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Resumo: Diferenciala neegalâo karakterizanta malfortan linian konveksecon
Behnke kaj Peschl enkondukis en 1935 la nocion de Planarkonvexität, nuntempe
nomatan malforta linia konvekseco. Ili montris ke por regionoj kun glata rando ĝi
implicas ke diferenciala neegalâo estas plenumita ĉe ĉiu randopunkto. Ni pruvos
la inverson.

Abstract: Behnke and Peschl introduced in 1935 the notion of Planarkonvexität,
now called weak lineal convexity. They showed that, for domains with smooth
boundary, it implies that a differential inequality is satisfied at every boundary
point. We shall prove the converse.

1. Introduction
In an article published in the Mathematische Annalen in 1935, Heinrich Behnke
(1898–1979) and Ernst Peschl (1906–1986) introduced a notion of convexity called
Planarkonvexität, nowadays known as weak lineal convexity. They showed that for
domains in the space of two complex variables with boundary of class C2, this prop-
erty implies that a differential inequality is satisfied at every boundary point. Here
we shall prove that, conversely, the differential inequality is sufficient for weak lineal
convexity.

Lineal convexity is a notion of convexity in complex geometry which is inter-
mediate between usual convexity and pseudoconvexity. By definition a set in Cn is
lineally convex if its complement is a union of complex hyperplanes. An open set is
called weakly lineally convex if there passes, through any boundary point, a complex
hyperplane which does not intersect the set. If the boundary of the set is of class C1,
the only candidate for such a plane is the complex tangent plane, so then weak lineal
convexity just means that no complex tangent plane shall cut the set.

Lineal convexity is not a local condition. There exist open sets with Lipschitz
boundary which are not lineally convex but which are such that every point in the
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space has a neighborhood which intersects the set in a lineally convex set. This makes
the study of such sets tricky and is in contrast to both pseudoconvexity and usual
convexity: if a domain is such that every point on its boundary has a neighborhood
which intersects the domain in a (pseudo)convex set, then the whole domain has the
same property.

However, Behnke and Peschl [1935:170] proved that for sets with smooth bound-
ary, weak lineal convexity is a local property (see Theorem 3.1 below).

Both usual convexity and pseudoconvexity can be characterized infinitesimally.
The simplest example of such a result is that a C2 function of one real variable is
convex if and only if its second derivative is nonnegative. More generally, a domain in
Rn with boundary of class C2 is convex if and only if the Hessian of a defining function
is positive semidefinite in the tangent space at every boundary point. Similarly, an
open set in Cn with boundary of class C2 is pseudoconvex if and only if the Levi
form of a defining function is positive semidefinite in the complex tangent space at
every boundary point (the Levi condition).

In analogy with these two classical results, we shall prove in the present paper
that a connected open subset of Cn with boundary of class C2 is weakly lineally
convex if and only if the real Hessian of a defining function is positive semidefinite in
the complex tangent space at every boundary point (the Behnke–Peschl condition).

It is easy to see that semidefiniteness is necessary. It is also known—indeed,
this is the Hauptsatz of Behnke and Peschl [1935]—that the corresponding strong
condition, i.e., that the real Hessian be positive definite, is sufficient. Thus what we
have proved is that semidefiniteness is sufficient.

In the case of convexity and pseudoconvexity, the best way to deal with semi-
definiteness is to approximate the domain by domains which satisfy the corresponding
condition of definiteness. This is not how we approach the problem here, at least not
directly. I do not know if a weakly lineally convex domain with smooth boundary
can be approximated by domains satisfying the strong Behnke–Peschl condition. For
Hartogs domains, though, this is known. The idea of proof of the main result here is
to construct Hartogs domains which share a tangent plane with the given domain.

I learned about lineal convexity from André Martineau in 1967-68 when I was
in Nice with him. His premature death on May 4, 1972, was a great loss to world
mathematics. He introduced also the notion of strong lineal convexity [1968], which,
however, is not geometrically defined. Later Znamenskij [1979] found a geometric
characterization; the property is now called C-convexity. Nowadays the most im-
portant sources for C-convexity are the book by Hörmander [1994] and the survey
article by Andersson, Passare, and Sigurdsson [1995]. My earlier contributions to the
field are to be found in [1978], [1996], [1997] and [ms]. The proof of the main result
here depends on that for Hartogs domains in [1996].

