In this section we want to ”approximate” in a functorial way the complex
∆∗(L) by the complex P∗(L), whose chain modules Pn(L) are ”nice”. Here
”nice” could mean either free or projective, while an ”approximation” of
∆∗(L) is any complex admitting a ”quasi-isomorphism” to ∆∗(L).

Definition 12.2. 1. A complex M∗ is called acyclic, if it has trivial ho-
mology modules: Hn(M∗) = 0 for all n ∈ Z.

2. A morphism of complexes ϕ∗ : M∗ −→ N∗ is called a quasi-isomorphism
if all the homology maps Hn(ϕ∗) : Hn(M∗) −→ Hn(N∗) are isomor-
phisms.

3. A projective/free resolution of a module L is a quasi-isomorphism

ε∗ : Q∗ −→ ∆∗(L),

where the complex Q∗ consists of projective/free R-modules Qn, n ∈ N,
and, furthermore, Qn = 0 for n < 0.

Remark 12.3. 1. For a resolution Q∗ of a module L we have

Hn(Q∗) =

{
L , if n = 0
0 , if n 6= 0

.
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2. If one wants to avoid the use of the complex ∆∗(L) and quasi-isomorphisms,
we might say as well that the data determining a projective/free resolu-
tion of a module L are the complex Q∗ together with a homomorphism
ε : Q0 −→ L, such that the augmented complex

... −→ Q1 −→ Q0
ε−→ L −→ 0 −→ ....

is acyclic.

3. Since H0(Q∗) ∼= L for a resolution Q∗ of L, the complex Q∗ contains all
the information about L. So resolving a module means replacing it in
the bigger category C∗(R-MOD) ⊃ R-MOD by an in certain respects
more well behaved object.

Example 12.4. For an integral domain R let L := R/(a), where a ∈ R\{0}.
Then as a free resolution Q∗ of L we can take the complex

... −→ 0 −→ Q1 = R
µa−→ R = Q0 −→ 0 −→ .....

with the multiplication map µa(x) = ax as differential ∂1. And ε∗ = (εn)n∈Z :
Q∗ −→ ∆∗(L) is composed of the quotient map ε0 : Q0 = R −→ R/(a) = L
and εn = 0 for n 6= 0.

Let us now construct the functor

P∗ : R-MOD −→ C∗(R-MOD), L 7→ P∗(L),

together with a natural transformation

ε∗ : P∗ −→ ∆∗,

such that for every R-module L the chain map ε∗(L) : P∗(L) −→ ∆∗(L)
provides a free resolution of L.

While for n < 0 we take Pn(L) = {0} and thus necessarily ∂n = 0, the
construction of the Pn(L), n ≥ 0, is by induction. We now take

P0(L) := R[L], ∂0 = 0, ε0 := σL.

Assume now everything has been defined up to degree n ≥ 0. With

Kn(L) :=

{
ker(ε0) , if n = 0
ker(∂n) , if n > 0
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let
Pn+1(L) := R[Kn(L)]

and the boundary homomorphism is

∂n+1 = ι ◦ σ : R[Kn(L)]
σ−→ Kn(L)

ι
↪→ Pn(L),

where σ := σKn(L) and ι is the inclusion. We leave it to the reader to
define, given a homomorphism f : L −→ N , the corresponding chain map
P∗(f) : P∗(L) −→ P∗(N).

Now let us pass to injective resolutions. The definition is analogous to
that of a projective resolution, with all arrows reversed. Here we describe
briefly the construction of the functor

I∗ : R-MOD −→ C∗(R-MOD), L 7→ I∗(L),

such that

1. the chain modules In(L), n ∈ Z, are injective R-modules, In(L) = 0
for n < 0, and

2. there is a natural transformation

ε∗ : ∆∗ −→ I∗,

where the functor ∆∗ : R-MOD −→ C∗(R-MOD) is defined in anal-
ogy to ∆∗, inducing a quasi-isomorphism

ε∗(L) : ∆∗(L) −→ I∗(L)

for all R-modules L.

Taking In(L) := 0 for n < 0 and I0(L) := I(L), we define In(L) and
∂n : In(L) −→ In+1(L) by induction on n ∈ N. Assume Iq(L) and ∂q−1 have
been defined for q ≤ n. Define

In+1(L) :=

{
I(I(L)/ι(L)) , if n = 0
I(In(L)/∂n−1(In−1(L))) , if n > 0

.

with
∂0 := ι ◦ % : I(L)

%−→ I(L)/ι(L))
ι−→ I1(L)
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and
∂n := ι ◦ % : In(L)

%−→ In(L)/∂n−1(In−1(L))
ι−→ In+1(L)

for n > 1.

In order to get complexes with interesting (co)homology one applies ad-
ditive functors F : R-MOD −→ AB to resolutions. For exact functors we
don’t obtain something really new:

Proposition 12.5. Let F : R-MOD −→ AB be an exact co(ntra)variant
functor.

1. For covariant F there is a natural equivalence

F ◦Hn

∼=−→ Hn ◦ F,

in particular
F (Hn(M∗)) ∼= Hn(F (M∗)).

2. For contravariant F we have

F ◦Hn

∼=−→ Hn ◦ F,

in particular
F (Hn(M∗)) ∼= Hn(F (M∗)).

Proof. We consider the covariant case and leave the contravariant one to the
reader. Let Bn := Bn(M∗), Zn := Zn(M∗), Hn := Hn(M∗). The sequence

Mn+1 � Bn ↪→Mn

is transformed into

F (Mn+1)� F (Bn) ↪→ F )Mn),

whence we obtain a natural isomorphism

F (Bn)
∼=−→ Bn(F (M∗)).

On the other hand, the exact sequence

Zn ↪→Mn −→Mn−1
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is transformed into the exact sequence

F (Zn) ↪→ F (Mn) −→ F (Mn−1),

whence we obtain a natural isomorphism

F (Zn)
∼=−→ Zn(F (M∗)).

So we have established the upper two horizontal isomorphisms in the diagram

0 0
↓ ↓

F (Bn)
∼=−→ Bn(F (M∗))

↓ ↓
F (Zn)

∼=−→ Zn(F (M∗))
↓ ↓

F (Hn)
∼=−→ Hn(F (M∗))

↓ ↓
0 0

,

they induce the lower horizontal isomorphism on the homology level.

Definition 12.6. 1. For a covariant additive functor F : R-MOD −→
AB, the functor

LnF := Hn ◦ F ◦ P∗ : R-MOD −→ AB

is called the n-th left derived functor of F .

2. For a contravariant additive functor F : R-MOD −→ AB the functor

RnF := Hn ◦ F ◦ P∗ : R-MOD −→ AB

is called the n-th right derived functor of F .

3. For a covariant additive functor F : R-MOD −→ AB the functor

RnF := Hn ◦ F ◦ I∗ : R-MOD −→ AB

is called the n-th right derived functor of F .
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Remark 12.7. 1. If F is an exact covariant functor we have

LnF (M) = 0, n > 0.

2. If F is an exact contravariant functor we have

RnF (M) = 0, n > 0.

3. For a right exact covariant functor F there is a natural equivalence

L0F
∼=−→ F.

Indeed, the exact sequence

0 −→ Z0(P∗(M)) ↪→ P0(M)
ε−→M −→ 0

yields the exact sequence

F (Z0(P∗(M))) −→ F (P0(M))
F (ε)−→ F (M) −→ 0.

Since the right exact functor F preserves surjectivity, we may replace
the first term by F (P1(M)) and obtain the exact sequence

F (P1(M))
F (∂1)−→ F (P0(M))

F (ε)−→ F (M) −→ 0,

inducing a natural isomorphism

L0F (M) = cokerF (∂1) ∼= F (M).

4. For a left exact contravariant functor F there is a natural equivalence

F
∼=−→ R0F.

The proof is anologous to that in the previous point.

5. Finally, for a left exact covariant functor F there is a natural equiva-
lence

F
∼=−→ R0F.
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Definition 12.8. 1. Fix a right R-module A and the functor F (M) =
A⊗RM . Then we define

TorRn (A,M) := LnF (M) = Hn(A⊗ P∗(M)).

2. Fix a left R-module B and consider the functor F (M) = HomR(M,B).
Then we define

ExtnR(M,B) := RnF (M) = Hn(Hom(P∗(M), B)).

Remark 12.9. 1. We have

TorR0 (A,M) ∼= A⊗M

and
Ext0

R(M,B) ∼= Hom(M,B)).

2. Note that we can as well fix the second factor M and regard the functor
G(A) := A⊗RM (replacing left with right R-modules etc.). Then there
is a natural isomorphism

LnG(A) = Hn(P∗(A)⊗M) ∼= Hn(A⊗ P∗(M)) = TorRn (A,M).

For the proof we refer to Th.13.21.

