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Abstract. Efim Khalimsky’s digital Jordan curve theorem states that
the complement of a Jordan curve in the digital plane equipped with
the Khalimsky topology has exactly two connectivity components. We
present a new, short proof of this theorem using induction on the Eu-
clidean length of the curve. We also prove that the theorem holds with
another topology on the digital plane but then only for a restricted class
of Jordan curves.

1 Introduction

The classical Jordan curve theorem says that the complement of a Jordan curve
in the Euclidean plane R2 consists of exactly two connectivity components. Efim
Khalimsky’s digital Jordan curve theorem states the same thing for the digital
plane Z2. Of course we must use a suitable definition of the concept of digital
Jordan curve, as well as a suitable topology on Z2. In this case Z2 is given the
Cartesian product topology of two copies of the digital line Z equipped with the
Khalimsky topology.

A proof of Khalimsky’s theorem was published in 1990 by Khalimsky, Kop-
perman and Meyer [1990]. They refer to earlier proofs by Khalimsky (E. D.
Halimskĭı) [1970, 1977]. Our first purpose in this note is to present a new, short
proof.

The idea of the proof is simple. For the smallest Jordan curves (having four or
eight points) the conclusion of the theorem can be proved by inspection. Given
any other Jordan curve J , we construct a Jordan curve J ′ which has shorter
Euclidean length and is such that its complement has as many components as the
complement of J . Since the possible Euclidean lengths form a discrete set, this
procedure will lead to one of the smallest Jordan curves, for which the theorem
is already established. The construction of J ′ can intuitively be described as
follows: attack J where its curvature is maximal and shorten it there; it cannot
offer resistance from within.

We then consider a topology on Z2 which is not a product topology. In
contrast to the Khalimsky topology it has the property that every point is either
open or closed—there are no mixed points as in the Khalimsky plane. We prove
that the Jordan curve theorem holds for this topology for a restricted class of
Jordan curves.
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2 Connectedness and adjacency

A topological space is said to be connected if it is nonempty and the only sets
which are both open and closed are the empty set and the whole space. A subset
of a topological space is called connected if it is connected as a topological space
with the induced topology.1 A connectivity component of a topological space is
a connected subset which is maximal with respect to inclusion. A component is
always closed. A connected subset which is both open and closed is a component
(but not necessarily conversely).

If X and Y are topological spaces and f : X → Y a continuous mapping,
then the image f(A) of a connected subset A of X is connected. We may apply
this result to a situation where we define a topology on a set Y using a mapping
f : X → Y from a topological space X:

Proposition 1. Let f : X → Y be a surjective mapping from a connected topo-
logical space X onto a set Y . Equip Y with the strongest topology such that f is
continuous. Then Y is connected.

In particular we shall use this result with X = R and Y = Z to define connected
topologies on the digital line Z.

In any topological space we shall denote by N(x) the intersection of all neigh-
borhoods of a point x. Spaces such that N(x) is always a neighborhood of x were
introduced and studied by Aleksandrov [1937]. Equivalently, they are the spaces
where the intersection of any family of open sets is open. In such a space all
components are open.

The closure of a subset A of a topological space will be denoted by A. We
note that x ∈ {y} if and only if y ∈ N(x).

A Kolmogorov space (Bourbaki [1961:I:§1: Exerc. 2]; also called a T0-space)
is a topological space such that x ∈ N(y) and y ∈ N(x) only if x = y. It is
quite reasonable to impose this axiom; if x belongs to the closure of {y} and
vice versa, then x and y are indistinguishable from the point of view of topology.
(We should therefore identify them and consider a quotient space.)

The separation axiom T1 states that N(x) = {x}. It is too strong to be of
interest for the spaces considered here.

Two points x and y in a topological space Y are said to be adjacent if x 6= y
and {x, y} is connected. We note that {x, y} is connected if and only if either
x ∈ N(y) or y ∈ N(x). We shall say that two points x, z are second adjacent if
x 6= z; x and z are not adjacent; and there exists a third point y ∈ Y such that
x and y are adjacent and y and z are adjacent.

