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In this paper, we study inverses and quotients of mappings between ordered sets, in particular between
complete lattices, which are analogous to inverses and quotients of positive numbers. We investigate to
what extent a generalized inverse can serve as a left inverse and as a right inverse, and how an inverse of
an inverse relates to the identity mapping. The generalized inverses and quotients are then used to create
a convenient formalism for dilations and erosions as well as for cleistomorphisms (closure operators) and
anoiktomorphisms (kernel operators).
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1. Introduction

Lattice theory is a mature mathematical theory thanks to the
pioneering work by Garrett Birkhoff, Øystein Ore and others in
the first half of the twentieth century. A standard reference is still
Birkhoff’s book [3], first published in 1940. Developments in lattice
theory originate in several branches of mathematics, for instance
algebra [6,5], logic [42,15], general topology and functional analy-
sis [15, p.xxx–xxxii], convexity theory [40] and, most important as
a background for this paper, mathematical morphology with appli-
cations in image processing (books by Matheron [28], Serra [35,38],
and Heijmans [17]; articles by Heijmans and Ronse [20], Ronse
[32], Ronse and Heijmans [33,34], and Serra [39]). Other areas
where concepts from lattice theory are used include semantics (ab-
stract interpretation) of programming, the theory of fuzzy sets,

fuzzy logic, and formal concept analysis [13]. For general lattice
theory a standard reference is Grätzer [16].

This variety of sources for fundamental concepts has led to
varying terminology and hence to difficulties in tracing history.

In this paper, we shall study inverses and quotients of mappings
between ordered sets which are analogous to inverses 1=y and
quotients x=y of positive numbers. The theory of lower and upper
inverses defined in Section 3 generalizes the theory of Galois con-
nections as well as residuation theory and the theory of adjunc-
tions. We investigate in Section 6 to what extent a generalized
inverse can serve as a left inverse and as a right inverse, and how
an inverse of an inverse relates to the identity mapping. The gen-
eralized inverses and quotients are then used in Section 9 to create
a convenient formalism for a unified treatment of dilations
d : L! M and erosions e : L! M as well as of cleistomorphisms
(closure operators) j : L! L and anoiktomorphisms (kernel opera-
tors) a : L! L.

Often we require of the ordered sets studied that they shall be
complete lattices. However, of the various phenomena brought to-
gether here, the Galois connections are the oldest, and they make
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sense between preordered sets which are not necessarily complete
lattices or even lattices. A goal will therefore be to study this gen-
eral situation and relate it to the more special theories of residua-
tion and adjunction.

Both inverses and quotients come in two versions, lower and
upper. It turns out that anoiktomorphisms can be characterized
as lower quotients of the form f=

H
f , and cleistomorphisms as upper

quotients f=Hf .
To define an inverse of a general mapping seems to be a hope-

less task. However, if the mapping is between preordered sets,
there is some hope of constructing mappings that can serve in cer-
tain contexts just like inverses do. This is our task here.

Part of the results of the present paper were reported in my con-
ference contribution (2007), however without proofs and with
fewer examples. My lectures in the Spring Semesters of 2002 and
2004 also contained some of the results; see (2002a).

2. Definitions

Definition 2.1. A preorder in a set X is a binary relation which is
reflexive (for all x 2 X; x 6 x) and transitive (for all x; y; z 2 X, x 6 y
and y 6 z imply x 6 z). An order is a preorder which is antisym-
metric (for all x; y 2 X; x 6 y and y 6 x imply x ¼ y).

Birkhoff [2, p. 7] uses quasi-ordered system; in (1995:20) quasi-
ordering and quasi-ordered set. Other terms are preordering, quasior-
der, and pseudoordering. Nowadays preorder is more common (e.g.,
Gierz et al. [15, p. 1]).

To any preorder 6 we introduce an equivalence relation x � y
defined as x 6 y and y 6 x. If 6 is an order, this equivalence relation
is just equality. If we have two preorders, we say that 61 is stronger
than or finer than 62 if for all x and y, x61y implies x62y. We also
say that 62 is weaker than or coarser than 61. The finest preorder
is the discrete order, defined as equality; the coarsest preorder is
the chaotic preorder given by x 6 y for all x and y.

Definition 2.2. Given a preordered set ðX;6Þ, we define the
opposite preordered set ðX;PÞ as the set X equipped with the
opposite preorder. We shall write Xop for this preordered set. Thus
x6Xop y if and only if y6Xx.

Definition 2.3. Given a mapping f : X ! ðY ;6Þ of a set into a pre-
ordered set ðY ;6Þ, we define a mapping f op : X ! ðY;PÞ taking
the same values as f; given a mapping f : ðX;6Þ ! Y of a preor-
dered set ðX;6Þ into a set Y, we define fop : ðX;PÞ ! Y taking the
same values; finally, if f : ðX;6Þ ! ðY ;6Þ is a mapping between
preordered sets, we define f op

op ¼ ðf opÞop ¼ ðfopÞop : ðX;PÞ ! ðY;PÞ.
For brevity we shall also write these mappings as

f op : X ! Yop; f op : Xop ! Y; and f op
op : Xop ! Yop:

We note that ðf opÞop ¼ f and ðfopÞop ¼ f whenever defined.

Definition 2.4. A complete lattice is an ordered set such that any
family ðxjÞj2J of elements possesses a smallest majorant and a
largest minorant. We denote them by

W
j2Jxj and

V
j2Jxj, respectively.

A complete lattice must possess a smallest element, to be de-
noted by 0, and a largest element, 1.

Definition 2.5. If f : X ! Y is a mapping of a set into another, we
define its graph as the set

graph f ¼ fðx; yÞ 2 X � Y ; y ¼ f ðxÞg:

If Y is preordered, we define also its epigraph and its hypograph as

epi f ¼fðx;yÞ2X�Y;f ðxÞ6yg; hypo f ¼fðx;yÞ2X�Y ;y6 f ðxÞg:

We shall also need the strict epigraph and the strict hypograph,

epis f ¼fðx;yÞ2X�Y ;f ðxÞ<yg; hypos f ¼fðx;yÞ2X�Y ;y< f ðxÞg;

of a function f : X ! Y , where a < b means that a 6 b and a–b.

Obviously epi f ¼ hypo f op.
If X and Y are given, any mapping X ! Y is determined by its

graph, and, if Y is an ordered set, also by its epigraph as well as
by its hypograph. It is often convenient to express properties of
mappings in terms of their epigraphs or hypographs; for examples,
see Proposition 4.3 and formulas (5.4).

Definition 2.6. If two preordered sets X and Y and a mapping
f : X ! Y are given, we shall say that f is increasing if

for all x; x0 2 X; x6Xx0 ) f ðxÞ6Y f ðx0Þ;

and that f is coincreasing if

for all x; x0 2 X; f ðxÞ6Y f ðx0Þ ) x6Xx0:

Finally f is said to be decreasing or codecreasing if f op (equivalently
fop) is increasing or coincreasing, respectively.

If f is increasing, then so is f op
op , whereas f op and fop are

decreasing.
The terms increasing and decreasing are widely used. Birkhoff

[3, p. 2], Blyth and Janowitz [6, p. 6], Blyth [5, p. 5], and Grätzer
[16, p. 20] call an increasing mapping order-preserving or isotone.
Blyth and Janowitz [6, p. 6] and Blyth [5, p. 5] call a decreasing
mapping order-inverting or antitone. Gierz et al. used order-pre-
serving and monotone (2003, p. 5) as well as antitone (2003, p.
35).

The term coincreasing appears in my lecture notes (2002a, p.
12).

To emphasize the symmetry between the two notions, we de-
fine, given any mapping f : X ! Y between preordered sets, a pre-
order 6f in X by the requirement that x6f x0 if and only if
f ðxÞ6Y f ðx0Þ. Then f is increasing if and only if 6X is finer than
6f , and f is coincreasing if and only if 6X is coarser than 6f .

A comparison with topology is in order here. If f : X ! Y is a
mapping of a topological space X into a topological space Y with
topologies (families of open sets) sX and sY , we can define a new
topology sf in X as the family of all sets fx 2 X; f ðxÞ 2 Vg;V 2 sY .
Then f is continuous if and only if sX is finer than sf .

Definition 2.7. A mapping f : L! M of a complete lattice L into a
complete lattice M is said to be a dilation if f ð

W
j2JxjÞ ¼

W
j2J f ðxjÞ for

all families ðxjÞj2J of elements in L.
A mapping is said to be an erosion if f op

op is a dilation, i.e., if
f ð
V

j2JxjÞ ¼
V

j2J f ðxjÞ for all families ðxjÞj2J .
A mapping is said to be an anti-erosion if f op is an erosion, i.e., if

f ð
V

j2JxjÞ ¼
W

j2J f ðxjÞ for all families ðxjÞj2J .
A mapping is said to be an anti-dilation if f op is a dilation, i.e., if

f ð
W

j2JxjÞ ¼
V

j2J f ðxjÞ for all families ðxjÞj2J .

We note that a dilation must satisfy f ð0LÞ ¼ 0M , an erosion
f ð1LÞ ¼ 1M .

Matheron in his pioneering treatise (1975:17) used the terms
dilatation and erosion for operations PðRnÞ ! PðRnÞ. Serra [36,38]
defined dilations and erosions as here in the case of complete lat-
tices with L ¼ M; anti-erosions and anti-dilations were introduced
by Serra [37].

Singer [40, p.172] uses the term duality for an anti-erosion. The
study of dualities in the sense of Singer is therefore equivalent to
that of dilations or erosions.

An explanation for the terms dilation and erosion is furnished by
the operations on subsets of an abelian group G:

dðAÞ ¼ Aþ S; eðBÞ ¼ fx; xþ S � Bg; A;B 2 PðGÞ;
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where S is a fixed subset of G, called the structuring element. In typ-
ical cases, like taking S as a disk in R2, d dilates the image A and e
erodes it in a natural sense. The equivalence

dðAÞ � B () A � eðBÞ; A;B 2 PðGÞ;

is the very basis for the passing from PðRnÞ or PðZnÞ to general com-
plete lattices. We shall see that the lower inverse of d is e, and that
the upper inverse of e is d.

Definition 2.8. A mapping g : X ! X of a preordered set X into
itself is said to be an ethmomorphism if it is increasing and
idempotent. If in addition it is extensive, i.e., gðxÞP x for all x 2 X,
then it is said to be a cleistomorphism; if it is antiextensive, i.e.,
gðxÞ 6 x for all x 2 X, then it is called an anoiktomorphism.1

Ethmomorphisms are of central importance in image processing
but elusive and difficult to treat. The special cases cleistomor-
phisms and anoiktomorphisms are much easier to handle.