3. Fix a left R-module M and consider the functor G(B) = HomR(M,B).
Then there is a natural isomorphism

RnG(B) = Hn(Hom(M, I∗(B)) ∼= Hn(P∗(M), B) = ExtnR(M,B).

For the proof we refer to Th.13.21.

13 Computation of Homology

13.1 Comparing projective resolutions

The complex P∗(L) is by far too big in order to be useful in computations.
Indeed given a specific module L, we may replace P∗(L) with a considerably
smaller complex as in Example.13.1, since then we may adapt our construc-
tion to L, do not have to fulfill the naturality condition. A similar reasoning
applies to injective resolutions; the necessary modifications, as for example
arrows to be reversed, are left to the reader. The central result of this section
is the following:
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Theorem 13.1. Let P∗ −→ ∆∗(L) and Q∗ −→ ∆∗(L) be projective resolu-
tions of the R-module L. Then there is a chain map ϕ∗ : P∗ −→ Q∗, such
that the triangle

P∗
ϕ∗−→ Q∗

↘ ↙
∆∗(L)

is commutative. Furthermore for any additive functor F : R-MOD −→ AB,
the induced chain map

F (ϕ∗) : F (P∗) −→ F (Q∗)

is a quasi-isomorphism, and the isomorphisms

Hn(F (ϕ∗)) : Hn(F (P∗))
∼=−→ Hn(F (Q∗))

are independent from the chain map fitting into the above commutative dia-
gram.

Thus, in order to compute the value LnF (N) of a derived functor LnF
at some module N and to handle its elements we may use any projective
resolution of the R-module N .

Example 13.2. The general construction of a projective resolution is similar
to that one of P∗(L), only that one may be more economic and less redundant:
Set Q0 := R[B], where B ⊂ L is a system of generators, and define Qn+1 =
R[Bn] with a system of generators Bn of Kn := ker(∂n) ≤ Qn.

Let us now investigate how far we are from functoriality when work-
ing with arbitrary projective resolutions. Given a projective resolution ε∗ :
P∗ −→ ∆∗(L), we shall treat the isomorphism

H0(ε∗) : H0(P∗)
∼=−→ H0(∆∗(L)) ∼= L

as an identification.

Definition 13.3. Let P∗ −→ ∆∗(L) and Q∗ −→ ∆∗(N) be projective reso-
lutions of the modules L,N . A complex homomorphism ϕ∗ : P∗ −→ Q∗ is
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said to cover a homomorphism f : L −→ N , if H0(ϕ∗) = f or, equivalently,
if the diagram

P∗
ϕ∗−→ Q∗

↓ ↓

∆∗(L)
∆∗(f)−→ ∆∗(N)

commutes.

Lemma 13.4. Given projective resolutions P∗, Q∗ of the modules L,N and a
homomorphism f : L −→ N , there is a complex homomorphism ϕ∗ : P∗ −→
Q∗ covering f .

Proof. Exercise, alternatively Grillet.

Example 13.5. The complex homomorphism ϕ∗ := P∗(f) : P∗(L) −→
P∗(N) is a covering homomorphism of f : L −→ N .

In order to compare different covering homomorphisms we need the fol-
lowing notion:

Definition 13.6. Two chain maps ϕ∗, ϕ̃∗ : P∗ −→ Q∗ between complexes
P∗, Q∗ of R-modules are called “(chain) homotopic“, written as ϕ∗ w ϕ̃∗, if
and only if there is a ”chain homotopy” between ϕ∗ and ϕ̃∗, i.e. a family of
R-module homomorphisms (κn : Pn −→ Qn+1)n∈Z satisfying

ϕn − ϕ̃n = ∂n+1κn + κn−1∂n

for all n ∈ Z (where we use the same letter to denote the differential in P∗
and in Q∗!).

Remark 13.7. 1. Homotopic complex homomorphisms ϕ∗ and ϕ̃∗ induce
the same homomorphisms in homology:

Hn(ϕ∗) = Hn(ϕ̃∗).

2. Homotopy is an equivalence relation.
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3. Composition can be defined on the level of homotopy classes of complex
homomorphisms. As a consequence we can define a new category, the
homotopy category K(R-MOD): Its objects are the complexes of R-
modules, while the morphisms are the homotopy classes of complex
homomorphisms: We denote [ϕ∗] the homotopy class of a complex
homomorphism ϕ∗.

4. The natural extension F : C∗(R-MOD) −→ C∗(AB) of an additive
functor F : R-MOD −→ AB preserves homotopy:

ϕ∗ w ϕ̃∗ =⇒ F (ϕ∗) w F (ϕ̃∗).

So the above extended functor F : C∗(R-MOD) −→ C∗(AB) ”de-
scends” to a functor F : K(R-MOD) −→ K(AB). Furthermore
there are homology functors Hn : K(R-MOD) −→ R-MOD resp.
Hn : K(AB) −→ AB.

Lemma 13.8. Given projective resolutions P∗, Q∗ of the modules L,N , any
two coverings ϕ∗, ϕ̃∗ : P∗ −→ Q∗ of a homomorphism f : L −→ N are chain
homotopic:

ϕ∗ w ϕ̃∗.

Furthermore [ϕ∗] is an isomorphism iff f is.

Proof. The construction of the homomorphisms κn : Pn −→ Qn+1 is by
induction: .........

For the second part note first of all that any covering ϕ∗ : P∗ −→ P∗ of
idL is homotopic to idP∗ , the latter being itself a covering homomorphism.

Now consider a covering homomorphism of an isomorphism: It determines
an isomorphism in the category K(R-MOD): Given an isomorphism f :
L −→ N and covering homomorphisms ϕ∗, ψ∗ of f, f−1, the compositions
ψ∗ ◦ ϕ∗ and ϕ∗ ◦ ψ∗ are coverings of idL resp. idN ; hence

ψ∗ ◦ ϕ∗ w idP∗ , ϕ∗ ◦ ψ∗ w idQ∗ .

Proof of Th.13.1. The first part is Lemma 13.4. Furthermore

Hn(F (ϕ∗)) = Hn(F ([ϕ∗])),
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where [ϕ∗] is a uniquely determined isomorphism in K(AB), the complex
homomorphism ϕ∗ : P∗ −→ Q∗ being a cover of idL.

Corollary 13.9. Consider the left (resp. right) derived functors LnF (resp.RnF )
of a given co(ntra)variant additive functor F : R-MOD −→ AB. Denote
Q∗ −→ ∆∗(M) a projective resolution of M . Then there are canonical iso-
morphisms

LnF (M) ∼= Hn(F (Q∗))

and
RnF (M) ∼= Hn(F (Q∗)).

Remark 13.10. If Q∗ is a free resolution of the left R-module M , say with
finitely generated chain modules Qi

∼= Rni , we may explicitly describe the
complexes A⊗Q∗ and Hom(Q∗, B) using the fact that

A⊗Rn ∼= An,Hom(Rn, B) ∼= Bn.

Consider the free resolution

... −→ Rn2 −→ Rn1 −→ Rn0 −→M

writing the elements in Rn as row vectors and the differential as

Rni −→ Rni−1 , u 7→ uDi

with a matrix Di ∈ Rni,ni−1 . Tensorizing with the right R-module A yields
the complex

... −→ An2 −→ An1 −→ An0 −→ 0 −→ ....,

where the differential is nothing but

Ani −→ Ani−1 , u 7→ uDi.

Applying the functor Hom(.., B) with a left R-module B leads to the coho-
mological complex

...←− Bn2 ←− Bn1 ←− Bn0 ←− 0←− ....,

with the differential
Bni −→ Bni+1 , v 7→ Di+1v,

acting now on column(!) vectors. Note that the differentials here are homo-
morphisms of abelian groups, not necessarily of right resp. left R-modules!
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Example 13.11. We consider an integral domain R and M := R/(c) for
c ∈ R \ {0}..

1. Let us consider the resolution

... −→ 0 −→ R
D1−→ R −→M = R/(a) −→ 0 −→ .....

of M with D1 = (c).

2. The complex A⊗Q∗ now looks as follows

... −→ 0 −→ A
D1−→ A −→ 0 −→ .....

yielding

Torn(A,M) ∼= Hn(A⊗Q∗) =


A/cA , if n = 0
Tc(A) , if n = 1
0 , otherwise

with the c-torsion Tc(A) := {u ∈ A; cu = 0}.

3. Applying Hom(.., B) yields

...←− 0←− B
D1←− B ←− 0←− .....

and thus

Extn(M,B) ∼= Hn(Hom(Q∗, B)) =


Tc(B) , if n = 0
B/cB , if n = 1
0 , otherwise

.

13.2 Long exact homology sequence

Definition 13.12. A short exact sequence of complexes

0 −→ A∗
ϕ∗−→ B∗

ψ∗−→ C∗ −→ 0

consists of complex homomorphisms ϕ∗, ψ∗, such that all sequences

0 −→ An
ϕn−→ Bn

ψn−→ Cn −→ 0

are exact.
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Remark 13.13. Often we treat ϕ∗ as the inclusion of a subcomplex A∗ ≤ B∗.