3 Topologies on the digital line

It is natural to think of Z as an approximation of the real line R and to consider
mappings f : R→ Z expressing this idea. We may define f(x) to be the integer
1 According to Bourbaki [1961:I:§11:1] the empty space is connected. Here I follow the

advice of Adrien Douady (personal communication, June 26, 2000). In the present
paper it will not matter whether the empty set is said to be connected or not.



3

closest to x; this is well-defined unless x is a half-integer. So when x = n+ 1
2 we

have a choice for each n: shall we define f(n+ 1
2 ) = n or f(n+ 1

2 ) = n+ 1? If we
choose the first alternative for every n, thus putting f−1(n) =

]
n− 1

2 , n+ 1
2

]
, the

topology defined in Proposition 1 is called the right topology on Z; if we choose
the second, we obtain the left topology on Z; cf. Bourbaki [1961:I:§1: Exerc. 2].
Khalimsky’s topology arises if we always choose an even integer as the best ap-
proximant of a half-integer. Then the closed interval [− 1

2 ,
1
2 ] is mapped to 0, so

{0} is closed for the Khalimsky topology, whereas the inverse image of 1 is the
open interval

]
1
2 ,

3
2

[
, so that {1} is open.

A Khalimsky interval is an interval [a, b] ∩ Z equipped with the topology
induced by the Khalimsky topology on Z. A Khalimsky circle is a quotient space
Zm = Z/mZ of the Khalimsky line for some even integer m > 4. (If m is odd,
the quotient space receives the chaotic topology, which is not interesting.)

4 Khalimsky Jordan curves

Khalimsky, Kopperman and Meyer [1990: 3.1] used the following definitions of
path and arc in the Khalimsky plane. We just extend them here to any topo-
logical space. We modify slightly their definition of a Jordan curve [1990: 5.1]. A
Jordan curve in the Euclidean plane R2 is a homeomorphic image of the circle
R/Z, and similarly a Khalimsky Jordan curve is a homeomorphic image of a
Khalimsky circle.

Definition 1. Let Y be any topological space. A Khalimsky path in Y is a
continuous image of a Khalimsky interval. A Khalimsky arc is a homeomor-
phic image of a Khalimsky interval. A Khalimsky Jordan curve in Y is a
homeomorphic image of a Khalimsky circle.

Sometimes Khalimsky Jordan curves are too narrow. We impose a condition
on them to make their interior fatter:

Definition 2. Let J be a Khalimsky Jordan curve in a topological space Y . We
shall say that J is strict if every point in J is second adjacent to exactly two
points in J .

We note that if x, z ∈ J are second adjacent, then the intermediary y required
by the definition need not belong to J . Thus the concept of strict Jordan curve
is not intrinsic.

A three-set {x, y, z} such that all three points are adjacent to each other
can be a Khalimsky path but never a Khalimsky arc. This follows from the
fact that in a Khalimsky interval [a, b], the endpoints a and b are not adjacent
unless b = a + 1. Let us say that a three-set {x, y, z} in a topological space
is a forbidden triangle if all points are adjacent to each other. The absence of
forbidden triangles is therefore a necessary condition for Khalimsky arcs and
consequently for Khalimsky Jordan curves, and it is often easy to check.

Different topologies may induce the same adjacency structure. However, when
the adjacency structure is that of a Khalimsky circle, the topology of the space
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must also be that of a Khalimsky circle. More precisely we have the following
result.

Theorem 1. Given a subset J of a topological space Y , the following conditions
are equivalent.
(A) J is a Khalimsky Jordan curve.
(B) J has at least four points, and for every a ∈ J , J r {a} is homeomorphic to
a Khalimsky interval.
(C) J is finite, connected, with cardinality at least 4, and each of its elements
has exactly two adjacent points.
(D) J has the adjacency structure of a Khalimsky circle, i.e., J = {x1, x2, ..., xm}
for some even integer m > 4 and for each j = 1, ...,m, xj−1 and xj+1 and no
other points are adjacent to xj. (Here we count indices modulo m.)