For the notions just defined many terms have been used. Other
terms for ethmomorphism are morphological filter2 (Serra [38, p.
104]), projection operator and projection (Gierz et al. [15, p. 26]).
For cleistomorphism other terms include closure operation (Ore [30,
p. 494]), closure mapping (Blyth and Janowitz [6, p. 9]), closing (Math-
eron [28, p. 187]; Serra [35, p. 56]), hull operator (Singer [40, p. 8]),
closure operator (Gierz et al. [15, p. 26]); in French fermeture de Moore
(Dubreil and Dubreil-Jacotin [11, p. 177]) and application enveloppan-
te (Kiselman [22, p. 336]; term proposed by André Hirschowitz). For
anoiktomorphism there are several other terms: dual closure map-
ping (Blyth and Janowitz 6, p. 9]), opening (Matheron [28, p. 187];
Serra [35, p. 56]), kernel operator (Gierz et al. [15, p. 26]).

3. Inverses of mappings

In general a mapping g : X ! Y between sets does not have an
inverse. If g is injective, we may define a left inverse u : Y ! X, thus
with u � g ¼ idX , where idX denotes the identity mapping in X,
defining uðyÞ in an arbitrary way when y is not in the image of g.
If g is surjective, we may define a right inverse v : Y ! X, thus with
g � v ¼ idY . We then need to define vðyÞ as an element of the pre-
image fx; gðxÞ ¼ yg. In the general situation this has to be done
using the axiom of choice. In a complete lattice, however, it could
be interesting to define vðyÞ as the supremum or infimum of all x
such that gðxÞ ¼ y, even though this supremum or infimum need
not belong to the set. At any rate, the preimage of y is contained
in the interval defined by the infimum and the supremum. How-
ever, for various purposes it is convenient to take instead the infi-
mum of all x such that gðxÞP y or the supremum of all x such that
gðxÞ 6 y. This yields better monotonicity properties. (We include
the case gðxÞ ¼ y by letting the preorder in Y be the discrete preor-
der.) We make the following definitions, where we refrain from
assuming that X is a complete lattice.

Definition 3.1. Let X be an ordered set, Y a preordered set, and
g : X ! Y any mapping. We then define the lower inverse g½�1� :

Dðg½�1�Þ ! X as the mapping

g½�1�ðyÞ ¼
_
x2X

ðx; gðxÞ6Y yÞ ¼
_
x2X

ðx; ðx; yÞ 2 epi gÞ; y 2 Dðg½�1�Þ:

ð3:1Þ

The mapping is defined for all y 2 Y such that the supremum exists
in X; the set of all such y constitutes the domain of definition of g½�1�,
denoted by Dðg½�1�Þ.

We define the upper inverse, denoted g½�1�, as the mapping
ððgop

opÞ½�1�Þ
op
op, i.e.,

g½�1�ðyÞ ¼
^
x2X

ðx; gðxÞPY yÞ ¼
^
x2X

ðx; ðx; yÞ 2 hypo gÞ; y 2 Dðg½�1�Þ:

ð3:2Þ

Here the mapping gop
op is defined in Definition 2.3.

We also define mappings ððgopÞ½�1�Þop ¼ ððgopÞ
½�1�Þop and

ððgopÞ½�1�Þop ¼ ððgopÞ½�1�Þ
op:

ððgopÞ½�1�ÞopðyÞ ¼
_
x2X

ðx; gðxÞPY yÞ; y 2 DðððgopÞ½�1�ÞopÞ; ð3:3Þ

ððgopÞ½�1�ÞopðyÞ ¼
^
x2X

ðx; gðxÞ6Y yÞ; y 2 DðððgopÞ½�1�ÞÞop: ð3:4Þ

There are mainly two situations when the generalized inverses
are defined in all of Y. The first is when X is a complete lattice. The
second is when for example epi g ¼ ðhypo hÞ� for some mapping
h : Y ! X, where we define, following Birkhoff [3, p.3],

R�¼ fðy; xÞ 2 Y � X; ðx; yÞ 2 Rg ð3:5Þ

for any subset R of X � Y . Then fx 2 X; gðxÞ6Y yg ¼ fx 2 X; x6XhðyÞg,
showing that the supremum of the elements in the set exists and is
equal to hðyÞ. In fact, this is the case when ðh; gÞ is an adjunction as
we shall see (Section 4.3). Thus g½�1� ¼ h is defined everywhere;
Dðg½�1�Þ ¼ Y .

In the case of complete lattices X and Y, these four generalized
inverses were introduced by Banon and Barrera [1, p. 311], who
used them to construct decompositions of general mappings be-
tween complete lattices.3 They denoted them as follows:

g½�1� ¼ g�; g½�1� ¼ �g; ððgopÞ½�1�Þop ¼ �g; ððgopÞ½�1�Þop ¼ g�:

In my notes (2002a) and my paper (2007), I studied only the first
two, assuming X to be a complete lattice and Y to be a preordered
set.

As a first observation, let us note that g½�1� and g½�1� are always
increasing, while ððgopÞ½�1�Þop and ððgopÞ½�1�Þop are decreasing. If X
and Y possess largest elements 1X and 1Y , then g½�1�ð1YÞ ¼ 1X . Sim-
ilarly, if there are smallest elements 0X and 0Y , then g½�1�ð0Y Þ ¼ 0X .
If Y has the chaotic preorder, then both inverses are constant,
g½�1� ¼ 1X and g½�1� ¼ 0X identically.

We note that we always have

epi g \ ðX � Dðg½�1�ÞÞ � ðhypo g½�1�Þ�; ð3:6Þ

in other words, if g½�1�ðyÞ is defined and gðxÞ 6 y, then g½�1�ðyÞP x;
and

hypo g \ ðX � Dðg½�1�ÞÞ � ðepig½�1�Þ�; ð3:7Þ

in other words, if g½�1�ðyÞ is defined and gðxÞP y, then g½�1�ðyÞ 6 x.
Here R� for a subset R of X � Y is defined by (3.5). In general these
inclusions are strict as we shall see below.

Note that we do not require in (3.1) that the set of all x such that
gðxÞ6Y y shall have a largest element. In other words, the supre-
mum in (3.1), even if it exists, is not necessarily a maximum; see
Examples 3.3, 5.1, and 5.2. Using terms from Blyth [5, p. 26], the
set of all x such that gðxÞ 6 y is not necessarily an ideal in X,
although it is a down-set if g is increasing. Similarly, the infimum
in (3.2) is not necessarily a minimum; the set of all x such that
gðxÞP y is not necessarily a filter in X, although it is an up-set if
g is increasing.

The special situation when the supremum in (3.1) is actually a
maximum is equivalent to the inequality gðg½�1�ðyÞÞ6Y y; if this

1 Cf. the noun ē thmós ‘strainer’ and the adjectives kleistós ‘closed’ and anoiktós
‘open’ in Classical Greek. I am grateful to Ebbe Vilborg for help with these words.

2 Not to be abbreviated to ‘‘filter”: a filter in a lattice L is a subset F of L such that
x ^ y and x _ z belong to F whenever x; y 2 F and z 2 L.

3 I am grateful to Gerald Banon for pointing this out to me; I was unaware of their
paper when I wrote my paper (2007).
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holds for all y 2 Dðg½�1�Þ, we have g � g½�1�6Y idY jDðg½�1� Þ. This can hap-
pen whether g is increasing or not. Except for the simplest lattices
there exist increasing mappings which do not have this property:

Proposition 3.2. Let L be a complete lattice which is not totally
ordered, and let M be a complete lattice with at least two elements.
Then there exists an increasing mapping g : L! M such that
gðg½�1�ð0MÞÞi0M.

Proof. Let a; b be any two non-comparable elements of L and
define gðxÞ ¼ 1M if x P a _ b; gðxÞ ¼ 0M otherwise. (In particular
gðaÞ ¼ gðbÞ ¼ 0M .) Then g½�1�ðyÞP a _ b for all y 2 M, so that
gðg½�1�ðyÞÞ ¼ 1M for all y, in particular gðg½�1�Þð0MÞ ¼ 1Mi0M . h

Example 3.3. Take X ¼ Y ¼ ½0;1� and g : ½0;1� ! ½0;1�. Define
x0 ¼ g½�1�ð0Þ ¼ supðx; f ðxÞ 6 0Þ. The inequality gðg½�1�ð0ÞÞ 6 0 means
that gðx0Þ ¼ 0, which need not be the case, even if the supremum is
attained and g is increasing, for instance if g ¼ v½1=2;1�, the charac-
teristic function of the interval ½1=2;1�.

4. Special cases of inverses of mappings

The inverses we have defined in Section 3 generalize a situation
which has been known for a long time, although under different
names and with different fields of applications. Our results general-
ize the theory of Galois connections, equivalently residuation the-
ory and the theory of adjunctions, to a more general situation, a
situation which appears even in very simple cases like Proposition
3.2 and Example 3.3; we shall see other examples in the next sec-
tion. In complete lattices the upper and lower inverses always exist,
whereas only very special mappings are upper or lower adjoints.

It seems that this generalization of residuation theory has not
been considered in the contexts of the branches of mathematics
mentioned in Subsections 4.1, 4.2 and 4.3 below. However, Singer
[40, p. 176] defines the dual M ! L of a mapping g : L! M, which,
after a change of order in L, is the lower inverse defined here. He
notes the inclusion corresponding to (3.6) and proves that it is an
equality if and only if g is a duality (anti-erosion).

Let us now briefly recall three classical definitions.

4.1. Galois connections

If we require both that g � g½�1� 6 idY shall hold and that g shall
be increasing, then we are in a situation which has been studied a
long time.

Definition 4.1. Given two preordered sets X and Y, a Galois
connection is a pair ðF;GÞ of decreasing mappings F : X ! Y ,
G : Y ! X such that G � F P idX and F � G P idY .

The notion of a Galois connection between ordered sets goes
back to Évariste Galois’ work on the automorphism groups of a
field. Birkhoff [2, p. 24], [3, p. 122] defined the concept of polarity
between power sets; Ore [30, p. 495] introduced Galois connec-
tions in the general setting of ordered sets as well as the terms Ga-
lois correspondence (for each of the mappings) and Galois connexion
(for the pair of mappings). Grätzer [16, p. 69], Gierz et al. [15, p.
22], Davey and Priestley [8, p. 155], and Blyth [5, p. 14] use the
term Galois connection.

The preordered sets X and Y in the definition need not be
lattices:

Example 4.2. Let X ¼ f0;1g and let Y be any preordered set. Then
ðF;GÞ, where F : X ! Y ;G : Y ! X, is a Galois connection if and only
if Y possesses a largest element 1Y ; Fð0Þ ¼ 1Y , and G ¼ vB, the
characteristic function of the down-set B ¼ fy 2 Y ; y 6 Fð1Þg. The
equivalence class of Fð1Þ determines everything.