Proposition 13.14. For a short exact sequence

0 −→ A∗
ϕ∗−→ B∗

ψ∗−→ C∗ −→ 0

of complexes all the sequences

Hn(A∗)
Hn(ϕ∗)−→ Hn(B∗)

Hn(ψ∗)−→ Hn(C∗)

are exact.

Proof. We have Hn(ψ∗) ◦Hn(ϕ∗) = Hn(ψ∗ ◦ ϕ∗) = Hn(0) = 0. Now assume
Hn(ψ∗)([b]) = 0 holds for a homology class [b] ∈ Hn(B∗), i.e. b 7→ c = ∂c̃
with some c̃ ∈ Cn+1; choose Bn+1 3 b̃ 7→ c̃. Now b− ∂b̃ 7→ 0, so a := b− ∂b̃ ∈
Zn(A∗). With other words Hn(ϕ∗)([a]) = [b].

Bn+1 � Cn+1

↓ ↓
An ↪→ Bn � Cn
↓ ↓

An−1 ↪→ Bn−1

The homomorphism Hn(ϕ∗) is in general not injective nor needs Hn(ψ∗)
to be surjective. But we can concatenate the above ”truncated” short exact
sequences by linking them together with a ”connecting homomorphism”:

Definition 13.15. Given a short exact sequence

0 −→ A∗
ϕ∗−→ B∗

ψ∗−→ C∗ −→ 0,

of complexes the ”connecting homomorphism”

δn : Hn(C∗) −→ Hn−1(A∗)

is defined by
δn(c+Bn(C∗)) := a+Bn−1(A∗),

where
ϕn−1(a) = ∂b with any b ∈ Bn, ψn(b) = c.
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Remark 13.16. The connecting homomorphism δn is well defined: First of
all, using An−1 ≤ Bn−1, we have ∂a = ∂∂b = 0. Assume now [c1] = [c2],
i.e. c2 − c1 = ∂c̃ with some c̃ ∈ Cn+1.. Let Bn+1 3 b̃ 7→ c̃, furthermore
Bn 3 bi 7→ ci. Then b2−b1−∂b̃ 7→ 0 ∈ Cn, hence b2−b1−∂b̃ = a ∈ An ⊂ Bn,
whence ∂b1 − ∂b2 = ∂a ∈ Bn(A∗), i.e. [∂b1] = [∂b2] ∈ Hn(A∗).

Theorem 13.17. Let

0 −→ A∗
ϕ∗−→ B∗

ψ∗−→ C∗ −→ 0,

be a short exact sequence of complexes. Then

... −→ Hn+1(B∗) −→ Hn+1(C∗)
δn+1−→ Hn(A∗) −→ Hn(B∗) −→

−→ Hn(C∗)
δn−→ Hn−1(A∗) −→ Hn−1(B∗) −→ ...

is exact. It is called the long exact homology sequence associated to the above
short exact sequence of complexes.

Proof. The sequence is exact at

1. Hn(A∗): The homomorphism Hn−1(ϕ∗)◦δn maps [c] ∈ Hn(C∗) to [∂b] =
0 ∈ Hn−1(B∗), where b 7→ c. Now assume [a] 7→ 0, i.e. a = ∂b with
some b ∈ Bn. Then for c := ψn(b) we have ∂n([c]) = [a].

2. Hn(C∗): The homomorphism δn ◦Hn(ψ∗) maps [b] ∈ Hn(B∗) to [∂b] =
[0] = 0 ∈ Hn−1(A∗). Now assume [c] 7→ 0, i.e. for b 7→ c we have
∂b = ∂ã with some ã ∈ An. So b− ã ∈ Zn(B∗) and [b− ã] 7→ [c].

Here is an application for derived functors:

Theorem 13.18. Let F : R-MOD −→ AB be an additive co- resp. con-
travariant functor. A short exact sequence

0 −→ L
f−→M

g−→ N −→ 0

of R-modules induces a long exact sequence of derived functors

−→ Ln+1F (N) −→ LnF (L) −→ LnF (M) −→ LnF (N) −→ Ln−1F (L) −→

for covariant F , resp. for contravariant F it looks as follows

−→ Rn−1F (L) −→ RnF (N) −→ RnF (M) −→ RnF (L) −→ Rn−1F (N) −→
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Corollary 13.19. A short exact sequence

0 −→ L
f−→M

g−→ N −→ 0

of R-modules induces a long exact Tor-sequence

... −→ Torn+1(A,N) −→ Torn(A,L) −→ Torn(A,M)

−→ Torn(A,N) −→ Torn−1F (A,L) −→ ...

a long exact Ext-sequence

... −→ Extn−1(L,B) −→ Extn(N,B) −→ ExtnF (M,B)

−→ Extn(L,B) −→ Extn−1(N,B) −→ ...

Proof of Th.13.18. We first prove:

Proposition 13.20. A short exact sequence

0 −→ L
f−→M

g−→ N −→ 0

of R-modules can be covered by a short exact sequence

0 −→ P∗
ϕ∗−→ S∗

ψ∗−→ Q∗ −→ 0

of projective resolutions of L,M and N . More precisely

1. the resolutions P∗, Q∗ with differentials ∂n, ∂̃n can be prescribed. Then
there is, for every n ∈ N, an isomorphism

Sn ∼= Pn ⊕Qn,

such that the above short exact sequence of complexes looks as follows

Pn
ϕn−→ Sn ∼= Pn ⊕Qn

ψn−→ Qn

with the complex homomorphisms ϕ∗ : P∗ −→ S∗ and ψ∗ : S∗ −→ Q∗
given by ϕn(x) = (x, 0) and ψn(x, y) = y for x ∈ Pn, y ∈ Qn,
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2. in particular, the differentials ∂̂n of the complex S∗ = (Sn = Pn⊕Qn)n∈N
are of the form

∂̂n(x, y) = (∂nx+ (−1)nχn(x), ∂̃ny)

with a complex homomomorphism χ∗ : Q∗ −→ P∗[−1]. Here the shifted
complex P∗[−1] satisfies

P∗[−1]n := Pn−1

with the obvious differential.

Proof. We define Sn = Pn ⊕Qn and define the differential ∂̂n : Sn −→ Sn−1

by induction on n. For convenience define P−1 = L, S−1 = M,Q−1 = N .
Asasume ∂̂i is defined for i ≤ n. Since the complexes up to i ≤ n form
an exact sequence with trivial homology in degrees i < n the long exact
homology sequence implies that the lower row of the diagram

0 −→ Pn+1 −→ Sn+1 −→ Qn+1 −→ 0
↓ ↙ ↓

0 −→ Zn(P∗) −→ Zn(S∗) −→ Zn(Q∗) −→ 0

is exact. The skew arrow σ : Qn+1 −→ Zn(S∗) exists, since Qn+1 is projective,
then take

∂̂n+1(x, y) := (∂n+1x, 0) + σ(y).

An easy diagram chase yields ∂̂n+1(Sn+1) = Zn(S∗).

Let us now prove Th.13.18. We take a covering exact sequence

0 −→ P∗
ϕ∗−→ S∗

ψ∗−→ Q∗ −→ 0

as in Prop:13.20. Then, given an additive functor F , the sequence

0 −→ F (P∗) −→ F (S∗) −→ F (Q∗) −→ 0

is exact as well, since additive functors commute with direct sums

F (Sn) ∼= F (Pn)⊕ F (Qn).

So we may apply Th.13.17.
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We conclude this section by establishing an alternative way to compute
the Tor- and Ext-functors:

Theorem 13.21. Let A = AR and M = RM,B = RB, furthermore Q∗ −→
∆∗(A) a projective resolution and ∆∗(B) −→ I∗ an injective resolution. Then
there are natural isomorphism

Torn(A,M) ∼= Hn(Q∗ ⊗M)

and
Extn(M,B) ∼= Hn(Hom(M, I∗)).

Corollary 13.22. A short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

of R-modules induces a long exact Tor-sequence

... −→ Torn+1(C,M) −→ Torn(A,M) −→ Torn(B,M)

−→ Torn(C,M) −→ Torn−1(A,M) −→ ...

as well as a long exact Ext-sequence

... −→ Extn−1(M,C) −→ Extn(M,A) −→ ExtnF (M,B)

−→ Extn(M,C) −→ Extn+1(M,A) −→ ...

For the proof of Th.13.21 we need double complexes, an important tool
in homological algebra:

Definition 13.23. A homological double complex consists of R-modules

Cµν , µ, ν ∈ Z

s.th.
Cµν = 0,

whenever µ < −1 or ν < −1, and R-module homomorphism

∂µν : Cµν −→ Cµ−1,ν

and
∂̃µν : Cµν −→ Cµ,ν−1,

such that

97



1. C∗ν and Cµ∗ are complexes and

2. all squares
Cµν −→ Cµ−1,ν

↓ ↓
Cµ,ν−1 −→ Cµ−1,ν−1

for (µ, ν) ∈ Z2 are commutative.