Proof. If (A) holds, then for every a ∈ J , J r {a} is homeomorphic to a Kha-
limsky circle minus one point, thus to a Khalimsky interval. Conversely, suppose
that (B) holds and consider J r {a} and J r {b} for two points a, b ∈ J which
are not adjacent. Then we have homeomorphisms of J r {a} and J r {b} into
a Khalimsky circle Zm. We can modify them by rotating the circle so that the
two mappings agree on J r {a, b}. Then they define a local homeomorphism of
J onto Zm, thus a homeomorphism; we have proved (A).

It is clear that (A) implies (C) and (D).
Suppose that (C) holds. Then call an arbitrary point x1 and one of its ad-

jacent points x2 and then go on, always choosing xj+1 after xj so that xj+1 is
adjacent to xj but not equal to any of the already chosen x1, ..., xj−1. After a
while we must arrive at a situation where there are no new points left, i.e., we
arrive at xm and the two points adjacent to xm are xm−1 and a point which
has already been chosen, say xk. A priori k may be any of 1, 2, ...,m − 2, but
in fact the only possibility is k = 1—any other choice would mean that xk had
three adjacent points contrary to the assumption. It remains to be seen that m
is even. That xj and xj+1 are adjacent means that we have either xj ∈ N(xj+1)
or xj+1 ∈ N(xj). If xj ∈ N(xj+1), then we cannot have xj+1 ∈ N(xj+2), for
that would imply that xj belonged to N(xj+2), so that xj+2 would have three
adjacent elements, viz. xj , xj+1 and xj+3. So the statement xj ∈ N(xj+1) holds
only for j of a certain parity. Since this is true modulo m, that number must be
even. Thus we have proved (D). Conversely, (D) obviously implies (C) since (D)
is just a more detailed version of (C).

It remains to be seen that (D) implies (A). First of all it is clear that, assum-
ing (D), N(x) can never have more than three elements—a fourth element would
mean that x had at least three adjacent points. So N(xj) ⊂ {xj−1, xj , xj+1}.
Considering the three points xj−1, xj , xj+1, we note that either xj−1 ∈ N(xj) or
xj ∈ N(xj−1), and that xj ∈ N(xj+1) or xj+1 ∈ N(xj). However, these alter-
natives cannot be chosen at will, for as we have seen in the previous paragraph
xj−1 ∈ N(xj) implies xj /∈ N(xj+1). Consider now the case xj−1 ∈ N(xj).
Then xj+1 ∈ N(xj), so that N(xj) ⊃ {xj−1, xj , xj+1}. On the other hand we
know already that N(xj) has at most three elements; we conclude that N(xj) =
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{xj−1, xj , xj+1}. By the same argument, N(xj+2) = {xj+1, xj+2, xj+3}. There-
fore N(xj+1) = {xj+1}, and we have proved that Y is a Khalimsky circle
where points with indices of the same parity as j have three-neighborhoods
and points with indices of the other parity are open. The other possibility, viz.
that xj ∈ N(xj−1), can be reduced to the former by just shifting the indices one
step.

It follows from property (C) that two Khalimsky Jordan curves can never
be contained in each other. More precisely, if J and K are Khalimsky Jordan
curves and J ⊂ K, then J = K.

A point on a Khalimsky Jordan curve J consisting of at least six points
has at least two second adjacent points; with the order introduced in property
(D), xj−2 and xj+2 are second adjacent to xj and xj−2 6= xj+2 when m > 4.
Then xj±1 serve as intermediaries, but there may also exist other intermediaries.
When a Jordan curve is not strict and m > 4, then some point, say xj , has at
least one second adjacent point in addition to xj−2 and xj+2, say xk. Then an
intermediary b such that xj and b are adjacent and b and xk are adjacent cannot
belong to J .

Suppose now that Y is a metric space with metric d. Since every Khalimsky
arc Γ is homeomorphic either to [0,m−1]∩Z or to [1,m]∩Z for some m, it can
be indexed as {x1, ..., xm}, where the indices are uniquely determined except for
inversion. We may define its length as

length(Γ ) =
m−1∑

1

d(xj+1, xj).