It is well known and easy to prove that if ðF;GÞ is a Galois con-
nection, then G � F is in fact a cleistomorphism in X; Ore [30, p.
496]. Conversely, any cleistomorphism in X can be obtained in this
way for a suitable choice of Y and G (this follows from Gierz et al.
[14, p. 23, 3.13], [15, p. 29,O-3.13]; see also [24]; Proposition 2.2).
However, as remarked in (2002b:2038), this rather formal result
‘‘is, in sense, completely uninteresting”; it is more like a tautology.
By contrast, there are many situations in mathematics where
j : X ! X can be factorized as j ¼ G � F for some F : X ! Y and
G : Y ! X which are very interesting and give new insights. Exam-
ples include Galois theory, convex analysis (Example 5.13), and im-
age processing (Examples 5.7, 5.11 and 5.12).

Proposition 4.3. Given preordered sets X;Y ; a pair ðF;GÞ of mappings
F : X ! Y and G : Y ! X is a Galois connection if and only if
hypo F ¼ ðhypo GÞ�.

Birkhoff [3, p. 124] attributes this result to J. Schmidt.

Proof. If ðF;GÞ is a Galois connection and x 6 GðyÞ, then
FðxÞP FðGðyÞÞ since F is decreasing, and since FðGðyÞÞP y, we
get FðxÞP y; we have proved that ðhypo GÞ�� hypo F. The oppo-
site inclusion follows by symmetry.

Conversely, if hypo F ¼ ðhypo GÞ� and y 6 FðxÞ, we deduce that
x 6 GðyÞ, in particular, taking y ¼ FðxÞ, that x 6 GðFðxÞÞ. Also, if
x0 6 x 6 GðyÞ we deduce that y 6 FðxÞ and y 6 Fðx0Þ. Since we now
know that this holds for y ¼ FðxÞ, we conclude that FðxÞ 6 Fðx0Þ,
hence that F is decreasing. That G is decreasing and that y 6 FðGðyÞÞ
follows by symmetry. h

If we introduce increasing mappings g ¼ Fop : X ! Yop and
h ¼ Gop : Yop ! X, the equality hypo F ¼ ðhypo GÞ� can be written
epi g ¼ ðhypo hÞ�, which is just (3.6) with equality, taking h ¼ g½�1�.

4.2. Residuation

A mapping g : X ! Y of an ordered set X into an ordered set Y is
said to be residuated if for every b 2 Y there is an element a 2 X
such that the inverse image of fy 2 Y ; y 6 bg is equal to
fx 2 X; x 6 ag (Blyth and Janowitz [6, p. 11]; Blyth [5, p. 7]). It is
equivalent to require that there exists a mapping h : Y ! X such
that ðgop;hopÞ is a Galois connection. The mapping h is proved to
be unique and is called the residual of g. It is equal to g½�1�.

Residuation theory goes back at least to a paper by Ward and
Dilwarth [44], then in an algebraic setting. Algebraically, residua-
tion is a kind of dual to multiplication. In a lattice L with a multi-
plication one fixes an element c and assumes that, given y, the
set of all x such that cx 6 y has a largest element, which is denoted
by y : c (we consider for simplicity only the commutative case). We
see that this is g½�1� if g : L! L is the mapping gðxÞ ¼ cx. Thus cx 6 y
if and only if x 6 y : c.

4.3. Adjunctions

Gierz et al. [15, p. 22] define a Galois connection or adjunction as
a pair of increasing mappings ðh; kÞ;h : X ! Y; k : Y ! X satisfying
hypo h ¼ ðepi kÞ�. This aspect probably originates in logic.

If ðh; kÞ is an adjunction, Gierz et al. [15, p. 22], Heijmans and
Ronse [20, p. 264], and Davey and Priestley [8, p. 156] call h the
upper adjoint and k the lower adjoint in the adjunction. As we shall
see, in an adjunction ðh; kÞ we have k ¼ h½�1� and h ¼ k½�1�, so each
mapping determines the other.

The definition of an adjunction means that ðF;GÞ ¼ ðhop
; kopÞ is a

Galois connection in the sense of Definition 4.1. (We shall use the
last-mentioned definition in the sequel.) Gierz et al. [15, p. 22] re-
quire that h and k be increasing, but this is superfluous as we have
seen in Proposition 4.3.
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5. Examples

The purpose of this section containing several examples is two-
fold. The first examples are very simple and just intended to illus-
trate the concepts and show that some implications—that one
could have expected to hold—do not hold. The Examples 5.6, 5.7
and 5.8 and 5.11–5.14 supplement Subsections 4.1, 4.2 and 4.3 in
showing that the definitions have a good meaning and yield some
insight in a variety of situations.

Example 5.1. Supremum not maximum.

Take X ¼ PðEÞ, where E is a finite set of cardinality n P 2, and
Y ¼ ½0;n�Z ¼ fy 2 Z; 0 6 y 6 ng, two complete lattices, and define
gðAÞ ¼ cardðAÞ; A 2 X. Then g½�1�ð0Þ ¼ Ø ¼ 0X and g½�1�ðyÞ ¼ E ¼ 1X

for all y 2 ½1;n�Z. Thus g½�1�ð1Þ ¼ E ¼ 1X , and the set fA 2 X; gðAÞ 6 1g
is not an ideal. It therefore comes as no surprise that, for
n ¼ 2; cardðhypo g½�1�Þ ¼ 25 > 20 ¼ cardðepi gÞ (see Fig. 1).

We also find that g½�1�ðyÞ ¼ Ø ¼ 0X when y < n and g½�1�ðyÞ ¼
E ¼ 1X when y ¼ n.

Example 5.2. Non-residuated mappings.
Take X ¼ Y ¼ L, a complete lattice, in Definition 3.1, fix an

element c of L, and define a mapping g : L! L by gðxÞ ¼ x _ c; x 2 L.
In this case, the supremum in (3.1) is a maximum if y P c but only
then. Thus g is not residuated unless c ¼ 0; also, it is a dilation only
if c ¼ 0 (indeed, gð0Þ ¼ c while

W
j2ØgðxjÞ ¼ 0). But it is easy to

determine its lower inverse: g½�1�ðyÞ ¼ y if y P c and g½�1�ðyÞ ¼ 0
otherwise. We have

epi g ¼ fðx; yÞ 2 L2; y P x _ cg;

while

ðhypo g½�1�Þ�¼ epi g [ fð0; yÞ 2 L2; yjcg;

so that

ðhypo g½�1�Þ�n epi g ¼ fð0; yÞ 2 L2; yjcg–Ø if c–0:

We have gðg½�1�ðyÞÞ 6 y if and only if y P c.
For the upper inverse, we can only say that g½�1�ðyÞ ¼ 0 if y 6 c

and that g½�1�ðyÞ 6 y for yic. Both equality and strict inequality
can occur here as we shall see.

Example 5.3. We let g be as in Example 5.2 and assume in addition
that L is totally ordered. Then g is an erosion. We have already
determined g½�1� in Example 5.2, and we know that g½�1�ðyÞ ¼ 0
for y 6 c. In the case of total order we have g½�1�ðyÞ ¼ y for all

y > c. In the notation which Singer [40, p. 335] uses for
L ¼ ½�1;þ1�, we can write g½�1�ðyÞ ¼ y>c; y 2 L. Thus g½�1� and g½�1�

are equal except for y ¼ c if c–0; there we get g½�1�ðcÞ ¼
0 6 c ¼ g½�1�ðcÞ. Moreover we have equality in (3.7):

hypo g ¼ ðepi g½�1�Þ�¼ fðx; yÞ 2 L2; y 6 x _ cg;

which, in view of Theorem 6.8 means that g½�1� is dually residuated
with dual residual g; equivalently that ðgop; ðg½�1�ÞopÞ is a Galois
connection.

Example 5.4. Let now L be ½0;1�2, the Cartesian product of two
intervals. The lower inverse is already known from Example 5.2.
The upper inverse is

g½�1�ðyÞ ¼

0; y 6 c;

ð0; y2Þ; y1 6 c1; y2 > c2;

ðy1; 0Þ; y1 > c1; y2 6 c2;

y; y1 > c1; y2 > c2:

8>>><
>>>:

Thus strict inequality in g½�1�ðyÞ 6 y can occur. We have hypo g ¼
ðepi g½�1�Þ�.

Example 5.5. Let now L be f0;1g2 with the coordinatewise order,
and let g be as in Example 5.2. We choose c ¼ ð1;0Þ and denote
ð0;1Þ by a, so that L consists of the four elements
0 ¼ ð0;0Þ; a ¼ ð0;1Þ; c ¼ ð1;0Þ, and 1 ¼ ð1;1Þ. From Example 5.2
we know that g½�1�ðyÞ ¼ y if y P c and g½�1�ðyÞ ¼ 0 otherwise. Thus

g½�1�ðyÞ ¼

0; y ¼ 0;

0; y ¼ a;

c; y ¼ c;

1; y ¼ 1:

8>>><
>>>:

We find that

ðhypog½�1�Þ�n epi g ¼ fð0;0Þ; ð0; aÞg–Ø:

Thus g is not residuated.

Fig. 1. The mapping g of Example 5.1 (left) and its lower inverse g½�1� in the case n ¼ 2. One can see that cardðepi gÞ ¼ 20 and that cardðhypo g½�1�Þ ¼ 25.

Fig. 2. The mapping g of Example 5.5.
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We also find that

g½�1�ðyÞ ¼

0; y ¼ 0;

a; y ¼ a;

0; y ¼ c;

a; y ¼ 1:

8>>><
>>>:

The infimum is in all cases a minimum, meaning that g½�1� is dually
residuated, in other words, ðgop; ðg½�1�ÞopÞ is a Galois connection. We
have equality in (3.7):

hypo g ¼ ðepi g½�1�Þ�¼ L2 n fð0;aÞ; ð0;1Þ; ðc;aÞ; ðc;1ÞgðSee Figs: 2;3Þ:

Example 5.6. Calculating with infinities.