A cohomological double complex Cµν is defined in the analogous way, with
all arrows reversed.

The crucial result we need is the following:

Proposition 13.24. Let Cµν be a double complex, s.th. the complexes C∗ν
and Cµ∗ are acyclic for µ, ν ∈ N. Then there is a natural isomorphism

Hn(C∗,−1) ∼= Hn(C−1,∗)

for every n ∈ N. For cohomological double complexes the analogous statement
holds.

Proof of Th.13.21. Denote P∗ −→ ∆∗(M) a projective resolution of M , set
P−1 := M,Q−1 := A, I−1 := B. We obtain a homological double complex
with

Cµν :=

{
Qµ ⊗ Pν , if (µ, ν) 6= (−1,−1)
0 , if (µ, ν) = (−1,−1)

,

resp. a cohomological double complex

Cµν :=

{
Hom(Pµ, I

ν) , if (µ, ν) 6= (−1,−1)
0 , if (µ, ν) = (−1,−1)

.

Now Prop.13.24 gives our result because of

Torn(A,M) ∼= Hn(C−1,∗), Hn(Q∗ ⊗M) ∼= Hn(C∗,−1)

and
Extn(M,B) ∼= Hn(C∗,−1), Hn(Hom(M, I∗)) = Hn(C−1,∗).

Proof of Prop.13.24. We compare the homology of the ”boundary complexes”
C−1,∗ and C∗,−1 with the homology of the associated total complex Ĉ∗:
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Definition 13.25. Given a homological double complex Cµν the associated

”total complex” Ĉ∗ has the chain modules

Ĉn :=
⊕
µ+ν=n

Cµ,ν

and the differentials

∂̂n : Ĉn −→ Ĉn−1

defined as follows

∂̂n :=
⊕
µ+ν=n

∂µν + (−1)ν+1∂̃µν .

We show that the injections of the boundary complexes

C∗,−1 ↪→ Ĉ∗, C−1,∗ ↪→ Ĉ∗

are quasi-isomorphisms - of course, by symmetry, it suffices to consider the
first one. We consider the short exact sequence

0 −→ C∗,−1 −→ Ĉ∗ −→ K∗ −→ 0,

where the quotient complex K∗ := C∗/C∗,−1 satisfies

Kn =
⊕

µ+ν=n,ν≥0

Cµν ,

and show that the complex K∗ is acyclic. Assume

u =
∑

µ+ν=n,ν≥0

uµν ∈ Zn(K∗)

is a cycle 6= 0. We show by induction on λ := max{ν;uµν 6= 0} that u is even a
boundary. Then we have un−λ,λ ∈ Zλ(C∗,n−λ) = Bλ(C∗,n−λ), say un−λ,λ = ∂v

with some v ∈ Cλ+1,n−λ. Then by induction hypothesis u′ := u − ∂̂v is a
boundary and thus u as well.

Note that for a proof of our statement in the cohomological case all arrows
have to be reversed; in particular the boundary complexes are no subcom-
plexes, but quotient complexes.
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13.3 Singular Homology

Here we shall assume R commutative, the most important case being R = Z.
Let us start the computation of singular homology groups with one point
spaces:

Proposition 13.26. 1. For a one point space pt we have

Hn(pt) ∼=
{
R , if n = 0
0 , otherwise

.

2. H0(X) ∼= R for X path connected.

Proof. Since there is exactly one n-simplex in a one point space, the complex
C∗(pt) looks as follows

...
id−→ R

0−→ R
id−→ R

0−→ R ∼= C0(pt) −→ 0,

whence the result follows. For the second part we consider the “augmentation
homomorphism”

ε : C0(X) −→ R,
∑
x∈X

λx · x 7→
∑
x∈X

λx,

where we identify 0-simplices with points in X. Since ε is onto and ∂0 = 0,
it suffices to show ker(ε) = B0(X) := ∂C1(X). The inclusion “⊃” follows
from ε∂σ = ε(σ(0, 1)− σ(1, 0)) = 0 for any σ ∈ S1(X). On the other hand,
if
∑

x∈X λx = 0, we may pick x0 ∈ X and 1-simplices σx with σx(1, 0) =
x0, σ(0, 1) = x, and obtain

∑
x∈X

λx · x =
∑
x∈X

λx · x−
∑
x∈X

λx · x0 =
∑
x∈X

λx∂σx = ∂

(∑
x∈X

λxσx

)
.

Now let us pass to “stars”:

Definition 13.27. A subset X ⊂ Rm is called starshaped with center x0 ∈
X, if for any point x ∈ X the line segment from x0 to x is contained in X as
well.
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We want to show that the inclusion {x0} ↪→ X induces an isomorphism

Hn(x0)
∼=−→ Hn(X):

Theorem 13.28. Let X ⊂ Rm be starshaped with center x0. Then we have
C∗(idX) w ϕ∗, where ϕ∗ : C∗(X) −→ C∗(X) satisfies ϕ0(..) := ε(..)x0 and
ϕn = 0 for n 6= 0. In particular ϕ∗ factorizes through the complex R∗ (with
R0 = R and Rn = 0 otherwise) and thus

Hn(X) ∼= Hn(pt).

Proof. Given an n-simplex σ : ∆n −→ X we define an (n + 1)-simplex
σ̂ : ∆n+1 −→ X as follows:

1. σ̂(0, t1, ...., tn+1) = σ(t1, ...., tn+1) and

2. σ̂(1, 0, ..., 0) = x0.

3. For s ∈ [0, 1] we have σ̂(1−s, s(t1, ...., tn+1)) = (1−s)x0+s σ(t1, ...., tn+1),
i.e. the line segment from (1, 0..., 0) to (0, t1, ...., tn+1) is mapped to the
line segment from x0 to σ(t1, ...., tn+1).

More explicitly

σ̂(t0, ...., tn+1) =

{
x0 , if t0 = 1
t0x0 + (1− t0)σ((1− t0)−1t1, ..., (1− t0)−1tn+1) , otherwise

.

Then, for n > 0, we have

∂σ̂ = σ +
n∑
i=0

(−1)i+1σ̂i = σ − ∂̂σ

with σi := σ ◦ εni : ∆n−1 ↪→ ∆n −→ X, while

∂x̂ = x− x0 ∈ C0(X),

– please note that the expression x − x0 is a difference of base elements in
C0(X) and not a point in Rm. Define κn : Cn(X) −→ Cn+1(X) by κn(σ) := σ̂
for the basis elements σ ∈ Sn(X) ⊂ Cn(X). Then the above equalities mean

∂n+1κn + κn−1∂n = idCn(X) − ϕn = Cn(idX)− ϕn.
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Theorem 13.29 (Homotopy invariance). Let f, g : X −→ Y be homotopic
continuous maps, i.e. there is a continuous map F : X × [0, 1] −→ Y with
F0 = f, F1 = g (where Ft(x) := F (x, t)). Then Hn(f) = Hn(g) for all n ∈ N.

Proof. The idea of the proof is quite intuitive: Assume that for all q ∈ N we
can define an R-linear map

..× I : Cq(X) −→ Cq+1(X × I), ξ 7→ ξ × I,

such that the ”Leibniz rule”

∂(ξ × I) = (∂ξ)× I + (−1)q(ξ × 1− ξ × 0)

holds with the obvious definition of ξ × t for t ∈ I. Then we get for a cycle
ξ ∈ Zq(X) the following:

F1(ξ)− F0(ξ) = F (ξ × 1− ξ × 0) = F ((−1)q∂(ξ × I)) = ∂F ((−1)qξ × I),

where we have written simply Ft resp. F in order to denote Cn(Ft) resp.
Cn+1(F ).

The definition of .. × I : Cn(X) −→ Cn+1(X × I) could be done by
subdividing ∆n × I into a number of (n + 1)-simplices jν : ∆n+1 ↪→ ∆n × I
and then, given σ ∈ Cn(X), taking

σ × I :=
∑
ν

(σ × idI) ◦ jν .

But that requires a careful definition of the jν , while we are lazy and prefer
an abstract reasoning: The definition of .. × I will be ”natural” in X and
uses induction on n. The case n = 0 is left to the reader. Let now n > 0
and assume that for degree < n we already have a definition. We look first
at the case X = ∆n and σ = δn := id∆n ∈ Cn(∆n). Then the chain

ζ := (∂δn)× I + (−1)n(δn × 1− δn × 0) ∈ Cn(∆n × I)

is defined by induction hypothesis and even a cycle:

∂ζ = (−1)n−1(∂δn × 1− ∂δn × 0) + (−1)n(∂δn × 1− ∂δn × 0) = 0.