Similarly, a Khalimsky Jordan curve can be indexed as {x1, ..., xm}, where
the indices are uniquely determined up to inversion and circular permutations,
and its length can be defined as

length(J) =
m∑
1

d(xj+1, xj),

where we count the indices modulo m.
We shall use the following norms in R2 to measure distances in Z2:

‖x‖p = ‖(x1, x2)‖p =

{(
|x1|p + |x2|p

)1/p
, x ∈ R2, 1 6 p < +∞;

max
(
|x1|, |x2|

)
, x ∈ R2, p =∞.

5 Khalimsky’s digital Jordan curve theorem

The Khalimsky topology of the digital plane is the Cartesian product topology
of two copies of the Khalimsky line Z. A point x = (x1, x2) in the product
Z2 = Z×Z is closed if and only if both x1 and x2 are closed, thus if and only if
both x1 and x2 are even; similarly x is open if and only if both coordinates are
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odd. These points are called pure; the other points, which are neither open nor
closed, are called mixed.

Perhaps the quickest way to describe Khalimsky’s topology τ∞ on Z2 is this:
We first declare the nine-set

U∞ = {x ∈ Z2; ‖x‖∞ 6 1} = {(0, 0),±(1, 0),±(1, 1),±(0, 1),±(−1, 1)} (1)

to be open, as well as all translates U∞+c with c1, c2 ∈ 2Z. Then all intersections
of such translates are open, as well as all unions of the sets so obtained. As a
consequence, {(1,−1), (1, 0), (1, 1)}, the intersection of U∞ and U∞+ (2, 0), and
{(1, 1)}, the intersection of U∞ and U∞ + (2, 2), are open sets, and {(0, 0)} is a
closed set. The sets {(1, 0)} and {(0, 1)} are neither open nor closed.

Theorem 2. Given a subset J of Z2 equipped with the Khalimsky topology, the
conditions A, B, C and D of Theorem 1 are all equivalent to the following.
(E) J = {x(1), x(2), ..., x(m)} for some even integer m > 4 and for all j, x(j−1)

and x(j+1) and no other points are adjacent to x(j); moreover each path consisting
of three consecutive points {x(j−1), x(j), x(j+1)} turns at x(j) by 45◦ or 90◦ or
not at all if x(j) is a pure point, and goes straight ahead if x(j) is mixed.

Here we use the informal expression “turn by 45◦” etc. with reference to angles
in the Euclidean plane of which we consider the Khalimsky plane to be a subset.

Proof. If (D) holds, we see that J cannot turn at a mixed point and cannot turn
135◦ at a pure point—otherwise we would have a forbidden triangle. So (D)
implies (E). Conversely, (E) is just a more precise version of (D), so (E) implies
(D).

In this section we shall measure the lengths of Khalimsky Jordan curves using
the Euclidean metric, d(x, y) = ‖x− y‖2. It is not possible to use ‖ · ‖1 or ‖ · ‖∞
in the proof of the Jordan curve theorem.

The smallest possible Jordan curve in Z2 is the four-set

J4 = {x ∈ Z2; ‖x− (1, 0)‖1 = 1} = {(0, 0), (1,−1), (2, 0), (1, 1)}. (2)

We add all translates of J4 by a vector c ∈ Z2 with c1 + c2 even and call these
the Jordan curves of type J4.

There is also a Jordan curve having eight points,

J8 = {x ∈ Z2; ‖x‖∞ = 1} = U∞ r {(0, 0)}. (3)

This curve and all its translates by a vector c ∈ Z2 with c1 + c2 even we call the
Jordan curves of type J8.

Let us agree to call the three-set

T = {(1, 1), (0, 0), (1,−1)} (4)

and rotations of T by 90◦, 180◦ and 270◦, as well as all translates of these sets
by vectors c ∈ Z2 with c1 + c2 even, a removable triangle. It turns out that
elimination of removable triangles is a convenient way to reduce Jordan curves,
as shown by the following lemma.
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Lemma 1. Let J be a Jordan curve in the Khalimsky plane and assume that J
contains the three-set T defined by (4). Define

J ′ = (J r {(0, 0)}) ∪ {(1, 0)}.

Then either J = J4 or else J ′ is a Jordan curve such that {J ′ and {J have the
same number of components, and length(J ′) = length(J)− 2

√
2 + 2.