Let now L be the complete lattice ½�1;þ1� of extended real
numbers and define

ScðxÞ ¼ xuc; scðxÞ ¼ x þ� c; x 2 ½�1;þ1�;

where c is a constant in ½�1;þ1�. Here u and þ� denote upper and
lower addition, defined as extensions of addition R2 ! R to commu-
tative mappings ½�1;þ1�2 ! ½�1;þ1� defined by the require-
ments

xuðþ1Þ ¼ þ1 for all x 2 ½�1;þ1�;
xuð�1Þ ¼ �1 for all x 2 ½�1;þ1½; and
x þ� y ¼ �ðð�xÞuð�yÞÞ for all x; y 2 ½�1;þ1�:

ð5:1Þ

Convenient rules in the calculus with these additions are

inf
j2J
ðcuajÞ ¼ cu inf

j2J
aj and sup

j2J
ðc þ� ajÞ ¼ c þ� sup

j2J
aj;

which hold for all index sets J and all elements aj; c 2 ½�1;þ1�. We
also note the equivalence

aub P c() a P c þ� ð�bÞ; a; b; c 2 ½�1;þ1�: ð5:2Þ

We note that Sc ¼ sc for all real numbers c. The mapping sc is resid-
uated for all c 2 ½�1;þ1�, and ðscÞ½�1� ¼ S�c . Also ðScÞ½�1� ¼ s�c and
the infimum is a minimum. But neither S�1 nor Sþ1 is residuated,
although we have ðS�1Þ½�1� ¼ Sþ1 and ðSþ1Þ½�1� ¼ S�1. Similarly,
ðs�1Þ½�1� ¼ sþ1 and ðsþ1Þ½�1� ¼ s�1.

Example 5.7. Processing binary images.
This field has been my main source of inspiration, and examples

abound. A binary image consists of pixels, e.g., spots on a computer
screen, and each pixel can be given an address which is a pair of
integers. Thus we let Z2 or Zn be the set of addresses. (This does not
mean that each pixel must be a square; in fact a hexagonal or
triangular tessellation can be given addresses in Z2 just like the
pixels in a rectangular tessellation.) A very common kind of
dilation is the operation on PðGÞ defined by the Minkowski sum,

dSðAÞ ¼ Aþ S ¼ fxþ y; x 2 A; y 2 Sg; A 2 PðGÞ;

where S is a fixed subset of G, the structuring element. Here G is any
abelian group, for instance Zn or Rn, in particular Z2. In fact, any dila-

tion which commutes with all translations of the group is of this
form. Its lower inverse is

ðdSÞ½�1�ðBÞ ¼
[

A

ðA; dSðAÞ � BÞ ¼ fx; xþ S � Bg; B 2 PðGÞ;

and it is well known that it is an erosion (see Figs. 4–6).

Fig. 3. The lower inverse g½�1� (left) and the upper inverse g½�1� of Example 5.5.

Fig. 4. To the left a structuring element S of Example 5.7 whose seven pixels have
addresses ð0;0Þ; ð1; 0Þ; ð0;1Þ; ð�1;1Þ; ð�1;0Þ; ð0;�1Þ; ð1;�1Þ in a Cartesian coordi-
nate system—a Cartesian system need not be orthogonal. To the right an image A to
be subjected to the dilation d ¼ dS , the erosion d½�1� ¼ e as well as the cleistomor-
phism j ¼ e � d and the anoiktomorphism a ¼ d � e.

Fig. 5. To the left the dilated set dðAÞ ¼ dSðAÞ, S being as in Fig. 4 to the left and A as
in Fig. 4 to the right. To the right the closed set jðAÞ ¼ eðdðAÞÞ. We have
cardðjðAÞ n AÞ ¼ 61� 55 ¼ 6. We note that the lower, narrow gulf has been filled
in, while the upper, wider gulf has been preserved.

Fig. 6. To the left the eroded set eðAÞ ¼ ðdSÞ½�1�ðAÞ, S being as in Fig. 4 to the left and
A as in Fig. 4 to the right. To the right the open set aðAÞ ¼ dðeðAÞÞ. We have
cardðA n eðAÞÞ ¼ 55� 41 ¼ 14. We note that the narrow arms (the two upper arms
and the arm to the right) have disappeared, while the thicker arm to the left has
survived.
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Example 5.8. Infimal and supremal convolution.
Let G be an abelian group—think of Zn or Rn. We define for

arbitrary functions f ; g 2 ½�1;þ1�G,

ðf ugÞðxÞ¼ inf
y2G
ðf ðx�yÞugðyÞÞ; ðf tgÞðxÞ¼ sup

y2G
ðf ðx�yÞþ

�
gðyÞÞ; x2G: ð5:3Þ

Here u and þ� are defined by (5.1). We call the operation u
infimal convolution and t supremal convolution. Clearly
f t g ¼ �ðð�f Þu ð�gÞÞ, so from a theoretical point of view it is en-
ough to study one of them; however, it is convenient to keep both
operations. For a survey of the properties and many applications of
these convolutions, see Strömberg [43]; for applications see also
Heijmans and Ronse [20], Heijmans and Maragos [18], and Heij-
mans and Molchanov [19].

We note that these convolutions are just Minkowski addition in
another dimension:

epiF
s ðf u gÞ ¼ epiF

s ðf Þ þ epiF
s ðgÞ; f ; g 2 ½�1;þ1�G; and

hypoF
s ðf t gÞ ¼ hypoF

s ðf Þ þ hypoF
s ðgÞ; f ; g 2 ½�1;þ1�G;

ð5:4Þ

where Minkowski addition is now in the abelian group G� R, and
epiF

s ðf Þ ¼ epis ðf Þ \ ðG� RÞ is the finite strict epigraph of f.
We may study equations f u s ¼ g with s and g as given

functions and f as an unknown function, but in general such
equations cannot be solved, and if so, they do not have a unique
solution. However, if we pass to inequalities, something useful can
be said:

Proposition 5.9. Let G be an abelian group, fix two functions
s; t 2 ½�1;þ1�G, and define two operations on functions G! ½�1;
þ1� by

dðf Þ ¼ f u s and eðgÞ ¼ g t t; f ; g 2 ½�1;þ1�G:

Then hypoðdÞ ¼ epiðeÞ� if and only if tðyÞ ¼ �sð�yÞ; y 2 G.

Proof. We find that dðf ÞP g if and only if f ðx� yÞusðyÞP gðxÞ for
all x; y 2 G, and that f P eðgÞ if and only if f ðxÞP gðx� yÞ þ� tðyÞ for
all x; y 2 G. We now invoke the equivalence (5.2), which shows that
the condition dðf ÞP g can be written f ðx� yÞuð�gðxÞÞP �sðyÞ for
all x; y 2 G, equivalently

f ðxÞuð�gðx� yÞÞP �sð�yÞ for all x; y 2 G;

and that the condition f P eðgÞ can be written

f ðxÞuð�gðx� yÞÞP tðyÞ for all x; y 2 G:

Thus the equivalence holds for all f ; g 2 ½�1;þ1�G if tðyÞ ¼ �sð�yÞ
for all y 2 G and only then. h

We shall also need a similar result for nonnegative functions:

Proposition 5.10. Let G be an abelian group, fix two functions
s 2 ½0;þ1�G and t 2 ½�1;0�G, and define two operations on functions
G! ½0;þ1� by

dðf Þ ¼ f u s and eþðgÞ ¼ ðg t tÞþ ¼ ðg t tÞ _ 0; f ; g 2 ½0;þ1�G:

Then hypoðdÞ ¼ epiðeþÞ� if and only if tðyÞ ¼ �sð�yÞ for all y 2 G.

Proof. The proof is quite similar to the previous proof. Note that,
for all f 2 ½0;þ1�G; f P eðgÞ if and only if f P eþðgÞ. h

The mapping d is an erosion for the order used. However, as we
shall see in the next example, it is natural to use the order defined
by the functions e�f rather than by f, which explains that d will be a
dilation and eþ an erosion when operating on these functions.

Example 5.11. Processing gray-scale images.

The binary images on a set X form a complete lattice PðXÞ
isomorphic to f0;1gX . A gray-scale image on X is given by a
function u : X ! P on X, where P is a subset of ½0;1� representing
gray-levels in the image, for instance

P ¼ 0;
1

255
;

2
255

; . . . ;
254
255

;1
� �

with 28 levels. If P is closed, PX is a complete lattice, actually a sub-
lattice of ½0;1�X .

How to define dilations and erosions on gray-scale images on an
abelian group G? A naive way would be to use convolution,

ðu 	 rÞðxÞ ¼
X
y2G

uðx� yÞrðyÞ; x 2 G;

possibly scaled to the interval ½0;1� by dividing by the supremum or
taking just ðu 	 rÞ ^ 1 for any two functions u;r : G! ½0;1�, but
these operations do not define dilations. So one could try instead
with

drðuÞ ¼ sup
y2G

uðx� yÞrðyÞ; u 2 ½0;1�G;

where r : G! ½0;1� is a given function. This does define a dilation.
But if the set P of values is finite, it yields a function with values in P
only if r takes values in f0;1g. This definition is one of several as we
shall see; in the notation of Bloch and Maître [4, p. 1344] we have
dr ¼ D3r.

It will be convenient to formulate these arguments in terms of
infimal and supremal convolution.

To any set A we associate its indicator function indA ¼ � log vA;
the characteristic function is vA ¼ e�indA . Similarly, to any gray-
scale image u we associate its indicator function indu ¼ � log u.

We now note that the Minkowski sum Aþ B of two sets A and B
satisfies

indAþB ¼ indA u indB:

This makes it natural to define a dilation d by a fixed gray-scale im-
age r and operating on arbitrary gray-scale images u by the
formula

inddðuÞ ¼ indu u indr; indu 2 ½0;þ1�G; ð5:5Þ

and, as we have seen in Proposition 5.10, its lower inverse d½�1� ¼ eþ
is given by

indeþðwÞ ¼ ðindw t ð�indsÞÞþ; indw 2 ½0;þ1�G; ð5:6Þ

where sðxÞ ¼ rð�xÞ. And j ¼ eþ � d is a cleistomorphism; a ¼ d � eþ
an anoiktomorphism (Corollary 6.14).

Example 5.12. Fuzzy logic and fuzzy mathematical morphology.
A subset A of a set E, called a crisp set in this context, can be

represented by its characteristic function vA : E! f0;1g. A fuzzy
subset A of a set E can in the same way be represented by its
membership function lA : E! P, where the value lAðxÞ represents
the degree (or probability) that x belongs to A. The intersection
A \ B of two sets can be represented, respectively, by

vA\B ¼ vA ^ vB and lA\B ¼ lA ^ lB;

similarly the union is represented by

vA[B ¼ vA _ vB and lA[B ¼ lA _ lB:

Thus the family PðEÞ of all crisp sets is isomorphic to the complete
lattice f0;1gE, and the family of all fuzzy sets is isomorphic to the
lattice ½0;1�E. But as shown by (5.4), the calculus of fuzzy sets can
be reduced to calculus of crisp sets at the expense of adding one
more dimension.
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So far, the fuzzy sets are just like gray-scale images. However,
fuzzy logic goes beyond the gray-scale images in generalizing also
the minimum and maximum.

