
Mathematika 61 (2015), issue 02, pp. 295–308 discretemathematika

Estimates for solutions to discrete convolution equations

Christer O. Kiselman

Dedicated to Vladimir Maz ′ya,
a great mathematician
and a great human being

Contents
1. Introduction
2. Discrete, dense, and asymptotically dense sets
3. Convolution
4. Solving convolution equations
5. Inverses of convolution operators
6. Infimal convolution
7. The Fenchel transformation
8. Measuring the growth: The radial indicators

References

Abstract
We study solvability of convolution equations for functions with discrete support in Rn,
a special case being functions with support in the integer points. The more general case
is of interest for several grids in Euclidean space, like the body-centred and face-centred
tesselations of three-space, as well as for the non-periodic grids that appear in the study
of quasicrystals. The theorem of existence of fundamental solutions by de Boor, Höllig &
Riemenschneider is generalized to general discrete supports, using only elementary meth-
ods. We also study the asymptotic growth of sequences and arrays using the Fenchel
transformation.

1. Introduction

Many sequences and arrays are defined recursively, like

f(x) = a1f(x− 1) + a2f(x− 2) + · · ·+ amf(x−m), x ∈ N, x > x0;

f(x, y) = a1,0f(x− 1, y) + a0,1f(x, y − 1) + a1,1f(x− 1, y − 1) + · · ·
+ am,mf(x−m, y −m), (x, y) ∈ N2, x > x0, y > y0,

typically with some initial conditions. These sequences and arrays can conveniently
be described as solutions to convolution equations on Z and Z2, respectively.

The purpose of the present paper is to study convolution equations of the general
form ν ∗ w = ρ, where w is an unknown function, and where ν and ρ are given
functions defined on Rn and of finite support – sometimes we shall relax the latter
condition. We thus go from functions on Zn (the most studied discretization) to
more general functions. This allows, for instance, discretizations corresponding to
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other tessellations of Rn, like the body-centred cubic (bcc) grid and the face-centred
cubic (fcc) grid in R3 studied by Strand (2008) and others. These are periodic, but
coming to quasicrystals, we must allow for non-periodic functions. In fact, there
is a scale of regularity, starting with Zn as the most regular set and ending with
arbitrary discrete sets. Somewhere between these are the quasicrystals. How can
we measure this regularity?

Some of the results go beyond discreteness in that functions which have finite
mass locally are allowed. See the algebras Aθ(Rn), Bϕ

θ (Rn), and Bθ(Rn) defined
in Section 3.

We shall study the solutions with the help of the Fenchel transformation. Infi-
mal convolution and the Fenchel transformation can be viewed as tropicalizations
of usual convolution and the Fourier (or Laplace) transformation, respectively –
tropicalization is in itself a most interesting transformation. In my lecture on 2013
December 16 at the University of Liverpool, I also presented some results on the
Fourier transforms of solutions to these equations, but they are left out here due to
space limitations.

In particular we shall prove that convolution equations have fundamental solu-
tions, a result proved by de Boor, Höllig & Riemenschneider (1989). Our method
of proof is elementary, while theirs relies on a modification to the discrete case of
Hörmander’s proof (1958) of the division theorem for distributions, which in turn
builds on the Tarski–Seidenberg theorem. See also Lojasiewicz (1958, 1959). Our
result is more general, since we allow finite supports consisting of arbitrary points in
Rn, not necessarily integer points, and also some infinite discrete supports. We get
a fundamental solution with support in a strict convex cone and in general with ex-
ponential growth there, while the solution of de Boor et al. is of polynomial growth
but with support spread out. There is often a trade-off between estimates of the
growth and information on the support; in this way our solutions are more like the
solutions to hyperbolic equations and more suited to initial-value problems. See
Theorems 4.1 and 4.2, and Corollary 4.5.

Notation

The boldface letters N, Z, Q, R, C have their usual meaning according to Bourbaki;
thus N = {0, 1, 2, . . . } is the set of natural numbers, etc. We shall use

R! = [−∞,+∞] = R ∪ {−∞,+∞}

to denote the set of extended real numbers, adding two infinities.
Addition R2 3 (x, y) 7→ x + y ∈ R can be extended in two different ways to

operations (R!)2 → R!: the upper sum x+· y is defined as +∞ if one of the terms is
equal to +∞, and the lower sum x+· y is defined as −∞ if one of the terms is equal
to −∞. We use x ∧ y for the minimum of x and y; x ∨ y for the maximum. Under
these operations Z and R are lattices, and Z! and R! complete lattices.