Proof. Assume first that (2, 0) ∈ J , thus that J ⊃ J4. Then necessarily J = J4.
Next we suppose that (2, 0) /∈ J . Then J ′ is a Jordan curve: J ′ is a set where

the new point (1, 0) plays exactly the same role topologically as the old point
(0, 0) in J . Thus J ′ is also homeomorphic to a Khalimsky circle.

Finally we must check that the number of components in {J ′ is the same as
that of {J ′. Indeed, (1, 0) and (2, 0) belong to the same component of {J , and
(0, 0) and (−1, 0) belong to the same component of {J ′.

Theorem 3 (Khalimsky’s Jordan curve theorem). Let us equip the digital
plane Z2 with the Khalimsky topology τ∞ (see (1)). Then for any Khalimsky
Jordan curve J in Z2, the complement {J = Z2

rJ has exactly two connectivity
components.

Proof. The complement of J4 consists of A = {(1, 0)} and the set B of all points
x with |x1 − 1| + |x2| > 1. It is obvious that these two sets are connected.
Moreover, A is closed and open in {J4, so it is a component. Therefore, also B
is closed and open in {J4 and also a component. The proof for J8 is similar.

Thus we know that the conclusion of the theorem holds for Jordan curves of
types J4 and J8.

Next we shall prove that if J is not of the kind already treated, then there
exists a Jordan curve J ′ of strictly smaller Euclidean length such that {J and
{J ′ have the same number of components. After a finite number of steps we must
arrive at a situation where the hypothesis is no longer satisfied, which means
that we have a Jordan curve of type J4 or J8, for which the complement has two
components as we already proved.

The construction of J ′ is as follows. First we may assume, in view of Lemma 1,
that J contains no removable triangles. Define

a2 = inf(x2;x ∈ J).

Thus x2 > a2 for all points x ∈ J with equality for at least one x. Consider a
horizontal interval

H = {(x1, a2)}+ {(0, 0), (1, 0), ..., (p, 0)}

which is maximal with respect to inclusion and consists of points in J with
ordinate equal to a2. The maximality implies that the two points (x1 − 1, a2)
and (x1 + p + 1, a2) do not belong to J . Then we see that p must be an even
number, but we cannot have p = 0, since that would imply that J contained a
removable triangle, contrary to the assumption. Thus H contains at least three
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points. Moreover, at the endpoints of H, J must turn upwards. Indeed, since
(x1 − 1, a2) does not belong to J , exactly one of the points (x1 − 1, a2 + 1),
(x1, a2 + 1) belongs to J ; when we go left from (x1, a2), the curve must turn
upwards by either 45◦ or 90◦; it cannot turn downwards. Similarly, the curve
turns upwards by 45◦ or 90◦ when we go right from the last point in H, viz.
from (x1 + p, a2).

We now consider the set I of all maximal horizontal intervals I in J such
that J turns upwards at the endpoints of I. The previous argument served just
to prove that there exists such an interval. Now there exists an interval K ∈ I
of smallest length,

K = {y}+ {(0, 0), (1, 0), ..., (q, 0)},

containing q+1 points for some even number q > 2. We shall assume that K is of
smallest length also among all intervals that can be obtained from the intervals
in I by rotating them 90◦, 180◦ or 270◦.

To simplify the notation we may assume (after a translation if necessary)
that y = (0, 0), so that

K = {(0, 0), (1, 0), ..., (q, 0)} = [(0, 0), (q, 0)] ∩ Z2.

Case 1. J turns upwards by 45◦ at both ends of K. This means that (−1, 1)
and (q + 1, 1) both belong to J . In this case, we define

J ′ = (J rK) ∪ (K + (0, 1)).

This operation shortens the Euclidean length by 2
√

2−2 (but it does not shorten
the l∞ length). We note that the interval K+ (0, 1) is disjoint from J ; otherwise
some point in K would have three adjacent points. Moreover K + (0, 2) must be
disjoint from J . Indeed, if (K + (0, 2)) ∩ J were nonempty, then either J would
contain a removable triangle (contrary to our assumption) or there would exist
a subinterval K ′ of K + (0, 2) contained in J and such that J turns upwards at
its endpoints; thus K ′ ∈ I. This subinterval must have fewer than q + 1 points,
since (0, 2) and (q, 2) cannot belong to J—otherwise there would be a removable
triangle in J . Now a shorter interval is impossible, since K is by assumption an
interval in I of shortest length. One checks that J ′ is a Jordan curve. Indeed,
the points of K + (0, 1) play the same role topologically in J ′ as do the points
of K in J . The number of components in the complement of J ′ is the same as
for J .