In addition to the operations of minimum and maximum there
are many other operations on fuzzy sets. We say that a function
c : ½0;1�2 ! ½0;1� is a conjunctor if its restriction to f0;1g2 is
Boolean conjunction; similarly we say that d : ½0;1�2 ! ½0;1� is a
disjunctor if its restriction to f0;1g2 is Boolean disjunction;
moreover a negator is a function n : ½0;1� ! ½0;1� such that
nð0Þ ¼ 1;nð1Þ ¼ 0 (Sladoje [41, p. 18–19]). Finally a function
i : ½0;1�2 ! ½0;1� will be called an implicator if ið0;0Þ ¼ ið0;1Þ ¼
ið1;1Þ ¼ 1 and ið1;0Þ ¼ 0.

Deng and Heijmans [10, p. 5] use the terms fuzzy conjunction or
just conjunction and fuzzy implication or implication for a conjunctor
which is increasing in both arguments, and an implicator which is
decreasing in the first and increasing in the second, respectively.

Examples of conjunctors and disjunctors include

cMða;bÞ¼ a^b; dMða;bÞ¼ a_b; a;b2 ½0;1�;
cAða;bÞ¼ ab; dAða;bÞ¼ aþb�ab; a;b2 ½0;1�; and
cLða;bÞ¼ ðaþb�1Þ_0; dLðaþbÞ^1; a;b2 ½0;1�;

the second ones are called algebraic and the last ones are called the
Łukasiewicz conjunctor and disjunctor.

Given a conjunctor c and a disjunctor d we define the c-
intersection A\cB and the d-union A[dB by their membership
functions

lA\cBðxÞ ¼ cðlAðxÞ;lBðxÞÞ; lA[dBðxÞ ¼ dðlAðxÞ;lBðxÞÞ; x 2 E:

It is customary to require more of the functions c and d. We require
\c and [d to be commutative and associative. This is guaranteed if

cða; bÞ ¼ cðb; aÞ; dða; bÞ ¼ dðb; aÞ; a; b 2 ½0;1�; and ð5:7Þ

cðcða;bÞ;zÞ¼ cða;cðb;zÞÞ; dðdða;bÞ;zÞ¼dða;dðb;zÞÞ; a;b;z2½0;1�:
ð5:8Þ

We also require that 1 be a neutral element for c and 0 a neutral ele-
ment for d:

cða;1Þ ¼ cð1; aÞ ¼ a; dða;0Þ ¼ dð0; aÞ ¼ a; a 2 ½0;1�: ð5:9Þ

Conditions (5.7)–(5.9) imply that the fuzzy sets form a commutative
semigroup with neutral element under \c as well as under [d. Final-
ly, it is natural to require that

c and d are increasing in each variable: ð5:10Þ

It follows from (5.7)–(5.10) that both semigroups have a zero ele-
ment (the empty set Ø for \c and the full set E for [d), and that c
and d are uniquely determined on the boundary of ½0;1�2; in partic-
ular at the four corners f0;1g2, which implies that A\cB and A[dB
agree with A \ B and A [ B when A and B are crisp sets.

One says that a function c or d satisfying (5.7)–(5.10) is a T-norm
or a T-conorm, respectively. Clearly the minimum is the largest of
all T-norms, and the Łukasiewicz T-norm cL is the largest convex
T-norm.

Translated to the language of fuzzy sets, (5.5) and (5.6) mean
that the dilation dS by a fuzzy set S with s ¼ indS has lower inverse
ðeTÞþ if and only if t ¼ �indT where T ¼ f�s; s 2 Sg.

More general dilations can now be defined as

drðuÞ ¼ sup
y2G

cðuðx� yÞ;rðyÞÞ; u 2 ½0;1�G;

for any conjunctor c. In their survey article Bloch and Maître [4, p.
1344] denote it by D6r and explore its properties. The case already
considered is when cða; bÞ ¼ cAða; bÞ ¼ ab; we may instead take
cða; bÞ ¼ cMða; bÞ ¼ a ^ b to get the dilation introduced by Kaufmann

and Gupta [21] and denoted by D2r by Bloch and Maître [4,
p. 1344]; it can be expressed using a restricted infimal convolution.

Now fix an element a 2 ½0;1� and define a mapping gaðxÞ ¼
uða; xÞ for a function u of two variables. It is easy to see that if u is
a conjunctor, then the lower inverse ðgaÞ½�1� defines an implicator
iða; bÞ ¼ ðgaÞ½�1�ðbÞ. Several such implicators have been studied by
Deng and Heijmans [10, p. 5] and Deng [9, p. 3]. They are used in
fuzzy logic.

If u ¼ cM ¼min, the implicator iMða; bÞ ¼ ðgaÞ½�1�ðbÞ is equal to
1 if b P a and equal to b when b < a (cf. Example 5.2). The upper
inverse satisfies ðgaÞ

½�1�ðbÞ ¼ 1 for b > a and ðgaÞ
½�1�ðbÞ ¼ b for b 6 a

(cf. Example 5.3). Hence the two inverses are equal except for
b ¼ a.

Taking instead u ¼ cA, we find that iAða; bÞ ¼ ðgaÞ½�1�ðbÞ ¼
ðgaÞ

½�1�ðbÞ ¼ ðb=aÞ ^ 1 when a > 0, ðgaÞ½�1�ðbÞ ¼ ðgaÞ
½�1�ðbÞ ¼ 1 when

a¼0 and b>0, while ðgaÞ½�1�ðbÞ¼1;ðgaÞ
½�1�ðbÞ¼0 when a¼b¼0.

Both are discontinuous at the origin.
Finally, taking u as the Łukasiewicz T-norm cL, we find that the

lower and upper inverses agree except when b ¼ 0 and a < 1: we
get iLða; bÞ ¼ ðgaÞ½�1�ðbÞ ¼ ðgaÞ

½�1�ðbÞ ¼ ðb� aþ 1Þ ^ 1 for 0 < b 6 1,
while ðgaÞ½�1�ð0Þ ¼ 1� a, ðgaÞ

½�1�ð0Þ ¼ 0; the first is continuous, the
second discontinuous on ½0;1½�f0g.

Example 5.13. Convexity theory.
Given a real vector space E and its algebraic dual EH (the space

of all linear forms on E), the Fenchel transform (Fenchel [12]) of a
function u : E! ½�1;þ1� is defined as

~uðnÞ ¼ sup
x2E
ðn � x�uðxÞÞ; n 2 EH:

It satisfies

~u 6 f () ~f 6 u for all u 2 ½�1;þ1�E and all f 2 ½�1;þ1�E
H

:

After a change of order on one of the sides it satisfies the second
condition in Proposition 4.3, so that we have a Galois connection
(cf. also Theorem 6.8 and its Corollary 6.11). It follows that

ðinf
j2J

ujÞ
� ¼ sup

j2J

~uj for all familiesðujÞj2J ;

so that we have an anti-erosion or a duality in the sense of Singer;
i.e., after a change of the order relation we have a dilation or erosion
(cf. condition (E) in Theorem 6.8). Singer [40] studies several other
dualities in convexity theory.

Example 5.14. Rådström’s definition of smooth functions on arbi-
trary sets.

Let X be any set and define for a fixed m 2 N [ f1g two
mappings Fm : PðXRÞ ! PðRXÞ and Gm : PðRXÞ ! PðXRÞ by

FmðCÞ ¼ fu;u � c 2 CmðR;RÞ for all c 2 Cg; C 2 PðXRÞ; and

GmðUÞ ¼ fc;u � c 2 CmðR;RÞ for all u 2 Ug; U 2 PðRXÞ:

Obviously the pair ðFm;GmÞ is a Galois connection. Hans Rådström
(1919–1970) defined, in his unpublished work, smooth functions
on a set X by fixing a set of smooth curves C and then defining a func-
tion u : X ! R as smooth if it belongs to F1ðCÞ. As far as I know, he
did not develop a theory. A basic question is whether, for m ¼ 1,
we get the usual C1 functions if X is a differential manifold and C is
the set of C1 curves; Rådström conjectured that this is so, and Boman
[7] proved it. More precisely, Boman proved that, for finite m P 1,

CmðRn;RÞ � FmðC1ðR;RnÞÞ � Cm�1;1ðRn;RÞ:

Here CmðRn;RÞ denotes the space of all functions on Rn with real
values whose derivatives of order at most m exist and are continu-
ous, while Cm�1;1ðRn;RÞ is the subspace of Cm�1ðRn;RÞ consisting of
functions whose derivates of order m� 1 are all Lipschitz continu-
ous. Boman proved that the first inclusion here is strict; obviously
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so is the second. But taking the intersection over all finite m P 1 we
see that F1ðC1ðR;RnÞÞ ¼ C1ðRn;RÞ.

Jan Boman has now obtained an explicit description of
FmðCm ðR;RnÞÞ for all finite m P 1 (personal communication 2008-
09-18).

For m ¼ 1, Petermann [31] developed a formalism in the
framework of category theory. Finally Michor [29], Kriegl and Nel
[27] and Kriegl and Michor [26] developed a theory for global
analysis using smooth curves.

6. Properties of inverses

If, given a mapping g : X ! Y , we could find a mapping u : Y ! X
such that ðepi uÞ�¼ hypo g we would be content to have a kind of in-
verse to g. However, usually the best we can do is to study mappings
u with ðepi uÞ�
 hypo g or mappings v with ðepi vÞ�� hypo g. This
we shall do in the following proposition, which shows that the upper
and lower inverses are solutions to certain extremal problems. We
shall allow mappings that are not defined everywhere.

Proposition 6.1. Let X be an ordered set, Y a preordered set, and let
g : X ! Y, u : DðuÞ ! X and v : DðvÞ ! X be mappings, where DðuÞ
and DðvÞ, the domains of definition of u and v, are contained in Y and
contain Dðg½�1�Þ. If

ðhypo uÞ�\ ðX � Dðg½�1�ÞÞ � epi g \ ðX � Dðg½�1�ÞÞ � ðhypo vÞ�;

then ujDðg½�1� Þ 6 g½�1� 6 vjDðg½�1� Þ and

ðhypo uÞ�\ ðX � Dðg½�1�ÞÞ � epi g \ ðX � Dðg½�1�ÞÞ � ðhypo g½�1�Þ�
� ðhypo vÞ�:

Hence g½�1� is the smallest mapping v such that ðhypo vÞ� contains
epi g \ ðX � Dðg½�1�ÞÞ.

Similarly, if DðuÞ and DðvÞ contain Dðg½�1�Þ and

ðepi uÞ�
 hypo g \ ðX � Dðg½�1�ÞÞ 
 ðepi vÞ�\ ðX � Dðg½�1�ÞÞ;

then ujDðg½�1� Þ 6 g½�1�
6 vjDðg½�1� Þ and

ðepi uÞ�
 ðepi g½�1�Þ�
 ðhypo gÞ \ ðX � Dðg½�1�ÞÞ

 ðepi vÞ�\ ðX � Dðg½�1�ÞÞ:

Hence g½�1� is the largest mapping u such that ðepi uÞ� contains
hypo g \ Dðg½�1�Þ.