I am grateful to Ragnar Sigurðsson for comments to the manuscript.

2. Definitions

To be able to characterize sets by infinitesimal conditions, we shall describe bound-
aries and their curvature using defining functions and the Hesse and Levi forms. In
this section we give the needed definitions.

A defining function for an open set Ω is a real-valued function ρ of class C1 such
that its differential never vanishes when ρ vanishes, and such that Ω is the set of
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points where ρ is negative.
The complex tangent space at a boundary point a, denoted by TC(a), is the set

of all t ∈ Cn such that

(2.1)
∑
ρ′zj (a)tj = 0,

whereas the real tangent space TR(a) is the set of all t ∈ Cn such that

(2.2) Re
∑
ρ′zj (a)tj = 0.

Here and in the following we write

ρ′zj =
∂ρ

∂zj
, ρ′′zjzk =

∂2ρ

∂zj∂zk
, etc.

for partial derivatives. The complex tangent plane is then a+ TC(a); it is contained
in the real tangent plane a+ TR(a).

The complex Hessian (complex Hesse form) of a function ρ of class C2 is defined
to be the quadratic form

(2.3) H = Hρ(z; t) =
∑
ρ′′zjzk(z)tjtk, z ∈ Cn, t ∈ Cn.

The Levi form of ρ is the Hermitian form

(2.4) L = Lρ(z; t) =
∑
ρ′′zjzk(z)tjtk, z ∈ Cn, t ∈ Cn.

Finally the real Hessian of a function ρ of real variables x1, ..., xm is the quadratic
form

(2.5) HR = HR,ρ(x; s) =
∑
ρ′′xjxk(x)sjsk, x ∈ Rm, s ∈ Rm.

When a function of n complex variables is given, its real Hessian in the 2n real
variables (Re z1, Im z1, ...,Re zn, Im zn) can be expressed using its complex Hessian
and its Levi form as

HR(z; s) = 2(ReH(z; t) + L(z; t)), z ∈ Cn, s ∈ R2n, t ∈ Cn, tj = s2j−1 + is2j .

Thus the characterization of convexity mentioned in the introduction is that
ReH(a; t) + L(a; t) be nonnegative for all a ∈ ∂Ω and all t ∈ TR(a). For a lineally
convex set the same inequality holds for all t ∈ TC(a). It is then equivalent to
L(a; t) > |H(a; t)| for a ∈ ∂Ω and t ∈ TC(a). We shall say that Ω satisfies the
Behnke–Peschl condition at a if

(2.6) ReH(a; t) + L(a; t) > 0, t ∈ TC(a).

We shall say that Ω satisfies the strong Behnke–Peschl condition at a if the form is
positive definite, i.e.,

(2.7) ReH(a; t) + L(a; t) > 0, t ∈ TC(a)r {0}.
It is easy to prove that these conditions are invariant under complex affine mappings.
They also do not depend on the choice of defining function. They were introduced
for n = 2 by Behnke and Peschl [1935:169].

3. Main result
As noted in the introduction, lineal convexity is not a local condition. Simple ex-
amples of sets which are locally lineally convex but not weakly lineally convex can
be found in Kiselman [1996: section 3]. However, weak lineal convexity is a local
condition for sets with smooth boundary. The precise result is as follows.
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Theorem 3.1. Let Ω be a connected open set in Cn with boundary of class C1.
Assume that for every boundary point a, the closure of the intersection of Ω with the
complex tangent plane at a does not contain a. Then Ω is weakly lineally convex.
For sets in C2 or P2 with boundary of class C2, this was proved by Behnke and
Peschl [1935:170]. For a proof under the hypotheses stated here, see Hörmander
[1994: Proposition 5.6.4]. The assumption there that Ω be bounded is not needed
for the conclusion cited here. Cf. also Andersson, Passare and Sigurdsson [1995:
Proposition 2.4.7]. We shall need this result in our proof.