Case 2. J turns upwards by 90◦ at one end of K. Assume that (0, 1) ∈ J , the
case (q, 1) ∈ J being symmetric. Then also (0, 2) ∈ J . We consider the subcases
2.1 and 2.2.

Case 2.1. (2, 2) /∈ J . We cut off a corner, i.e., we remove (0, 1), (0, 0), (1, 0),
and add (1, 1). This operation shortens the Euclidean length by 4− 2

√
2 (but J ′

has the same l1-length as J). Since (1, 1) and (2, 2) belong to the same component
of {J , and (0, 1), (0, 0), (1, 0), and (−1, 0) belong to the same component of {J ′,
the number of components in the respective complements are the same.
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Case 2.2. (2, 2) ∈ J . We consider four subcases, 2.2.1.1, 2.2.1.2, 2.2.2.1 and
2.2.2.2.

Case 2.2.1.1. (2, 1) ∈ J , (1, 2) ∈ J . Then J contains a Jordan curve of type
J8, more precisely J ⊃ (1, 1) + J8. So J must be equal to that curve.

Case 2.2.1.2. (2, 1) ∈ J , (1, 2) /∈ J . Remove the five points (0, 1), (0, 0), (1, 0),
(2, 0), (2, 1), and add (1, 2). Thus J ′ is shorter by 4. We can check that J ′ has
all desired properties.

Case 2.2.2.1. (2, 1) /∈ J , (1, 2) ∈ J . Turn 90◦ to reduce to case 2.2.1.2.
Case 2.2.2.2. (2, 1) /∈ J , (1, 2) /∈ J . This case cannot occur since q is smallest

possible. To see this, define I ′ as the set of all points (2, 2), (3, 2), ..., (q′, 2) ∈ J
with q′ as large as possible. If J turns upwards at (q′, 2), then I ′ belongs to I
with q′ < q, which contradicts the definition of K and q. If on the other hand J
turns downwards at (q′, 2), then there exists a vertical interval consisting of three
points, which becomes an interval in I if we turn it 90◦, thus again contradicting
the definition of I.

6 The Jordan curve theorem for another topology

We define a topology τ1 on Z2 by first declaring the five-set

U1 = {x ∈ Z2; ‖x‖1 6 1} = {(0, 0),±(1, 0),±(0, 1)} (5)

to be open, then all translates U + c with c ∈ Z2, c1 + c2 ∈ 2Z to be open, as
well as all intersections of such translates (cf. (1)). This implies that {(1, 0)} is
open, and that the origin is closed. In fact, all points x ∈ Z2 with x1 + x2 ∈ 2Z
are closed, and all points with x1 +x2 /∈ 2Z are open; there are no mixed points.
This topology was described by Wyse et al. [1970] and Rosenfeld [1979: 624].

The four-set

J ′4 = {(0, 0), (1, 0), (1, 1), (0, 1)} (6)

is a Jordan curve for τ1. However, it is not strict, for a point in J ′4 has only
one second adjacent point. Its complement is connected, so the Jordan curve
theorem does not hold. The set J8 defined by (3) is a Khalimsky Jordan curve
and its complement has exactly two components. Also J8 is not strict, because
the point (1, 0) has three second adjacent points, viz. (0, 1), (0,−1) and (−1, 0).

Another example is the twelve-set

J12

= {(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 2), (0, 2), (0, 1)}.

It is a Jordan curve, not strict, and its complement has three connectivity compo-
nents, viz. an infinite component and the two singleton sets {(1, 1)} and {(2, 2)}.

Theorem 4. Let Z2 be equipped with the topology τ1 just defined (see (5)). Then
the complement of every strict Jordan curve has exactly two components.
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Proof. For the proof we shall use the fact that Z2 equipped with the topology
τ1 is homeomorphic to the subspace of all pure points in the Khalimsky plane.
This fact was used also by Kong, Kopperman and Meyer [1991: 915].