The proof is straightforward.

Corollary 6.2. With g;u and v given as in the proposition, assume that
ðhypo uÞ�¼ epi g (thus, in particular, u is defined in all of Y). Then
u ¼ g½�1�. Similarly, if ðepi vÞ�¼ hypo g, then v ¼ g½�1�. If also Y is an
ordered set, then ðhypo uÞ�¼ epi g implies that u½�1� ¼ g in addition to
u ¼ g½�1�. Similarly, ðepi vÞ�¼ hypo g implies v½�1� ¼ g in addition to
v ¼ g½�1�.

The corollary singles out the special case of adjunctions be-
tween X and Y among all pairs ðg; g½�1�Þ and adjunctions between
Y and X among all pairs ðg½�1�; gÞ.

An ideal inverse u would satisfy u � g ¼ idX ; g � u ¼ idY , and the
inverse of u would be g. It is therefore natural to compare g½�1� � g
and g½�1� � g with idX; g � g½�1� and g � g½�1� with idY ; and ðg½�1�Þ

½�1�

and ðg½�1�Þ½�1� with g. This is what we shall do in the next three
subsections.

6.1. Left inverses

We shall now investigate to what extent g½�1� and g½�1� can serve
as left inverses to g.

Proposition 6.3. Suppose that X is an ordered set and Y a preordered
set. Then for all mappings g : X ! Y one has idX jXg

6 g½�1� � g and

g½�1� � g 6 idX jXg , where Xg is the set of all x 2 X such that
gðxÞ 2 Dðg½�1�Þ, and Xg is the set of all x 2 X such that
gðxÞ 2 Dðg½�1�Þ. The following three conditions are equivalent:

ðaÞ g is coincreasing;
ðbÞ g½�1� � g ¼ idX jXg

;
ðcÞ g½�1� � g ¼ idX jXg .

Proof. If gðaÞ belongs to Dðg½�1�Þ, it is clear that g½�1�ðgðaÞÞ ¼W
xðx; gðxÞ 6 gðaÞÞP a.

If g is coincreasing, then fx; gðxÞ 6 gðaÞg is contained in
fx; x 6 ag, which, if x 2 Xg , implies that g½�1�ðgðaÞÞ 6

W
xðx; x

6 aÞ ¼ a. Thus ðaÞ implies ðbÞ.
Conversely, if g½�1�ðgðaÞÞ 6 a, then for all x, gðxÞ 6 gðaÞ implies

x 6 a. If this is true for all a, then g is coincreasing. So ðbÞ implies
ðaÞ.

The result on the upper inverse follows by duality. h

Corollary 6.4. Let X be an ordered set and Y a preordered set. Assume
that g½�1� and g½�1� are defined in all of Y. Then g½�1�ðyÞ 6 g½�1�ðyÞ for all
y 2 img, and also for all y majorizing or minorizing img. In particular,
g½�1�

6 g½�1� if g is surjective.

Proof. The statement for y 2 img follows directly from the propo-
sition. If y majorizes all elements in img, then g½�1�ðyÞ ¼ 1X , and if y
minorizes all elements in img, then g½�1�ðyÞ ¼ 0L. h

Proposition 6.5. Let X be an ordered set and Y a preordered set. If
g½�1� is defined everywhere and v : Y ! X is an increasing map-
ping such that idX 6 v � g, then g½�1� 6 v. Similarly, if g½�1� is defined
in all of Y and u : Y ! X is an increasing mapping such
that u � g 6 idX , then u 6 g½�1�. Hence, in view of Proposition 6.3,
g½�1� is the smallest increasing mapping v such that
idX 6 v � g, and g½�1� is the largest increasing mapping u such that
u � g 6 idX.

Proof. If u and v are increasing and u � g 6 idX 6 v � g, then
epi g � ðhypo vÞ� and ðepi uÞ�
 hypo g. We can now apply Propo-
sition 6.1. h

Theorem 6.6. Let L be a complete lattice and Y a preordered set.
Then the following six conditions on a mapping g : L! Y are
equivalent.

(a) g is coincreasing;
(b) g½�1� � g P idL;
(c) g½�1� � g ¼ idL;
(d) g½�1� � g 6 idL;
(e) g½�1� � g ¼ idL;
(f) g½�1� 6 g½�1�.

Proof. (a) implies (c) and (e). If g is coincreasing, we know already
from Proposition 6.3 that (c) and (e) hold.

(c) implies (b); (e) implies (d). This is trivial.
(b) or (d) implies (a). If (b) or (d) holds, then, in view of

Proposition 6.3, they both hold with equality, and g is
coincreasing.

(a) implies (f). Assume that g is coincreasing and fix an element
y 2 Y . Let x; x0 2 L be such that gðxÞ 6 y 6 gðx0Þ. Then x 6 x0.
Letting x vary, we see that g½�1�ðyÞ 6 x0. Letting now x0 vary,
we see that g½�1�ðyÞ 6 g½�1�ðyÞ. Thus (f) holds.

(f) implies (a). If x and x0 are given with gðxÞ 6 gðx0Þ we define
y ¼ gðxÞ. Then x 6 g½�1�ðyÞ and g½�1�ðyÞ 6 x0. If we know that
g½�1�ðyÞ 6 g½�1�ðyÞ, it follows that x 6 x0, proving that g is
coincreasing. h
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6.2. Right inverses

Next we compose g½�1� with g in the other order: we shall see to
what extent the inverses we have constructed can serve as right in-
verses. This will lead to a characterization of dilations—and, by
duality, of erosions, anti-erosions and anti-dilations.

Theorem 6.7. If X is an ordered set, Y a preordered set and g : X ! Y
a mapping such that g½�1� is defined everywhere, then the following
four properties are equivalent.

(A) ðhypoðg½�1�ÞÞ�� epi g;
(B) ðhypoðg½�1�ÞÞ�¼ epi g;
(C) g is increasing and ðgraphðg½�1�ÞÞ�� epi g;
(D) g is increasing and g � g½�1� 6 idY .

Proof. (A) is equivalent to (B). This is clear since epi g is always a
subset of ðhypo g½�1�Þ�; cf. (3.6).

(A) implies (C). We note first that g is increasing if (A)
holds. Indeed, if x 6 x0 and we define y0 ¼ gðx0Þ, then
g½�1�ðy0Þ ¼ g½�1� ðgðx0ÞÞP x0 P x (see Proposition 6.3), which by (A)
implies that gðxÞ 6 y0 ¼ gðx0Þ. (This is a point where we need g½�1� to
be defined everywhere.)

That (A) implies ðgraphðg½�1�ÞÞ�� epi g is a consequence of the
inclusion graphðg½�1�Þ � hypoðg½�1�Þ.

(C) implies (A). If x 6 g½�1�ðyÞ we define x0 ¼ g½�1�ðyÞ and note
that x 6 x0 and that ðy; x0Þ 2 graph g½�1�. If (C) holds, we conclude
that gðx0Þ 6 y. Hence, if g is increasing, gðxÞ 6 gðx0Þ 6 y, proving (A).

(C) and (D) are equivalent. (D) is just a rephrasing of (C). h

We now add a new property to the list.

Theorem 6.8. If L and M are complete lattices and g : L! M is any
mapping, then the following five properties are equivalent.

(A) ðhypoðg½�1�ÞÞ�� epi g;
(B) ðhypoðg½�1�ÞÞ�¼ epi g;
(C) g is increasing and ðgraphðg½�1�ÞÞ�� epi g;
(D) g is increasing and g � g½�1� 6 idM;
(E) g is a dilation.

By duality we get a similar characterization of erosions.
Singer [40, p. 178, proposition 5.3] proves that (E) and (D) are

equivalent (expressed for dualities, i.e., anti-erosions).

Proof. (E) implies (A). Suppose that (E) holds. Then if ðy; xÞ 2 hypo
g½�1�, in other words, if x 6 g½�1�ðyÞ, we obtain, since g is increasing
by hypothesis,

gðxÞ 6 gðg½�1�ðyÞÞ ¼ g
_
ðx; gðxÞ 6 yÞ

� �
¼
_
ðgðxÞ; gðxÞ 6 yÞ 6 y;

which means that ðx; yÞ 2 epi g. Thus (A) holds.
(A) implies (E). We have already seen that g is increasing if (A)

holds (see the proof that (A) implies (C) above). Let now any family
ðxjÞj of elements of L be given and define z ¼

W
gðxjÞ;w ¼ gð

W
xjÞ.

Since g is increasing we always have z 6 w. Is it true that w 6 z?
We note that, by Proposition 6.3, xj 6 g½�1�ðgðxjÞÞ 6 g½�1�ðzÞ. Taking
the supremum over all j we obtain

W
xj 6 g½�1�ðzÞ, which by (A)

implies that w ¼ gð
W

xjÞ 6 z. We have proved (E). h

Remark 6.9. We may use (A), (B), (C) or (D) to define dilations
L! Y when Y is only a preordered set.

Corollary 6.10. If L and M are complete lattices and g : L! M and
u : M ! L are two mappings such that epi g ¼ ðhypo uÞ�, then g is a
dilation and u is an erosion, and g½�1� ¼ u;u½�1� ¼ g; ðgop;uopÞ and
ðuop; gopÞ are Galois connections.

Proof. It follows from epi g ¼ ðhypo uÞ� that g½�1� ¼ u, hence that
(B) in the theorem holds. Since (B) is equivalent to (E), we see that
g is a dilation. The rest follows by duality. h

We can sum up the discussion by saying that the study of Galois
connections in complete lattices is equivalent to the study of dila-
tions or anti-dilations:

Corollary 6.11. Let L and M be complete lattices and F : L! M a
mapping. Then the following conditions are equivalent.

(A) There exists a mapping G : M ! L such that ðF;GÞ is a Galois
connection;

(B) The mapping g ¼ Fop is increasing and g � g½�1� 6 idY ;
(C) F is an anti-dilation.

Proof. The corollary follows from the theorem and Proposition
4.3. h

6.3. Inverses of inverses

Theorem 6.12. If L and M are complete lattices and g : L! M is any
mapping, then quite generally ðg½�1�Þ

½�1�
6 g 6 ðg½�1�Þ½�1�. Equality

holds at the first place if and only if g is a dilation; at the second place
if and only if g is an erosion.