But Hn(∆n × I) = 0 according to Th. 13.28, so there is a chain
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η ∈ Cn+1(∆n × I) with ∂η = ζ, and we set

δn × I := η,

a choice making the Leibniz rule hold. In the general case, given an n-simplex
σ ∈ Cn(X), we take the continuous map σ × idI : ∆n × I −→ X × I and
define

σ × I := Cn+1(σ × idI)(δn × I),

assuring ”naturality”, i.e. we have

f(σ × I) = f(σ)× I

for every continuous map f : X −→ Y .

In order to compute singular homology modules we have to consider rel-
ative homology groups:

Definition 13.30. Let A ⊂ X be a subspace of the topological space X.
The relative chain complex C∗(X,A) is defined as the complex with chain
modules

Cn(X,A) := Cn(X)/Cn(A),

the differential being that one induced by ∂n : Cn(X) −→ Cn−1(X). Its
homology

Hn(X,A) := Hn(C∗(X,A))

is called the n-th relative (singular) homology module (group) of X mod A.

Note that in general

Hn(X,A) 6∼= Hn(X)/jn(Hn(A)),

where jn : Hn(A) −→ Hn(X) denotes the homomorphism induced by the
inclusion j : A −→ X. Instead the relative homology H∗(X,A) relates the
homology of X with the homology of the subspace A as follows: The short
exact sequence of complexes

0 −→ C∗(A) −→ C∗(X) −→ C∗(X,A) −→ 0

induces the long exact homology sequence

... −→ Hn+1(X,A) −→ Hn(A) −→ Hn(X) −→ Hn(X,A) −→ Hn−1(A) −→ ....

On the other hand, intuitively, H∗(X,A) should not depend on what is
going on ”inside A”. Indeed we have:
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Theorem 13.31 (Excision). Let B ⊂ X be a subset with B ⊂
◦
A. Then the

inclusion (X \B,A \B) ↪→ (X,A) induces an isomorphism

Hn(X \B,A \B)
∼=−→ Hn(X,A).

Barycentric Subdivision: In order to prove the above theorem one has to
break singular chains into smaller pieces. This is done by ”barycentric subdi-
vision”: For every topological space X we define a complex homomorphism

β∗(X) : C∗(X) −→ C∗(X),

such that
β∗(X) w C∗(idX)

and, given a continuous map f : X −→ Y , we have

C∗(f) ◦ β∗(X) = β∗(Y ) ◦ C∗(f),

i.e. the construction of β∗(X) is ”natural in X”. We define βn(X) for every
topological space X by induction on n. Take β0(X) := idC0(X). Now assume
n > 0 and that βq(X) : Cq(X) −→ Cq(X) is defined for all topological spaces
X and q < n. First we consider again X = ∆n and the singular n-simplex
δn := id∆n . The standard n-simplex ∆n ⊂ Rn+1 is starshaped with center
x0 := ( 1

n+1
, ..., 1

n+1
). For any simplex σ ∈ Cq(∆n) denote σ̂ ∈ Cq+1(∆n)

the cone over σ with vertex x0, see the prof of 13.28. Extend the cone
construction linearly to all chains ξ ∈ Cq(∆n). Then, writing simply βn
instead of βn(∆n) etc, we define

βn(δn) := ̂βn−1(∂δn),

the expression βn−1(∂δn) being defined by induction hypothesis. As before,
for arbitrary σ : ∆n −→ X, we take

βn(σ) := Cn(σ)(βn(δn)).

Let us check that this gives a chain map: Indeed, the formula

∂σ̂ = σ − ∂̂σ

yields

∂β(δn) = ∂(β̂∂δn) = β∂δn − ̂(∂β∂δn) = β∂δn,

104



since, again by induction hypothesis, ∂n−1βn−1∂n = βn−2∂n−1∂n = 0. In
the general case σ ∈ Cn(X) we apply C∗(σ) : C∗(∆n) −→ C∗(X) using
Cn(σ)(δn) = σ.

It remains to define a chain homotopy (κn(X) : Cn(X) −→ Cn+1(X))n∈Z
between β∗(X) and C∗(idX) for all topological spaces X. Since β0(X) =
idC0(X) we may choose κn(X) = 0 for n ≤ 0. Now assume n > 0 and κq(X)
defined for q < n. Again we consider first X = ∆n and define κn(δn) :=
κn(∆n)δn. We need to have

∂n+1κn(δn) + κn−1∂n(δn) = βn(δn)− δn.

In order to find a good candidate for κn(δn), we check that

ζ := βn(δn)− δn − κn−1∂n(δn)

is a cycle:
∂n(ζ) = ∂nβn(δn)− ∂n(δn)− ∂nκn−1∂n(δn)

= βn(∂nδn)− ∂nδn − ∂nκn−1∂n(δn) = κn−2∂n−1(∂nδn) = 0,

the middle equality holding by induction hypothesis. Now, since Hn+1(∆n) =
0, there is a singular chain η ∈ Cn+1(∆n) with ∂n+1η = ζ. Then set

κn(δn) := η.

Finally, for general σ : ∆n −→ X take

κn(σ) := Cn+1(σ)(κn(δn)).

Remark 13.32. 1. If A ⊂ X is a subspace of the topological space X,
we have

β∗(X)|C∗(A) = β∗(A), κ∗(X)|C∗(A) = κ∗(A),

in particular there is an induced relative barycentric subdivision homo-
morphism

β∗(X,A) : C∗(X,A) −→ C∗(X,A)

homotopic to the identity.

2. For all simplices δ ∈ Cn(∆n) entering in the chain βq(δn) ∈ Cn(∆n) we
have

diam(δ(∆n)) ≤ (
n

n+ 1
)q · diam(∆n).
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3. If U := (Uj)j∈J is an open cover of X, we define the subcomplex
C∗(U) ⊂ C∗(X) of “U -small chains” as

Cn(U) :=
∑
j∈J

Cn(Uj).

Then, as a consequence of the first part of this remark, given a chain
ξ ∈ Cn(X) there is an exponent s ∈ N, such that βs(ξ) ∈ Cn(U) holds
for β := βn(X).

Proof of 13.31. We consider the open cover U := (U := X \B, V :=
◦
A).

1. Surjectivity: Denote [ξ+Cn(A)] ∈ Hn(X,A) a relative homology class,
i.e. ∂ξ ∈ Cn−1(A). As a consequence of Rem.13.32.1 and 3 we may
assume that ξ is U -small, i.e.

ξ = ζ + η

with n-chains ζ ∈ Cn(U) ↪→ Cn(X \ B), η ∈ Cn(V ). Then we have
∂ξ, ∂η ∈ Cn−1(A), hence ∂ζ ∈ Cn−1(A) as well and ζ + Cn(A \ B) ∈
Zn(X \B,A \B). Now

ζ + Cn(A \B) 7→ ζ + Cn(A) = ξ + Cn(A).

2. Injectivity: Assume ζ + Cn(X \ B) ∈ Zn(X \ B,A \ B), i.e. ∂ζ ∈
Cn−1(A \ B), lies in the kernel of the homomorphism Hn(X \ B,A \
B) −→ Hn(X,A), i.e.

ζ = ∂η + ϑ

with η ∈ Cn+1(X), ϑ ∈ Cn(A). Choose s ∈ N, such that

βs(η) = η1 + η2

with n+ 1-chains η1 ∈ Cn+1(U), η2 ∈ Cn+1(V ). Now we find

ζ = (ζ − βs(ζ)) + βs(ζ) = (∂κn(ζ) + κn−1(∂ζ)) + βs(∂η) + βs(ϑ),

where κ∗ is our homotopy between the identity and βs = β∗(X)s. So

ζ = ∂(κn(ζ)) + η1) + (κn−1(∂ζ) + ∂η2 + βs(ϑ)),

where κn(ζ))+η1 ∈ Cn+1(X\B) and the second term lies in Cn(A\B) =
Cn(X \B)∩Cn(A), as desired: Indeed it lies in Cn(X \B), since both ζ
and the first term do, furthermore κn−1(∂ζ) ∈ Cn(A) by the naturally
of the chain homotopy κ∗.
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Theorem 13.33. The unit sphere Sn ⊂ Rn+1, n > 0, has the homology
modules:

Hq(Sn) =

{
R , if q = 0, n
0 , otherwise

.

Remark 13.34. Denote σ : ∆n+1 −→ Bn+1 a homeomorphism. Then we
have

Hn(Sn) = R[∂σ].

Denote Bn ⊂ Rn the open unit ball. The map

Sn −→ Bn+1 \ {0}, x 7→ x/2

has the left inverse

Bn+1 \ {0} −→ Sn, x 7→ x

||x||
;

indeed, up to homotopy, it is also a right inverse. As a consequence

Hq(Sn) ∼= Hq(Bn+1 \ {0}).

Now we may apply:

Proposition 13.35. Let n ≥ 1.