The following two results are well known and easy to prove. They are due to
Behnke and Peschl [1935: Theorems 7 and 8]; local weak lineal convexity is called
Planarkonvexität im kleinen by them. Cf. also Zinov′ev [1971], Hörmander [1994:
Corollary 5.6.5], and Kiselman [1996: Lemmas 5.2 and 5.3].

Lemma 3.2. Let Ω be an open set in Cn with boundary of class C2. If Ω is locally
weakly lineally convex, then it satisfies the Behnke–Peschl condition (2.6) at every
boundary point.

Lemma 3.3. Let Ω be an open set in Cn with boundary of class C2. If Ω satisfies
the strong Behnke–Peschl condition (2.7) at a point a ∈ ∂Ω, then the complex tangent
plane a+ TC(a) at a avoids Ω in a neighborhood of a.
Combining Lemma 3.3 and Theorem 3.1 we can deduce that the strong Behnke–
Peschl condition (2.7) at all boundary points is sufficient for weak lineal convexity.
This is the Hauptsatz of Behnke and Peschl [1935:170] (for sets in C2 or P2). We
now state our main result, that in fact also the weaker condition (2.6) is sufficient:

Theorem 3.4. Let Ω be a connected open set in Cn with boundary of class C2. Then
Ω is weakly lineally convex if and only if Ω satisfies the Behnke–Peschl condition (2.6)
at every boundary point.
If Ω is locally weakly lineally convex, has a C1 boundary, and in addition is bounded,
then Ω is also C-convex and lineally convex. This follows from Andersson, Passare
and Sigurdsson [1995: Proposition 2.4.7], who consider sets in projective space. I do
not know how their result can be applied to unbounded domains in Cn with smooth
boundary; such domains are not necessarily smoothly bounded in Pn.

4. Results for Hartogs sets
A subset A of Cn is called a Hartogs set if there is a set A1 in Cn−1 ×R such that
z ∈ A if and only if (z1, ..., zn−1, |zn|) ∈ A1; A is said to be a complete Hartogs set
if z ∈ A implies (z1, ..., zn−1, t) ∈ A for all t with |t| 6 |zn|. The base of A is the
subset of Cn−1 consisting of all points (z1, ..., zn−1) such that (z1, ..., zn) ∈ A for
some complex number zn.

Lineal convexity for Hartogs sets is easier to handle than in the general case.
The following is known.

Theorem 4.1. Let Ω be a complete Hartogs set in Cn which is open and connected.
Assume that its boundary is of class C2 except perhaps where zn = 0. If Ω satisfies the
Behnke–Peschl condition (2.6) at all boundary points with zn 6= 0, then Ω is weakly
lineally convex. If in addition the base of Ω is lineally convex, then Ω is lineally
convex.
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This result was proved in Kiselman [1996: Theorem 7.6] for n = 2 and under slightly
stronger hypotheses. The proof, however, is valid with small changes under the
hypotheses given here. The case n > 1 is proved in Kiselman [ms].

Theorem 4.2. Let Ω be a complete Hartogs set in C2 defined by a function R as

Ω = {(z, w) ∈ ω ×C; |w| < R(z)},

where ω is an open disk in C and R ∈ C2(ω) has positive values in all of ω. If Ω
satisfies the Behnke–Peschl condition (2.6) at all points (z,R(z)) with z ∈ ω, then Ω
is lineally convex.
This theorem was proved in Kiselman [1996: Theorem 9.7]. Note that the boundary
of Ω is not necessarily of class C1 at a boundary point (z, w) with z ∈ ∂ω and
w 6= 0. The important step in the proof is to approximate Ω by domains with
smooth boundary satisfying condition (2.6). This can be done when ω is a disk, but
for no other domain which is equal to the interior of its closure [1996: Theorems 8.3
and 8.4].

The Behnke–Peschl condition for a domain of the type described in Theorem 4.2
takes the form ∣∣R′z∣∣2 > ∣∣(R′z)2 +RR′′zz

∣∣+RR′′zz;

the strong condition corresponds to strict inequality here.