The indicator function of a set A takes the value 0 in A and +∞ in the com-
plement. It will be denoted by indA and is equal to − logχA, where χA is the
characteristic function of A.
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Following Bourbaki (1954: ch. II, § 5,No 1, p. 101) the set of all mappings of a set
X into a set Y will be denoted by F (X, Y ). If Y is a vector space or an abelian
group, the support of a function f ∈ F (X, Y ), denoted by supp f , is the subset of
X where it is nonzero. (If we use the discrete topology on X, every set is closed, so
the definition agrees with the usual one. The support of a function defined in Rn

can for instance be equal to Qn.) We shall write Ffinite(X, Y ) and Fdiscr(X, Y ) for
the set of mappings with finite and discrete support, respectively, where the latter
has a sense if X is a topological space.

We shall use the lp-norm ‖x‖p = (∑j |xj|p)1/p, 1 6 p < +∞, and the l∞-norm
‖x‖∞ = supj |xj| for x ∈ Rn. We shall use these norms also for functions; see
Section 3. When any norm can serve, we write just ‖x‖.

The inner product is written ξ · x = ξ1x1 + · · ·+ ξnxn, (ξ, x) ∈ Rn ×Rn.

2. Discrete, dense, and asymptotically dense sets

Following Bourbaki (1961:16) we shall say that a subset A of a topological space is
discrete, if for each point a ∈ A, a is the only point of A in some neighbourhood of
a.

A subset A of a set B in a topological space is said to be dense in B if the closure
of A contains B.

In Rn we shall say that a subset A is asymptotically dense if for every nonzero
x ∈ Rn there is a sequence (a(j))j∈N of points in A such that ‖a(j)‖ → +∞ and
a(j)/‖a(j)‖ → x/‖x‖ as j → +∞.

3. Convolution

Let G be an abelian group – most of the time we shall take G = Zn or G = Rn. We
define the convolution product h = f ∗ g of two functions f, g : G→ C by

(3.1) h(x) =
∑

y+z=x
f(y)g(z), x ∈ G,

provided the sum is convergent in a suitable sense. We can define several kinds of
algebras satisfying this provision.

The Kronecker delta δa, defined by δa(a) = 1 and δa(x) = 0 for x 6= a, satisfies
δa∗δb = δa+b. Placed at the origin, this function is a neutral element for convolution:
f ∗ δ0 = f for all functions f .

We shall use the function spaces lp(G), 1 6 p 6 ∞, defined as the set of all
functions f : G→ C such that the lp-norm is finite, where we define the lp-norm by

‖f‖p =
(∑
x∈G
|f(x)|p

)1/p

if 1 6 p <∞ and ‖f‖∞ = sup
x∈G
|f(x)|.

The l1-norm of f is also called the mass of f .
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We note the Minkowski inequality

‖f ∗ g‖p 6 ‖f‖1‖g‖p, 1 6 p 6∞,

which shows that lp(G) is a module over the ring l1(G) (see (3.4) below). The closure
of Ffinite(G,C) in l∞(G) is denoted by c0(G) and is also a module over l1(G), since

f ∈ l1(G), g ∈ c0(G) implies f ∗ g ∈ c0(G).

When 1 < p <∞, we have l1(G) ⊂ lp(G) ⊂ c0(G) ⊂ l∞(G), with strict inclusions
for all infinite groups G.

We also have Hölder’s inequality,

‖f ∗ g‖∞ 6 ‖f‖p‖g‖q, 1 < p <∞, q = p/(p− 1),

valid also for (p, q) = (1,∞) and (p, q) = (∞, 1).
We write lp0(Rn) for the set of functions in lp(Rn) which have bounded support,

and lploc(Rn) for the set of functions whose restriction to any bounded subset A of
Rn is in lp(A).

For 1 6 p 6∞ we have the inclusions

(3.2) Ffinite(Rn,C) = lp0(Rn) ∩Fdiscr(Rn,C) ⊂ Fdiscr(Rn,C) ⊂ lploc(Rn),

(3.3) Ffinite(Rn,C) ⊂ lp0(Rn) ⊂ lp(Rn) ⊂ lploc(Rn).

Case α′: Functions of finite mass, l1(G). In view of the inequalities

(3.4) ‖f + g‖1 6 ‖f‖1 + ‖g‖1 and ‖f ∗ g‖1 6 ‖f‖1‖g‖1,

l1(G) is an algebra under addition and convolution. An important subalgebra is the
space Ffinite(G,C) of all functions which are nonzero only at finitely many points.
Another subalgebra in case G = Rn is the space l10(Rn).

We always have

(3.5) supp(f ∗ g) ⊂ supp f + supp g, f, g ∈ l1(G),

in general with a strict inclusion. However, if f, g are nonnegative, or more generally
if the set {f(y)g(z); y, z ∈ G} of all products of values of f and g is contained in a
strict convex cone in the complex plane, then we have equality:

(3.6) supp(f ∗ g) = supp f + supp g, f, g ∈ l1(G).