1. The (n+ 1)-dimensional punctured (open) unit ball Bn+1 \ {0} has the
homology modules:

Hq(Bn+1 \ {0}) =

{
R , if q = 0, n
0 , otherwise

.

2. The open unit ball Bn ⊂ Rn mod its puncture Bn\{0} has the homology
modules:

Hq(Bn,Bn \ {0}) =

{
R , if q = n
0 , otherwise

.
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Corollary 13.36. Invariance of dimension: If

Rm ⊃ U
f−→ V ⊂ Rn

with open subsets U ⊂ Rm, V ⊂ Rn and a homeomorphism f : U −→ V ,
then n = m.

The invariance of dimension seems natural, but is far from being trivial:
E.g. there are curves in the plane, i.e. continuous maps f : [0, 1] −→ R2,
whose image is a triangle or a square!

Proof. Take any point x0 ∈ U and y0 := f(x0). Then f : U −→ V being a
homeomorphism, induces an isomorphism Hq(U,U \{x0}) ∼= Hq(V, V \{y0}).
But Hq(U,U \{x0}) ∼= Hq(Bn,Bn\{x0}). Take ε > 0 with Bε(x0) ⊂ U . Then
by excision

Hq(U,U \ {x0}) ∼= Hq(Bnε (x0),Bnε (x0) \ {x0}) ∼= Hq(Bn,Bn0 ).

So by looking at the ”local homology group”Hq(U,U\{x0}) we can rediscover
the dimension n.

Proof of Prop. 13.35: Write Bn0 := Bn \ {0}.
The statement 2n for n = 1: We have B1 = (−1, 1) and B1

0 = (−1, 0) ∪
(0, 1). Hence Hq(B1) = 0 = Hq(B1

0) for q > 0, while

H0(B1
0) ∼= R2 −→ R ∼= H0(B1)

is the map (x, y) 7→ x + y. The long exact homology sequence of the pair
(B1,B1

0) then gives the claim.

The implication ”2n =⇒ 1n”: We may replace the punctured ball Bn+1
0 , n ≥

1 with the unit sphere Sn. Since Sn is (pathwise) connected, we obtain
H0(Sn) = R. For q > 0 we consider the exact homology sequence of the pair
(Sn,Sn−) with Sn− := Sn \ {en+1}, the sphere with the north pole removed.
But Sn− ∼= Bn, so Hq(Sn−) = 0 for q > 0 , while H0(Sn−) −→ H0(Sn) is an
isomorphism. Thus

Hq(Sn) ∼= Hq(Sn,Sn−) ∼= Hq(Sn+,Sn0 ) ∼= Hq(Bn,Bn0 )

with Sn+ := Sn \ {−en+1}, the sphere with the south pole removed, and the
double punctured sphere Sn0 := Sn \ {±en+1}. The second isomorphism is
obtained by excision of the south pole −en+1.

108



The implication ”1n =⇒ 2n+1”: The long exact homology sequence of the
pair (Bn+1,Bn+1

0 ) gives for q > 1 a ”connecting isomorphism”

Hq(Bn+1,Bn+1
0 )

∼=−→ Hq−1(Bn+1
0 ),

since then Hq(Bn+1) = 0 = Hq−1(Bn+1), while the case q ≤ 1 follows from
the fact that H0(Bn+1

0 ) −→ H0(Bn+1) is an isomorphism for n ≥ 1.

Finally we discuss a method how to compute the singular homology of
topological spaces, which are the (set theoretically) disjoint union of cells:

Definition 13.37. An n-cell is a topological space homeomorphic to the
open ball Bn. And, of course, a cell is an n-cell with a suitable n ∈ N.

If X is a disjoint union of cells, we take Xq to be the union of all i-cells
with i ≤ q and obtain thus an increasing filtration of X. The following
result shows that in certain cases we can replace the very big singular chain
complex C∗(X) with a smaller complex C∗(X).

Proposition 13.38. Given a filtration

X := (X0 ⊂ X1 ⊂ ... ⊂ Xn−1 ⊂ Xn = X)

of the topological space X, the corresponding cellular complex C∗(X) is defined
as

C∗(X) := (Hq(Xq, Xq−1), ∂q),

with the relative homology groups Hq(Xq, Xq−1) and the the boundary homo-
morphisms

Hq(Xq, Xq−1) −→ Hq−1(Xq−1) −→ Hq−1(Xq−1, Xq−2).

If furthermore Hp(Xq, Xq−1) = 0 holds for p 6= q, there is a natural isomor-
phisms

Hq(X) ∼= Hq(C∗(X)),

in particular Hq(X) = 0 for q > n.

Proof. First of all ∂q−1 ◦ ∂q = 0, since

Hq−1(Xq−1) −→ Hq−1(Xq−1, Xq−2) −→ Hq−2(Xq−2)
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is the zero homomorphism. For the second part we do induction on n. Let
us assume we have established the isomorphism for Y = Xn and consider
X := Xn+1. We look at the long exact homology sequence of the pair (X, Y )
and find

Hq(Y ) ∼= Hq(X), q < n.

We have Hn+1(Y ) = 0 and consider the exact sequence

0 −→ Hn+1(X) −→ Hn+1(X, Y ) −→ Hn(Y ) −→ Hn(X) −→ 0.

Write Z := Xn−1. SinceHn(Y ) ↪→ Hn(Y, Z) because ofHn(Z) = 0, we obtain
Hn+1(X) ∼= Hn+1(C∗(X)). On the other handHn(X) ∼= coker(Hn+1(X, Y ) −→
Hn(Y )), whileHn(Y, Z) −→ Hn−1(Z,Xn−2) has the same kernel asHn(Y, Z) −→
Hn−1(Z) because of Hn−1(Z) ↪→ Hn−1(Z,Xn−2). So Hn(Y ) ∼= Zn(X) and
coker(Hn+1(X, Y ) −→ Hn(Y )) ∼= Hn(C∗(X)).

Definition 13.39. A cellular space is a topological space X together with a
filtration

X := (X0 ⊂ X1 ⊂ ... ⊂ Xn−1 ⊂ Xn = X)

by closed subsets Xq ↪→ X, such that

Xq \Xq−1 =
m⋃
i=1

Ui,m = mq

is the disjoint union of q-cells Ui, which are attached to the q − 1-skeleton
Xq−1 by continuous maps

ϕi : Bq −→ Xq

restricting to a homeomorphism

Bq −→ Ui

and satisfying

ϕi(Sq−1) ⊂ Xq−1.

Proposition 13.40. In the above situation let xi := ϕi(0) and
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U∗i := Ui \ {xi}. Then we have

Hp(Xq, Xq−1) ∼=
m⊕
i=1

Hp(Ui, U
∗
i ) ∼=

{
Rm , if p = q
0 , otherwise

.

Proof. The inclusion Xq−1 ↪→ U := Xq \ {x1, ..., xm} is a homotopy equiv-
alence. Now the inclusion of pairs (Xq, Xq−1) ↪→ (Xq, U) induces a ”mor-
phism” of the corresponding long exact homology sequences; between the
absolute groups we have the identity resp. an isomorphism. A simple dia-
gram chase now shows that the homomorphisms between the relative groups
are isomorphisms as well. Finally, by excision

Hp(Xq, U) ∼= Hp(Xq \Xq−1, U \Xq−1).

So in order to compute H∗(X) we have to understand the boundary ho-
momorphisms of the cellular complex C∗(X).

Example 13.41. 1. The two dimensional torus X = I2/ ∼ is obtained
from the unit square I2 by identifying the points (t, 0) and (t, 1) as well
as the points (0, t) and (1, t). Denote π : I2 −→ X the quotient map.
We consider the filtration

X = (π(0, 0) ⊂ π(∂I2) ⊂ X2 = X)

with one zero cell, the 1-cells π((0, 1) × 0), π(0 × (0, 1)) and the 2-cell
π((0, 1)2). Then C∗(X) looks as follows

0 −→ R −→ R2 −→ R −→ 0.

Assume that 1 ∈ R ∼= C2(X) is induced from a singular 2-simplex
∆2 −→ I2, whose boundary corresponds to the positively oriented loop
∂I2, while (1, 0), (0, 1) ∈ R2 ∼= C1(X) are obtained from the loops
t 7→ π(t, 0) and t 7→ π(0, t). Hence ∂1 = 0, but ∂2 = 0 as well: Indeed

∂2(1) = (1, 0) + (0, 1)− (1, 0)− (0, 1).

It follows

Hq(X) ∼= Cq(X) =


R , if q = 0, 2
R2 , if q = 1
0 , otherwise

.
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2. Klein’s bottle Y = I2/ ∼ is obtained from the unit square I2 by identi-
fying the points (t, 0) and (t, 1) as well as the points (0, t) and (1, 1−t).
Denote π : I2 −→ Y the quotient map. We consider the filtration

Y = (π(0, 0) ⊂ π(∂I2) ⊂ Y2 = Y ).