Proposition 4.3. Let Ω be an open set in Cn and define

(4.1) Ω̃ = {z ∈ Cn; (z1, ..., zn−1, λzn) ∈ Ω for all λ ∈ C with |λ| 6 1}.

This is the largest complete Hartogs set contained in Ω. If Ω is lineally convex, then
Ω̃ is lineally convex; similarly for weak lineal convexity. If ∂Ω is of class C2 except
perhaps where zn = 0, then so is the boundary of Ω̃ at all points z with zn 6= 0 and
satisfying the condition

(4.2) 2M |zn| <
∣∣ρ′zn(z)

∣∣,
where M is a bound for the second derivatives ρ′′znzn and ρ′′znzn . If, in addition, Ω
satisfies the Behnke–Peschl condition (2.6) at all boundary points with zn 6= 0, then
so does Ω̃ at all boundary points with zn 6= 0 satisfying (4.2).

Proof. If Ω is lineally convex, then also Ω̃, as an intersection of lineally convex sets,
has this property:

Ω̃ =
⋂
|λ|61

Ωλ, where Ωλ = {z ∈ Cn; (z1, ..., zn−1, λzn) ∈ Ω}.

Assume now that Ω is only weakly lineally convex, and let a point a on the
boundary of Ω̃ be given. Then for some λ with |λ| = 1, a is on the boundary of
Ωλ defined above, and a hyperplane through a which does not intersect Ωλ does not
intersect Ω̃ either. (The argument is valid for all a; if an = 0 we even have a ∈ ∂Ωλ
for all λ.)



6 C. O. Kiselman

If ρ defines Ω, then

(4.3) ρ̃(z) = sup
θ
ρ(z1, ..., zn−1, e

iθzn)

defines Ω̃ in a neighborhood of its closure. Define

ϕ(z1, ..., zn, θ) = ρ(z1, ..., zn−1, e
iθzn), (z, θ) ∈ Cn ×R.

We can calculate

ϕ′θ = −2 Im(ρ′zne
iθzn);

ϕ′′θθ = −2 Re
(
ρ′zne

iθzn
)
− 2 Re

(
ρ′′znzne

2iθz2
n

)
+ 2ρ′′znzn |zn|

2.

The value of θ which defines the supremum in (4.3) solves the equation ϕ′θ = 0, and
the implicit function theorem can be applied if ϕ′′θθ 6= 0 there. This condition is
fulfilled if

(4.4) |Re(ρ′zne
iθzn)| > 2M |zn|2,

where M is a bound for the second derivatives of ρ as defined in the statement of
the proposition. However, when ϕ′θ = 0, the expression ρ′zne

iθzn is real, so that (4.4)
simplifies to (4.2). The implicit function theorem then says that the boundary of Ω̃
is as smooth as that of Ω where the condition is satisfied.

Now assume that Ω satisfies the Behnke–Peschl condition at a boundary point
a of Ω̃ with an 6= 0. Then a is on the boundary of some Ωλ, |λ| = 1, as already noted
above. Consider the functions

ϕλ(s) = ρλ(a+ st), ϕ̃(s) = ρ̃(a+ st), s ∈ R, t ∈ TC(a),

where ρλ(z) = ρ(z1, ..., zn−1, λzn), the defining function for Ωλ obtained by rotating
ρ in the last coordinate.

The Behnke–Peschl condition holds for Ωλ, which means that (ϕλ)′′(0) > 0. Now
ϕ̃ > ϕλ and both functions vanish at the origin, which implies ϕ̃′′(0) > (ϕλ)′′(0).
Thus the condition holds for Ω̃. This completes the proof.

In an application of this proposition in the next section we shall let Ω be defined
near an arbitrarily given point by an inequality yn < f(z′, xn) for some real-valued
function f of n − 1 complex and one real variable. Then ρ(z) = yn − f(z′, xn) is
a defining function for Ω near the given point. (Here xn = Re zn, yn = Im zn, and
z′ = (z1, ..., zn−1).) We see that ρ′zn = − 1

2 (f ′xn + i), so that |ρ′zn | >
1
2 . Moreover

ρ′′znzn = ρ′′znzn = − 1
4f
′′
xnxn .