Proof. By (3.6) we always have epi g � ðhypo g½�1�Þ�, i.e., y P gðaÞ
implies g½�1�ðyÞP a. This yields

ðg½�1�Þ
½�1�ðaÞ ¼

^
ðy; g½�1�ðyÞP aÞ 6

^
ðy; y P gðaÞÞ ¼ gðaÞ:

If g is a dilation, then, as Theorem 6.8 shows, epi g ¼ ðhypo g½�1�Þ�
and equality follows. Conversely, let us note that, in view of (3.6)
and (3.7) we always have

epi g � ðhypo g½�1�Þ�� epiððg½�1�Þ
½�1�Þ:

Now if ðg½�1�Þ
½�1� ¼ g, then these inclusions are equalities, and we con-

clude that epi g ¼ ðhypog½�1�Þ�, which according to Theorem 6.8
means that g is a dilation. The last statement follows by duality. h

Theorem 6.13. If L and M are complete lattices and d : L! M is a
dilation, then the lower inverse d½�1� : M ! L is an erosion (the residual
of d, or the upper adjoint in the adjunction ðd½�1�; dÞ). Similarly, if
e : L! M is an erosion, then the upper inverse e½�1� is a dilation.

Proof. We know that u ¼ d½�1� is increasing, so we have, for any fam-
ily ðyjÞj2J;uð

V
yjÞ 6 uðykÞ for all k; hence uð

V
yjÞ 6

V
uðykÞ ¼ x. We

need to prove the opposite inequality, x 6 uðyÞ, where y ¼
V

yj. From
(D) in Theorem 6.8 we learn that dðuðykÞÞ 6 yk for all k, which implies
that dðxÞ ¼ dð

V
uðyjÞÞ 6 yk. By (3.6), this implies that x 6 uðyÞ. h

Corollary 6.14. For any dilation d : L! M we have d � d½�1� � d ¼ d
and d½�1� � d � d½�1� ¼ d½�1�. In particular, d½�1� � d and d � d½�1� are idem-
potent and therefore ethmomorphisms. The first is a cleistomorphism
in L, the second an anoiktomorphism in M. Dually e � e½�1� � e ¼ e
and e½�1� � e � e½�1� ¼ e½�1� for any erosion e : L! M. Also e½�1� � e and
e � e½�1� are idempotent; the first an anoiktomorphism, the second a
cleistomorphism.

Proof. This result is well known. We always have g½�1� � g P idL

(Proposition 6.3); it follows that g½�1� � g � g½�1� P g½�1�. If g is
increasing, we also get g � g½�1� � g P g. For dilations we have
d � d½�1� 6 idM (Theorem 6.8), from which we deduce that
d � d½�1� � d 6 d and d½�1� � d � d½�1� 6 d½�1�. This shows what we want
for dilations; the rest follows by duality. h
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7. Division of mappings

We shall now generalize the definitions of upper and lower
inverses.

Definition 7.1. Let a set X, a complete lattice M, and a preordered
set Y, as well as two mappings f : X ! M and g : X ! Y be given.
We define two mappings f=

H
g; f=Hg : Y ! M by

ðf=
H

gÞðyÞ ¼
_
x2X

ðf ðxÞ; gðxÞ6Y yÞ; y 2 Y : ð7:1Þ

ðf=HgÞðyÞ ¼
^
x2X

ðf ðxÞ; gðxÞPY yÞ; y 2 Y : ð7:2Þ

We shall call them the lower quotient and the upper quotient of f
and g.

We shall often assume that X;M and Y are all complete lattices,
but this is not necessary for the definitions to make sense.

We note that f=
H

g ¼ ðf op=
HgopÞop

op.
We may also consider ðf=

H
gopÞop ¼ ðf op=

HgÞop and
ðf=HgopÞop ¼ ðf op=

H
gÞop; explicitly,

ððf=
H

gopÞÞopðyÞ ¼ ððf op=
HgÞÞopðyÞ ¼

_
x2X

ðf ðxÞ; gðxÞPY yÞ; y 2 Y;

ð7:3Þ

ððf=HgopÞÞopðyÞ ¼ ððf op=
H

gÞÞopðyÞ ¼
^
x2X

ðf ðxÞ; gðxÞ6Y yÞ; y 2 Y:

ð7:4Þ

We refrain from generalizing these definitions to the case when the
supremum or infimum does not exist for all choices of y.

The quotients f=
H

g and f=Hg increase when f increases and they
decrease when g increases—just as with division of positive
numbers:

If f 16M f 2 and g1PY g2; then f 1=H
g16M f 2=H

g2 and

f 1=
Hg16M f 2=

Hg2:

The mappings f=
H

g and f=Hg are always increasing. If gðxÞ6Y y, then
f ðxÞ6Mðf=H

gÞðyÞ; if gðxÞPY y, then f ðxÞPMðf=HgÞðyÞ. In particular, if
gðxÞ ¼ y, then ðf=HgÞðyÞ 6M f ðxÞ 6M ðf=H

gÞðyÞ:
If we specialize the definitions to the situation when X ¼ M and

f ¼ idX , then f=
H

g ¼ idX=H
g ¼ g½�1� and f=Hg ¼ idX=

Hg ¼ g½�1�; cf.
Definition 3.1.

We note another special case:

Proposition 7.2. For all mappings f : X ! M we have

f=
H

f 6 idM 6 f=Hf

and

ðf=
H

f Þ � f ¼ f ¼ ðf=Hf Þ � f : ð7:5Þ

Proof. These results follow on taking Y ¼ M and g ¼ f in the
definition. h

Proposition 7.3. Let X be an arbitrary subset of a complete lattice M,
let Y ¼ M, and let g be the inclusion mapping X ! M. Then f=Hg ¼ f}

and f=
H

g ¼ f}, where f} is the largest increasing mapping h : M ! M
such that hjX minorizes f, i.e.,

f}ðyÞ ¼ sup
h
ðhðyÞ; h is increasing and hðxÞ 6 f ðxÞ for all x 2 XÞ;

and f} is the smallest increasing mapping k such that kjX majorizes f ,
i.e.,

f}ðyÞ ¼ inf
k
ðkðyÞ; k is increasing and kðxÞP f ðxÞ for all x 2 XÞ:

If f itself is increasing, they are in fact extensions of f.

The definitions of f} and f} are taken from Matheron [28, p.
187] and are generalized here to any complete lattice. (Matheron
considered the power set of a set and assumed f itself to be
increasing.)

If we specialize further, letting also f be the inclusion mapping
X ! M, we obtain

ðf=
H

f ÞðyÞ ¼ f}ðyÞ ¼
_
x2X

ðx; x 6 yÞ ¼ y� 2 M; ð7:6Þ

where the last equality defines y�. It is easy to verify that y # y� is
an anoiktomorphism. A well-known situation is described in the
following example.

Example 7.4. Convexity theory again.

Let M be the complete lattice ½�1;þ1�E of functions on a
vector space E with values in the extended reals, let F be a vector
subspace of its algebraic dual EH, and let X be the set of all affine
functions with linear part in F, i.e., functions of the form
uðxÞ ¼ nðxÞ þ c for some linear form n 2 F and some real constant
c. A function f such that f � ¼ f , where f � is defined by (7.6), is called
X-convex by Singer [40].

We see that a function on E is X-convex in the sense of Singer if
and only if it is equal to the supremum of all its affine minorants
belonging to X.

We may ask for a characterization of the X-convex functions. A
generalization of Fenchel’s theorem to this setting gives the
answer: this happens if and only if the function possesses three
properties: (a) it is convex in the usual sense; (b) it is lower
semicontinuous for the topology rðE; FÞ on E generated by the
linear forms in F; and (c) it does not take the value �1 except
when it is equal to the constant �1.

Proposition 7.5. If f : X ! M is increasing and g : X ! Y is coin-
creasing, then f=

H
g 6 f=Hg.

Proof. We have

ðf=
H

gÞðyÞ ¼
_

x

ðf ðxÞ; gðxÞ 6 yÞ and ðf=HgÞðyÞ ¼
^
x0
ðf ðx0Þ; gðx0Þ 6 yÞ:

If gðxÞ 6 y 6 gðx0Þ, then x 6 x0 and f ðxÞ 6 f ðx0Þ. Now take the supre-
mum over all x and the infimum over all x0. h

The quotients are the optimal solutions to an inequality:

Proposition 7.6. For all mappings f : X ! M and g : X ! Y we have

ðf=HgÞ � g 6 f 6 ðf=
H

gÞ � g ð7:7Þ

with equality if f is increasing and g is coincreasing. From this we de-
duce that ðf=HgÞðyÞ 6 ðf=

H
gÞðyÞ for all y 2 img as well as for all majo-

rants and minorants of img. In particular, f=Hg 6 f=
H

g if g is surjective.
Conversely, if u; v : Y ! M are two increasing mappings such that

u � g 6 f 6 v � g, then u 6 f=Hg and v P f=
H

g. Thus f=Hg is the
largest increasing mapping u such that u � g 6 f , and f=

H
g is the

smallest increasing mapping v such that f 6 v � g.

In the special case X ¼ Y and g ¼ idX we obtain

f=HidX 6 f 6 f=
H

idX ;

where f=HidX ¼ f} is the largest increasing minorant of f and
fH=idX ¼ f} is the smallest increasing majorant of f; when f itself is
increasing we therefore get equality.

Proof. The proof is straightforward. The equality in (7.7) follows
from Proposition 7.5. h

We next compare the quotient f=
H

g and the composition
f � g½�1� (think of x=y ¼ x � y�1 for positive numbers):
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Proposition 7.7. Let f : X ! M be an increasing mapping, assuming
X to be an ordered set, and g : X ! Y a mapping such that g½�1� is
defined in all of Y. We then have f =

H
g 6 f � g½�1�. If we in addition

assume that X is a complete lattice and f is a dilation, we have equality
here. Similarly, if g½�1� is defined everywhere, f=Hg P f � g½�1�, with
equality if f is an erosion, assuming X to be a complete lattice. If g is
coincreasing, then f=

H
g 6 f � g½�1� 6 f � g½�1�

6 f=Hg.

Proof. The proof is straightforward; see Theorem 6.6 for the last
statement. h

Proposition 7.8. If P is a preordered set and h : M ! P is increasing,
we have h � ðf=

H
gÞP ðh � f Þ=

H
g with equality if h is a dilation. Simi-

larly, h � ðf=HgÞ 6 ðh � f Þ=Hg with equality if h is an erosion. A special
case is Proposition 7.7 (take X ¼ M and f ¼ idX).

Proof. The proof is straightforward. h

8. Pullbacks and pushforwards

We shall now see how the notions introduced fit into the study
of a very fundamental situation, that of a mapping f : X ! Y pulling
back mappings w : Y ! L and pushing forward mappings u : X ! L.

Definition 8.1. Let three sets X, Y and L be given, as well as a
mapping f : X ! Y . We define the pullback of f, denoted by
f : LY ! LX and having as values mappings f ðwÞ : X ! L, by

f ðwÞ ¼ w � f 2 LX ; w 2 LY : ð8:1Þ

If L is a complete lattice, we define the lower and upper pushforwards
denoted by f!; f! : LX ! LY and yielding as values mappings
f!ðuÞ; f!ðuÞ : Y ! L, by

f!ðuÞðyÞ ¼
_
x2X

ðuðxÞ; f ðxÞ ¼ yÞ; y 2 Y; u 2 LX ; ð8:2Þ

and

f!ðuÞðyÞ ¼
^
x2X

ðuðxÞ; f ðxÞ ¼ yÞ; y 2 Y ; u 2 LX : ð8:3Þ

It is customary to write f 	 for f .