Then C∗(Y) looks as follows

0 −→ R −→ R2 −→ R −→ 0.

Assume that 1 ∈ R ∼= C2(Y) is induced from a singular 2-simplex
∆2 −→ I2, whose boundary corresponds to the positively oriented loop
∂I2, while (1, 0), (0, 1) ∈ R2 ∼= C1(Y) are obtained from the loops
t 7→ π(t, 0) and t 7→ π(0, t). Hence ∂1 = 0, while

∂2(1) = (1, 0)− (0, 1)− (1, 0)− (0, 1) = (0,−2).

It follows

Hq(Y ) ∼=


R , if q = 0
R⊕R2 , if q = 1
0 , otherwise

.

3. Finally we discuss Z := I2/ ∼ with the boundary point identifications
(t, 0) ∼ (1 − t, 1) and (0, t) ∼ (1, 1 − t). We obtain two different zero
cells π(0, 0), π(1, 0) (inducing the basis vectors (1, 0) reap. (0, 1) in
R2 ∼= C0(Z)), and the paths t 7→ π(t, 0) and t 7→ π(0, t) are no longer
loops (they correspond to (1, 0) reap. (0, 1) in R2 ∼= C1(Z)). Thus the
complex C∗(Z) looks as follows:

0 −→ R −→ R2 −→ R2 −→ 0

with ∂2(1) = (2,−2), ∂1(1, 0) = (−1, 1) = ∂1(0, 1), hence Z1(Z) =
R(1,−1). Thus:

Hq(Z) ∼=


R , if q = 0
R2 , if q = 1
0 , otherwise

.

The surface Z in the previous example can also be thought of as the

closed unit disk B2
, where antipodal points on the boundary circle S1 are
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identified. With that description it admits an immediate generalizations to
higher dimensions. The most satisfactory construction is as follows:

Real projective n-space Pn(R) is the set of all one dimensional subspaces
of Rn+1. We have a natural map

Rn+1 \ {0} −→ Pn(R),x 7→ [x] := Rx

and endow Pn(R) with the quotient topology. Indeed the restriction of the
quotient map to the unit sphere yields a local homeomorphism

π : Sn −→ Pn(R),

whose fibres are pairs of antipodal points ±x. So Pn(R) is obtained from Sn
by identifying antipodal points. (In particular P1(R) ∼= S1.)

We want to establish a cell decomposition of Pn(R): For q ≤ n the
inclusion

Rq+1 ∼= Rq+1 × 0 ↪→ Rn+1

realizes projective q-space as a subspace of the n-dimensional projective
space:

Pq(R) ↪→ Pn(R).

We thus obtain a filtration Z of Z := Pn(R) with

Zq := Pq(R).

Eventually, in order to see that (Z,Z) is a cellular space it suffices to find an
”attaching map” for the n-cell Zn \ Zn−1 and to use induction on n. First
note that x 7→ (x,

√
1− ||x||2) identifies Bn with the northern hemisphere

Sn+ of Sn. We choose

ϕ : Bn −→ Z,x 7→
[
x,
√

1− ||x||2
]
.

So there is one q-cell for any q, 0 ≤ q ≤ n, and Cq(Z) = R for 0 ≤ q ≤ n. In
order to find ∂q : R −→ R for q ≥ 1 it obviously suffices to study the case
q = n. To that end we consider the following diagram

Hn(Bn,Sn−1) −→ Hn−1(Sn−1) −→ Hn−1(Sn−1,Sn−2) ∼= Hn−1(Sn−1
+ ,Sn−2)2

↓ ↓
Hn(Pn,Pn−1)

∂n−→ Hn−1(Pn−1,Pn−2)

,
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it turns out to be nothing but

R
∼=−→ R −→ R2

↓ ↓
R

?−→ R

.

The left vertical map is an isomorphism, while the right one is (x, y) 7→ x+y,
and what we have to understand is the horizontal map R −→ R2. The right
upper isomorphism looks as follows

Hn−1(Sn−1, Sn−2) ∼= Hn−1(Sn−1
+ ,Sn−2)⊕Hn−1(Sn−1

− ,Sn−2) ∼= Hn−1(Sn−1
+ , Sn−2)2,

where the second component of the second isomorphism, the map

Hn−1(Sn−1
− ,Sn−2) −→ Hn−1(Sn−1

+ , Sn−2),

is induced by the antipodal map Sn−1 −→ Sn−1,x 7→ −x. On the other hand,
it induces a commutative diagram

Hn−1(Sn−1)
∼=−→ Hn−1(Sn−1

− ,Sn−2)
↓ ↓

Hn−1(Sn−1)
∼=−→ Hn−1(Sn−1

+ ,Sn−2)

,

so it suffices to know the left vertical map.

Proposition 13.42. The map in : Hn(Sn) −→ Hn(Sn) induced by the an-
tipodal map Sn −→ Sn,x 7→ −x, satisfies

in = µ(−1)n+1 .

Proof. A reflection induces µ−1: It suffices to consider the reflection g :
Rn+1 −→ Rn+1 at the hyperplane Rn × 0. Choose a singular n-chain ξ ∈
Cn(Sn+), ∂ξ ∈ Cn(Sn−1), such that the (relative) homology class of ξ+Cn(Sn−1)
generates Hn(Sn+,Sn−1). Then [ξ − g(ξ)] generates Hn(Sn) and g maps it to
[g(ξ)− ξ].

Finally the antipodal map is the product of n+ 1 reflections.

As a consequence we get the upper horizontal map

R −→ R2, x 7→ (x, (−1)nx),
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hence the lower horizontal map

∂n : R −→ R

is

x 7→ (1 + (−1)n)x.

So the complex C∗(Z) looks as follows

...
µ2−→ R

0−→ R
µ2−→ R

0−→ R −→ 0

Theorem 13.43.

Hq(Pn(R)) ∼=


R , if q = 0 or q = n = 2`+ 1
R2 , if q = 2`+ 1 < n
0 , otherwise

.

Complex projective n-space Pn(C) is defined in the same way as real
projective n-space, replacing R with C. We obtain again a filtration

Zq = Pq(C) ↪→ Pn(C),

but now Zq \ Zq−1 is a 2q-cell. There are further differences: The restriction

S2n+1 −→ Pn(C)

of the quotient map

Cn+1 \ {0} −→ Pn(C)

to the unit sphere S2n+1 ↪→ Cn+1, the ”Hopf fibration”, is no longer a local
homeomorphism: Its fibres are copies of S1 (though S2n+1 6∼= Pn(C) × S1).
Nevertheless the attaching map

ϕ : B2n −→ Pn(C)

can be defined in the same way - indeed, the restriction ϕ|B2n may be factor-
ized as follows

B2n ψ−→ Cn × {1} π−→ Pn(C) \ Pn−1(C)
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with the homeomorphism

ψ(z) :=

(
z√

1− ||z||2
, 1

)
.

The spaces Pn(C) are the basic spaces in complex algebraic geometry: Many
”algebraic varieties” are realized as subspaces of some Pn(C). The case n = 1
yields the ”projective line” P1(C) ∼= S2, also known in complex analysis as
the ”Riemann sphere” or ”extended complex plane C ∪ {∞}.

Since all cells are of even dimension, the differentials of the cellular com-
plex C∗(Z) are trivial and we find:

Theorem 13.44.

Hq(Pn(C)) ∼=
{
R , if q = 2` ≤ 2n
0 , otherwise

.

Euler characteristic:

Definition 13.45. For a cell decomposition X of X denote eq the number of
connected components of Xq \Xq−1, i.e. the number of q-cells in the decom-
position. Then we define the Euler characteristic χ(X) of the decomposition
as

χ(X) :=
n∑
q=0

(−1)qeq.

Theorem 13.46.

χ(X) =
n∑
q=0

rank(Hq(X)).

In particular χ(X) only depends on the topological space X, not on the choice
of the cell decomposition, it is called the Euler-Poincaré characteristic of X
and denoted χ(X).

Proof. Since K = Q(R) is a flat R-module, we have Hq(X,K) ∼= Hq(X)⊗K
and thus rank(Hq(X,R)) = dimHq(X,K); so we may assume that R = K
is a field. Then we have

χ(X) =
n∑
q=0

(−1)q dimCq(X),
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while
n∑
q=0

(−1)q dimHq(V∗) =
n∑
q=0

(−1)q dimVq

holds for any complex of finite dimensional vector spaces living in degrees
q = 0, ..., n.

Remark 13.47. Note that dimHq(X) depends on (the characteristic of) K.
For K = Q the numbers

bq(X) := dimHq(X,Q)

are called the ”Betti numbers” of the topological space X.

14 Annex: Zorns Lemma

If in algebra infinite or even uncountable sets are involved, it can be useful to
know about the existence of certain objects even if there is no constructive
method to create them: A generally accepted tool in this context is “Zorns
lemma”, which we shall discuss in this annex.