This implies that a sufficient condition for (4.2) to hold is

(4.5) C|zn| < 1,

where C is a bound for f ′′xnxn .
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Remark 4.4. Condition (4.2) has a simple geometric meaning. With the defining
function ρ(z) = yn − f(z′, xn) it says that the intersection of the boundary of Ω
with the subspace z′ = constant has smaller curvature than the intersection of the
boundary of Ω̃ with the same subspace where the two boundaries meet. For simplicity
we shall use the stronger condition (4.5) instead.

5. Proof of the main result

We shall now prove Theorem 3.4. In view of Theorem 3.1 it is enough to prove that
the complex tangent plane a + TC(a) does not cut Ω near a. We shall assume that
a+ TC(a) cuts Ω in a point b and then show that this leads to a contradiction if b is
close to a.

First of all we may assume that n = 2 by looking at the two-dimensional affine
complex subspace which contains a, b and a third point on the normal to ∂Ω through
a. We may also assume that the coordinate system is chosen so that a = 0 and the
real tangent plane a + TR(a) has the equation Im z2 = 0. We recall that both weak
lineal convexity and the Behnke–Peschl condition (2.6) are invariant under complex
affine mappings. The complex tangent plane at a then has the equation z2 = 0, so
that b2 = 0. We shall consider a neighborhood W of a such that three conditions are
satisfied. Let

W = {z ∈ C2; |z1| < R1, |z2| < R2},

and let V be its intersection with C×R:

V = {(z1, x2) ∈ C×R; |z1| < R1, |x2| < R2}.

The three conditions are:
(A) First of all the set Ω shall be defined in W by an inequality Im z2 < f(z1,Re z2)

for some function f which is of class C2 in a neighborhood of the closure of V .
(B) Next we shall assume that condition (4.5) is satisfied for all z ∈ W with some

margin:
R2 sup

V
|f ′′x2x2

| < 2
3 < 1.

(This is to allow a change of coordinates later.)
(C) Third, R1 shall be so small that MR1 +C(1+M2)R2

1 <
1
4R2, where M = 1

2CR2

and C is defined below.
To satisfy these conditions we have to specify the numbers R1, R2 and C. We

first choose R1 and R2 so that (A) and (B) hold, and then define a constant C as
follows. Since f is a function of class C2 defined in a neighborhood of the closure
of V and with vanishing derivatives of order up to one at the origin, there exists a
constant C such that

|f(z1, x2)| 6 C(|z1|2 + x2
2),

|f ′x2
(z1, x2)| 6 C(|z1|+ |x2|), and

|f ′′x2x2
(z1, x2)| 6 C

for all (z1, x2) ∈ V . We finally shrink R1 if necessary to make (C) hold.
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With the choice of coordinate system we have made, the normal at a is the y2-
axis. Let c be a point on that axis with Im c2 < 0; it is convenient to take c = − 1

4 iR2.
Thus c = (0, c2) and |c| = − Im c2 = 1

4R2. The circle in the plane z1 = 0 with center
at c and radius |c| passes through a and is tangent to the x2-axis at that point.

We shall prove that f(b) 6 0 (hence that b /∈ Ω) for all b with |b1| < R1. Assume
the contrary: f(b) > 0. Consider the plane z1 = b1 and the graph of f restricted to
that plane. Draw the normal to the graph of f(b1, · ) through the point z2 = if(b1, 0)
in the z2-plane. This normal intersects the line y2 = Im c2 at a point which we call
p2. Define p1 = b1, so that p = (p1, p2) is a point in C2. The slope of the normal
is determined by the slope of the graph at z1 = b1, x2 = 0, i.e., by f ′x2

(b1, 0). This
derivative can however be controlled: we know that f ′x2

(b1, 0) is not more than C|b1|
in modulus. The distance between p and c is

|p− c| = |f ′x2
(b1, 0)|(|c|+ f(b1, 0)) 6 C|b1|( 1

4R2 + C|b1|2) 6 1
2CR2|b1|,

where the last estimate is a consequence of (C). Thus |p−c| 6M |b1| with M = 1
2CR2.