If y R im f , we obtain f!ðuÞðyÞ ¼ 0L; the supremum is not at-
tained. Similarly, f!ðuÞðyÞ ¼ 1L for these y. Of course there are
many other cases when the supremum and infimum in (8.2),
(8.3) are not attained. In fact, f!ðuÞðyÞ and f!ðuÞðyÞ determine
the smallest interval in L which contains the range of u on the
set fx; f ðxÞ ¼ yg, but the range itself need not be an interval.

If w is constant, then f ðwÞ is also a constant function, taking the
same value.

We note that the lower pushforward defined by (8.2) is actually
a lower quotient, f!ðuÞ ¼ u=

H
f , and similarly f!ðuÞ ¼ u=Hf ,

namely if we provide Y with the discrete order. The results on quo-
tients are therefore available in this setting.

Proposition 8.2. Let f : X ! Y and a complete lattice L be given. Then
the pullback f : LY ! LX is both a dilation and an erosion.

Proof. We have to prove that
W

f ðwjÞ ¼ f ð
W

wjÞ, equivalently
that

W
ðwj � f Þ ¼ ð

W
wjÞ � f , which is true by the definition of the

supremum in LX and LY . Similarly for the infimum. h

Proposition 8.3. If X;Y are sets, f : X ! Y a mapping, and L a com-
plete lattice, then

epi f! ¼ ðhypo f Þ�� LX � LY ð8:4Þ

and

hypo f! ¼ ðepi f Þ�� LX � LY : ð8:5Þ

Proof. The statements in the proposition mean that, for all
ðu;wÞ 2 LX � LY , we have

w P f!ðuÞ if and only if w � f P u

and

w 6 f!ðuÞ if and only ifw � f 6 u:

These statements are easy to prove. h

Corollary 8.4. Let a mapping f : X ! Y and a complete lattice L be
given. Then the lower inverse of the lower pushforward is equal to
the pullback, ðf!Þ½�1� ¼ f , and the upper inverse of the pullback is
equal to the lower pushforward, ðf Þ½�1� ¼ f!. Also the lower inverse
of the pullback is equal to the upper pushforward,ðf Þ½�1� ¼ f!, and
the upper inverse of the upper pushforward is equal to the pullback,
ðf!Þ½�1� ¼ f . In all cases, the supremum and infimum defining the
lower and upper inverses are attainded.

Proof. The first statement follows from Corollary 6.10 applied to
(7.4); the second from Corollary 6.10 applied to (7.5). The state-
ment about the suprema and infima being attained is easy to
check. Consider for example

ðf!Þ½�1�ðwÞ ¼
_
u
ðu; f!ðuÞ 6 wÞ ¼

_
u
ðu;u 6 f ðwÞÞ ¼ f ðwÞ;

where it is obvious that the supremum is attained. h

Corollary 8.5. The lower pushforward mapping f! is a dilation, and
the upper pushforward f! is an erosion.

Proof. By Theorem 6.13, the upper inverse of an erosion is a dila-
tion; hence f! ¼ ðf Þ½�1� is a dilation. The lower inverse of a dilation
is an erosion; hence f! ¼ ðf Þ½�1� is an erosion. h

Summing up, we have two pairs of mutually inverse mappings:
ðf!Þ½�1� ¼ f , both a dilation and an erosion, ðf Þ½�1� ¼ f!, a dila-

tion, and ðf Þ½�1� ¼ f!, an erosion, ðf!Þ½�1� ¼ f , both a dilation and
an erosion.

The other inverses ðf!Þ½�1� and ðf!Þ½�1� are not so easy to charac-
terize. Let us note the following.

Proposition 8.6. If there is an element y 2 Y n im f such that
wðyÞ < 1L, then ðf!Þ½�1�ðwÞðxÞ ¼ 0L for all x. If on the other hand w
is identically equal to 1L in the complement of im f and x the only point
which is mapped to f ðxÞ, then, ðf!Þ½�1�ðwÞðxÞ ¼ f ðwÞðxÞ ¼ wðf ðxÞÞ,
and if x is such that more than one point is mapped to f ðxÞ, then
ðf!Þ½�1�ðwÞðxÞ ¼ 1L. Similarly, if there is a y 2 Y n im f such that
wðyÞ > 0L, then ðf!Þ½�1�ðwÞðxÞ ¼ 1L for all x. If on the other hand w is
identically equal to 0L in the complement of im f and x the only point
which is mapped to f ðxÞ, then, ðf!Þ½�1�ðwÞðxÞ ¼ f ðwÞðxÞ ¼ wðf ðxÞÞ,
and if x is such that more than one point is mapped to f ðxÞ, then
ðf!Þ½�1�ðwÞðxÞ ¼ 0L.

We consider now the special case when L ¼ f0;1g and w is a
characteristic function, w ¼ vB 2 f0;1g

Y for some subset B of Y.
Then

f ðvBÞ ¼ vA; where A ¼ fx 2 X; f ðxÞ 2 Bg;

the preimage of B. If u is the characteristic function vA of an arbi-
trary subset A of X, then

f!ðvAÞ ¼ vB; where B ¼ ff ðxÞ; x 2 Ag;

the direct image of A under f, sometimes written f	ðAÞ, and

f!ðvAÞ ¼ vC ; where C ¼ Y n ff ðxÞ; x R Ag;
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the complement of the direct image of the complement of A.
Because of this it is natural to define also a pullback

f : PðYÞ ! PðXÞ and pushforwards f!; f! : PðXÞ ! PðYÞ, simply
by identifying the power set PðXÞ with the set f0;1gX of character-
istic functions.

There is in general no inclusion relation between the two sets B
and C defined by f!ðvAÞ and f!ðvAÞ, thus between f!ðAÞ
and f!ðAÞ ¼ {f!ð{AÞ. In fact, given any subdivision of Y into four
disjoint subsets Y0 [ Y1 [ Y2 [ Y3, we can easily find a
mapping f and a subset A of X such that f!ðAÞ ¼ Y0 [ Y1 and
f!ðAÞ ¼ Y0 [ Y2.

9. Structure of cleistomorphisms and anoiktomorphisms

The purpose of this section is to state and prove a structure the-
orem for anoiktomorphisms and cleistomorphisms in terms of
quotients of mappings. The theorem has a certain formal resem-
blance to the result that any anoiktomorphism a : L! L can be fac-
torized as a ¼ d � e for a suitable erosion e : L! M and a dilation
d : M ! L for some complete lattice M. One can take M here as
the set of all a-open elements of L, a complete lattice, albeit in gen-
eral not a sublattice of L (cf. Gierz et al. [14, p. 23, 3.13], [15, p. 29,
O-3.13]).

However, we shall first present an easy result of the same kind
in the special case of translation-invariant operators on the family
of subsets of an abelian group.

Proposition 9.1. Let S be a subset of an abelian group G. Then the
dilation, erosion, cleistomorphism and anoiktomorphsim with struc-
ture element S can all be written in the form

u ¼ ðf=
H

gÞ � h;

where

f ðBÞ ¼ B or Bþ S; gðBÞ ¼ Bþ S; hðAÞ ¼ A or Aþ S; A;B 2 PðGÞ:

Proof. The dilation d ¼ dS, the erosion e ¼ d½�1�, the cleistomor-
phism j ¼ e � d, and the anoiktomorphism a ¼ d � e can be written

dðAÞ ¼
[

B

ðBþ S; Bþ S � Aþ SÞ;

eðAÞ ¼
[

B

ðB; Bþ S � AÞ;

jðAÞ ¼
[

B

ðB; Bþ S � Aþ SÞ;

aðAÞ ¼
[

B

ðBþ S; Bþ S � AÞ:

We now let f ðBÞ ¼ Bþ S;hðAÞ ¼ Aþ S in the first case, f ðBÞ ¼ B;
hðAÞ ¼ A in the second case, f ðBÞ ¼ B;hðAÞ ¼ Aþ S in the third case,
and f ðBÞ ¼ Bþ S;hðAÞ ¼ A in the fourth case, while gðBÞ ¼ Bþ S in all
four cases. h

In the two last cases the result is valid generally:

Theorem 9.2. Let f : X ! M be any mapping from a set X into a
complete lattice M. Then a ¼ f=

H
f : M ! M is an anoiktomorphism.

Conversely, any anoiktomorphism in M is of this form for some
mapping f : X ! M with X ¼ M. By duality we get analogous state-
ments for the upper quotient and cleistomorphisms.

Proof. It is clear that aðyÞ ¼
W
ðf ðxÞ; f ðxÞ 6 yÞ defines a mapping

M ! M which is increasing and antiextensive. Idempotency
remains to be proved. To do so we note that f ðxÞ 6 y if and only
if f ðxÞ 6 aðyÞ. Therefore

aðyÞ ¼
_

x

ðf ðxÞ; f ðxÞ 6 yÞ ¼
_

x

ðf ðxÞ; f ðxÞ 6 aðyÞÞ ¼ aðaðyÞÞ:

Note that, by (7.5), a � f ¼ f , proving that the image of f is invariant
under a; in other words, all elements in im f are a-open.

The converse follows from the formula a=
H
a ¼ a, which holds

for any anoiktomorphism a : M ! M. Indeed,

ða=
H
aÞðyÞ ¼

_
x

ðaðxÞ; aðxÞ 6 yÞ ¼
_

x

ðaðxÞ; aðxÞ 6 aðyÞÞ ¼ aðyÞ:

(Writing out the formula in full if a ¼ f=
H

f , we obtain
ðf=

H
f Þ=

H
ðf=

H
f Þ ¼ f=

H
f ¼ ðf=

H
f Þ � ðf=

H
f Þ.) h

Remark 9.3. We note that the choice of the mapping f in Proposi-
tion 9.1, taking f ðBÞ ¼ Bþ S ¼ dSðBÞ, is not available in the converse
part of Theorem 9.2; instead, the mapping a itself serves as f.

10. Conclusion

We have introduced the notions of lower and upper inverses
and lower and upper quotients for mappings between complete
lattices—in fact, we have generalized the inverses to a more gen-
eral setting. Their most basic properties have been investigated,
in particular how the inverses can serve as left and right inverses
to a given mapping. Important morphological operators can be sys-
tematically treated in the calculus created. In particular, anoikto-
morphisms are always lower quotients of the form f=

H
f , and

cleistomorphisms are always upper quotients of the form f=Hf .
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