Let X be the digital plane Z2 with the topology τ1, and Y the Khalimsky
plane (Z2 with the topology τ∞). Consider the mapping ϕ : X → Y defined by
ϕ(x) = (x1−x2, x1 +x2). Its image ϕ(X) is the set of all pure points in Y , and if
we equip it with the topology induced by Y it is homeomorphic to X. Moreover,
the image of any Khalimsky Jordan curve J in X is a Khalimsky Jordan curve
in Y . Therefore Y rϕ(J) has exactly two components by Theorem 3. We claim
that ϕ(X) r ϕ(J) has exactly two components. It is clear that this set has at
least two components, so the problem is to prove that a component A of Y rϕ(J)
gives rise to a connected set A ∩ ϕ(X), i.e., that the pure points in A form a
connected set.

To this end, assume that a, a′ ∈ A ∩ ϕ(X), and consider a Khalimsky arc

{a = a(0), a(1), ..., a(s) = a′}

contained in Y rϕ(J). (Connectedness in Y is the same as arcwise connectedness;
cf. Khalimsky et al. [1990: Theorem 3.2].) We shall prove that this arc can be
replaced by another consisting only of pure points. So assume that a(j) is a
mixed point. Then its predecessor a(j−1) and its successor a(j+1) are both pure
points. Without loss of generality, we may assume that a(j−1) = (0, 0), a(j) =
(0, 1), and a(j+1) = (0, 2). We may then replace a(j) by one of the pure points
(−1, 1), (1, 1), because both of them cannot belong to ϕ(J). To see this, suppose
that (1, 1), (−1, 1) ∈ ϕ(J). Then (−1, 1) would be a second adjacent point to
(1, 1), and this point has, by hypothesis, exactly two second adjacent points in
ϕ(J) (considering everything in the space ϕ(X)). However, none of them can
be equal to (−1, 1), for the only possible intermediaries would then be (0, 0)
and (0, 2), none of which belongs to ϕ(J). (In a strict Jordan curve, one of the
possible intermediaries to a second adjacent point must belong to the curve.)
This contradiction shows that not both of (1, 1) and (−1, 1) can belong to ϕ(J).
Thus we may define b = (−1, 1) or b = (1, 1) so that b /∈ ϕ(J) and observe that

{a(0), ..., a(j−1), b, a(j+1), ..., a(s)}

is a Khalimsky arc with a mixed point replaced by a pure point. After finitely
many such replacements we obtain an arc connecting a and a′ and consisting only
of pure points. This shows that ϕ(X)r ϕ(J) has at most as many components
as Y r ϕ(J); therefore exactly two components, and then the same is true of
X r J .

7 Conclusion

We have showed that digital Jordan curves can be subject to a simple induction
process: their lengths in a suitable metric form a discrete set, and if we show
that a curve has a certain property when a shorter curve has the same property,
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the induction works, starting from some very short curves. Using this idea, we
have presented a short proof of Khalimsky’s digital Jordan curve theorem, which
is valid for the Khalimsky topology on the digital plane, where each point has
eight adjacent points. We have also considered a topology for the digital plane
where each points has four adjacent points. For this topology the Jordan curve
theorem does not hold in general, but it does for a restricted class of curves.
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Halimskĭı, E. D.
1970 Applications of connected ordered topological spaces in topology. Con-

ference of Math. Departments of Povolsia.
1977 Uporyadochennnye topologicheskie prostranstva. Kiev: Naukova Dumka.

92 pp.
Khalimsky, Efim; Kopperman, Ralph; Meyer, Paul R.
1990 Computer graphics and connected topologies on finite ordered sets.

Topology Appl. 36, 1–17.
Kong, Yung; Kopperman, Ralph; Meyer, Paul R.
1991 A topological approach to digital topology. Amer. Math. Monthly 98,

901–917.
Rosenfeld, Azriel
1979 Digital topology. Amer. Math. Monthly 86, 621–630.

Wyse, Frank, et al.
1970 Solution to problem 5712. Amer. Math. Monthly 77, 1119.