We have constructed a disk D0 in the plane z1 = 0 with center at c2 and with
z2 = 0 on its boundary, and now let D1 be the disk in the plane z1 = b1 with center
at p2 and if(b1, 0) on its boundary (and therefore containing z2 = 0):

D0 = {z ∈ C2; z1 = 0, |z2 − c2| < |c|};
D1 = {z ∈ C2; z1 = b1, |z2 − p2| < |if(b1, 0)− p2|}.

Both disks are moreover contained in Ω ∩W . For D0 this is obvious from the con-
struction; for D1 this can be seen as follows. The center of D1 is p2 and its radius r1

is |if(b1)− p2|. The disk is contained in W if |p2|+ r1 6 R2. This inequality follows
from the estimates we already have:

|p2|+ r1 6 2|p2|+ C|b1|2 6 2|c2|+ 2|p2 − c2|+ C|b1|2 6 1
2R2 + 2MR1 + CR2

1 6 R2,

where the last inequality follows from (C). Thus D1 ⊂W . That D1 ⊂ Ω now follows
from (B); cf. Remark 4.4.

If we construct a Hartogs domain by rotating Ω around an axis which passes
through c and p, then this Hartogs domain will have a on its boundary and contain
b. This is precisely what we shall do.

We introduce new coordinates (w1, w2) so that the w1-axis, i.e., the plane w2 = 0,
passes through c and p. The w2-axis need not be changed. This means that the new
coordinates shall be defined as

w1 = z1, w2 = z2 − c2 − (p2 − c2)z1/b1.

Indeed z = c gives w = 0 and z = p yields w = b = (b1, 0). We now define Ω̃ in
the w-coordinates. The tangent plane with equation z2 = 0 has the equation w2 =
−c2 − (p2 − c2)w1/b1 and is also the tangent plane to ∂Ω̃ at the point w = (0,−c2).
It intersects Ω̃ at the point z = b, i.e., w = (b1,−p2). That this point is an element
of Ω̃ follows from the construction of D1.

We shall now apply Theorem 4.2 to Ω̃ over the disk |w1| < R1 in the w1-plane.
To be able to do so we have to check that there is a point of Ω̃ over every point w1

with |w1| < R1, or equivalently that (w1, 0) ∈ Ω̃ for all w with |w1| < R1.
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In the new coordinate system, the inequality defining Ω becomes

Imw2 < − Im c2 − Im(p2 − c2)w1/b1 + f(w1,Rew2 + Re(p2 − c2)w1/b1).

Denote the right-hand side by g(w1,Rew2). In particular

g(w1, 0) = − Im c2 − Im(p2 − c2)w1/b1 + f(w1,Re(p2 − c2)w1/b1).

Recalling the estimate |p2 − c2| 6M |b1| above, we get

g(w1, 0) > 1
4R2 −M |w1| − C(1 +M2)|w1|2 > 1

4R2 −MR1 − C(1 +M2)R2
1 > 0,

the last inequality coming from (C). This ensures that every point (w1, 0) with |w1| <
R1 lies in Ω and therefore also in Ω̃.

We know that Ω̃ satisfies the Behnke–Peschl condition at all boundary points
if the condition in the w-coordinates corresponding to (4.5) is valid. Note that
|w2 − z2 + c2| 6 M |z1| independently of the choice of b ∈ W , from which we de-
duce

|w2| 6 |z2|+ 1
4R2 +MR1 6 3

2R2.

The second derivative of g with respect to Rew2 is the same as the second derivative
of f with respect to x2 = Re z2, so from (B) we can conclude that the condition (4.5)
is satisfied also in the w-coordinates for all points w ∈ ∂Ω̃ with |w1| < R1.

It now follows from Theorem 4.2 that Ω̃ is lineally convex, which contradicts the
fact that the tangent plane at the point w = −c intersects Ω̃ in w = (b1,−p2). This
completes the proof.
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Ciênc. 40 (4), 427–435. (Also in Martineau [1977].)
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