Definition 14.1. A partial order on a set M is a relation “�”, which is
reflexive, antisymmetric and transitive, i.e.

1. ∀ x ∈M : x � x ,

2. ∀ x, y ∈M : x � y ∧ y � x =⇒ x = y and

3. ∀ x, y, z ∈M : x � y ∧ y � z =⇒ x � z.

Such a relation is sometimes simply called an order (relation) on M . A
total or linear order is a partial order, where any two elements x, y ∈ M
are related:

∀ x, y ∈M : x � y ∨ y � x .

A well ordering on M is a linear order, such that every non-empty subset
M0 ⊂M has a first element (with respect to �), i.e.,

∀ M0 ⊂M ∃ a ∈M0 : ∀ x ∈M0 : a � x .

An element a ∈M is called maximal (w.r.t. the order �), iff

∀ x ∈M : a � x =⇒ a = x,

i.e., there are no elements bigger than a.
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Example 14.2. In many applications the set M is realized as a subset M ⊂
P(U) of the power set of some set U (the “universe”) with the inclusion as
order relation

A � B ⇐⇒ A ⊂ B.

Remark 14.3. 1. If x � a for all x ∈ M , the element a is obviously
maximal, but in general that need not hold for a maximal element: It
is allowed for a maximal element a ∈M , that there are elements in M
not related to a.

2. The set N = {0, 1, 2, ...} of all natural numbers, endowed with the
natural order, is well ordered, but Z,Q and R are not. The set N2,
endowed with the lexicographic order

(x, y) � (x′, y′)⇐⇒ x < x′ ∨ (x = x′ and y ≤ y′) .

is well ordered. A subset of a well ordered set has by definition a unique
first element, but in general no last element, and every element has an
immediate successor - the first element of the set of all elements after
the given one, but not necessarily an immediate predecessor. An initial
segment M0 of a linearly ordered set M is a subset M0 ⊂M satisfying
M 3 y � x ∈M0 =⇒ y ∈M0, i.e., with an element x ∈M0 all elements
y � x before x belong to M0. If M is well ordered, such an initial
segment satisfies either M0 = M or M0 = M≺a := {x ∈ M ;x ≺ a}.
Namely, given an initial segment M0 6= M , choose a as the first element
in the complement M \M0.

Theorem 14.4. (Zorns lemma) (Max August Zorn, 1906-1993): Let M
be a set with the partial order �. If for every (w.r.t. �) linearly ordered
subset T ⊂ M there is an upper bound b ∈ M , i.e. such that t � b for all
t ∈ T (written briefly as T � b), then there are maximal elements in M .

Example 14.5. If M ⊂ P(U) as in Example 14.2, the upper bound B of
a linearly ordered subset T ⊂ M ⊂ P(U) usually is taken as the union
B :=

⋃
A∈T A of all sets A ∈ T , and it remains to check that in fact B ∈M .

Before we prove Zorns lemma we present three applications:

Theorem 14.6. Given a linearly independent set B0 ⊂ V of a K-vector
space V there is a basis B ⊃ B0 of V . In particular
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1. Every vector space admits a basis.

2. For every subspace W ⊂ V there is a complementary subspace V0 ⊂ V ,
i.e. such that

V = W ⊕ V0.

Proof. Take M ⊂ P(V ) as the set of all linearly independent subsets of V
containing B0. We can apply Zorns lemma as in Example 14.5. So there is a
maximal set B ∈ M . Indeed B is a basis: We have to show that any vector
v ∈ V is a finite linear combination of vectors in B. So let v ∈ V . If v ∈ B,
we are done, otherwise B ∪ {v} 6∈ M – the set B ∈ M being maximal in M
– and hence there is a non-trivial relation

0 = λv + λ1v1 + ...+ λrvr

with v1, ..., vr ∈ B and λ, λ1, ..., λr ∈ K. But λ 6= 0, since the vectors v1, ..., vr
are linearly independent, i.e., we may solve for v ∈ V .

For the first part of the second statement take B0 = ∅, for the second
take B0 as a basis of W and set

V0 :=
∑

v∈B\B0

Kv.

Theorem 14.7. Every proper left/right ideal a ⊂ R in a ring R is contained
in a maximal left/right ideal m ⊂ R.

Proof. Take M ⊂ P(R) as the subset of all proper left/right ideals in R
containing a. Since an ideal a is proper iff 1 6∈ a, it is obvious that the union
of a linearly ordered set of proper ideals again is a proper ideal.

Theorem 14.8. A submodule N ≤ F of a free module F over a PID R is
itself free.

Proof. The proof is analogous to that of Lemma 4.1, the only difference is
that the basis of N is not any longer constructed in finitely many steps,
instead Zorns lemma gives its existence: We may assume F = R[I] and
consider the set of pairs

(J,B),

such that
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1. J ⊂ I, and

2. the submodule N ∩R[J ] is free with basis B.

It is non-empty, since obviously R[J ]∩N is free whenever |J | = 1, the ring R
being a PID. We have to show that J = I is possible. We define the partial
order

(J,B) � (J ′, B′)⇐⇒ J ⊂ J ′ and B ⊂ B′.

Given a linearly ordered subset T , an upper bound for T is (Ĵ , B̂) with

Ĵ :=
⋃

(J,B)∈T

J, B̂ :=
⋃

(J,B)∈T

B.

Zorns lemma assures the existence of a maximal pair (Jmax, Bmax). So it
suffices to show that there is above any (J,B) with J 6= I some other pair.
Take j ∈ I \ J and J ′ := J ∪ {j}. We have to find a corresponding B′ ⊃ B.
Look at the projection map

prj : R[J ′] −→ R,
∑
i∈J ′

λiei 7→ λj.

Since R is a PID, we may choose u ∈ N ∩R[J ′] with

R ≥ prj(N) = R · pri(u).

If prj(u) = 0, take B′ = B, otherwise B′ := B ∪ {u}.

Proof of Th.14.4. We assume that there is no maximal element in M , but
that every linearly ordered subset T ⊂ M has an upper bound γ(T ) ∈ M .
So there is a function

γ : Lin(M) −→M

from the set Lin(M) ⊂ P(M) of all subsets linearly ordered with respect to
�, such that T � γ(T ). We may even assume that γ(T ) is a strict upper
bound: T ≺ γ(T ) or, equivalently γ(T ) 6∈ T . If only γ(T ) ∈ T is possible,
the element γ(T ) would be a maximal element for the entire set M .

Then we use the function γ in order to produce recursively a linearly
ordered, indeed even well ordered, subset not admitting an upper bound,
contrary to our hypothesis. We take x1 := γ(∅) as its first element. If
x1, ..., xn are found one defines xn+1 := γ({x1, ..., xn}). In this way we obtain
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a sequence (xn)n∈N with x1 ≺ x2 ≺ ..., but the chain {xn;n ∈ N} can be
extended further: Take y1 := γ({xn;n ∈ N}), y2 := γ({y1, xn;n ∈ N}).

In order to make sure that this idea really works, we introduce the concept
of a “γ-chain”: We shall call a subset K ⊂ M a γ-chain, if (K,�) is well
ordered and for any y ∈ K the initial segment K≺y := {x ∈ K; x ≺ y}
satisfies

y = γ(K≺y) .

We shall see that given two γ-chains K,L one of them is an initial segment
of the other. Taking this for granted the set

T :=
⋃

K γ-chain

K

is obviously a maximal γ-chain. On the other hand T̂ := T ∪ {γ(T )} is
γ-chain as well, so T̂ ⊂ T resp. γ(T ) ∈ T – a contradiction!

It remains to show that of two γ-chains K,L one is an initial segment of
the other: Denote K0 = L0 the union of all sets which are initial segments
of both K and L. Obviously it is an initial segment of both K and L. If
K0 = K or L0 = L, we are done; otherwise K0 = K≺a and L0 = L≺b. In that
case we have

a = γ(K≺a) = γ(L≺b) = b ∈ L ,

i.e., K�a = L�b is an initial segment of both K and L, a contradiction!

Remark 14.9. The above proof of Zorns lemma is a naive one. The most
problematic part is the existence of the function

γ : Lin(M) −→M,

since in general there is no recipe for an explicit construction, the set Lin(M)
being quite big. Instead one has to derive it from the

Axiom of Choice: Given a family (Ai)i∈I of pairwise disjoint subsets Ai ⊂
M of a set M , there is a set A ⊂M containing precisely one element out of
each set Ai, i ∈ I, i.e., it has the form A = {xi; i ∈ I} with xi ∈ Ai for all
i ∈ I.

The axiom of choice, though looking quite harmless, has striking con-
sequences, as for example the fact, that every set admits a well ordering.
Indeed, no human being has up to now succeeded in well ordering the set of
all real numbers.
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