Every function f ∈ l1loc(Rn) defines a Radon measure, simply by interpreting the
Kronecker deltas in the representation f = ∑

x∈Rn f(x)δx as Dirac measures. This
simple fact opens up ways to apply distribution theory.

Let us denote by cvxh(A) the convex hull of a subset A of a vector space; it is
the smallest convex set containing A. When G = Rn, we have

(3.7) cvxh
(
supp(f ∗ g)

)
= cvxh

(
supp f

)
+ cvxh

(
supp g

)
, f, g ∈ l10(Rn),
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where we this time take the closure for the usual topology of Rn. This is Titch-
marsh’s convolution theorem, and it seems that it is as difficult to prove in this
setting as it is in the classical case when f and g are continuous functions or distri-
butions with compact support. However, if f, g ∈ Ffinite(Rn,C), then (3.7) is easy
to prove by induction over the dimension.

Weiss (1968) studied the validity of Titchmarsh’s convolution theorem for other
groups, and Domar (1989) extended the theorem from functions in l10(Rn) to func-
tions in l20(Rn).

Equation (3.7) is a precise quantitative form of the fact that the algebra l10(Rn)
does not have zero divisors. For some groups, in fact for all groups G that possess a
finite subgroup with at least two elements, the algebra Ffinite(G,C) does have zero
divisors, and (3.7) fails conspicuously.

The algebra Ffinite(Zn,C) is isomorphic to the algebra of Laurent polynomials:

Pf (z) =
∑
x∈Zn

f(x)zx =
∑
x∈Zn

f(x)zx1
1 · · · zxnn , z ∈ Cn,

and also to the algebra of trigonometric polynomials, putting zj = eiζj :

f̂(ζ) =
∑
x∈Zn

f(x)eiζ·x, ζ ∈ Cn.

Case β′. Algebras containing l10(Rn) and contained in l1loc(Rn).
Definition 3.1. Given any nonzero vector θ ∈ Rn, we define an algebra Aθ(Rn) as
the set of all functions f : Rn → C such that f(x) = 0 when θ · x 6 0 and which
have finite mass in each slab Srθ = {x ∈ Rn; 0 < θ · x 6 r}, r > 0. �

That Aθ(Rn) is an algebra follows from the estimate∑
x∈Sr

θ

|(f ∗ g)(x)| 6
∑
x∈Sr

θ

(|f | ∗ |g|)(x) =
∑

y+z∈Sr
θ

|f(y)||g(z)|

=
∑
y∈Sr

θ

|f(y)|
∑

z∈Sr−θ·y
θ

|g(z)| 6
∑
y∈Sr

θ

|f(y)|
∑
z∈Sr

θ

|g(z)|.

For any subset A of G such that A + A ⊂ A, the set of functions in l1(G) with
support in A is a subalgebra. It is, however, more interesting to study functions
in l1loc(Rn) and to consider sets A ⊂ Rn such that A + A ⊂ A and A ∩ (x − A) is
bounded for every x ∈ Rn.

To make this tractable and to get control over the support of the functions, we
introduce the following definition.
Definition 3.2. We define Φ as the set of all functions ϕ : [0,+∞[→ [0,+∞[ such
that ϕ(0) = 0 and ]0,+∞[ 3 t 7→ ϕ(t)/t is increasing. We define

(3.8) V ϕ
θ = {x ∈ Rn; θ · x > 0, ‖x‖ 6 ϕ(θ · x)}, θ ∈ Rn r {0}, ϕ ∈ Φ,

and, when ϕ(t) = t,

(3.9) V id
θ = Vθ = {x ∈ Rn; ‖x‖ 6 θ · x}, θ ∈ Rn r {0},

a strict convex cone. �
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The definition of Φ implies that the smallest cone of the form

C(t) = {x ∈ Rn; ‖x‖ 6 R(t)(θ · x)}, t > 0,

which contains all points x ∈ V ϕ
θ with θ · x = t is an increasing function of t.

Every function ϕ in Φ is superadditive: ϕ(s + t) > ϕ(s) + ϕ(t), s, t > 0. If
ϕ, ψ ∈ Φ, then also ϕ ∨ ψ ∈ Φ. If ϕ and ψ are superadditive, then ϕ ∨ ψ is not
necessarily superadditive, even if one of them belongs to Φ. This is the reason why
we have preferred to define Φ using a slightly stronger property; it is convenient
to have a class of superadditive functions which is closed under the formation of
maxima.
Example 3.3. Functions in Φ are for instance ϕ(t) = tα for t > 0 with α > 1; and
ϕ(t) = 0 for 0 6 t 6 c, ϕ(t) = αt + β for c < t, where c > 0, α > 0, β 6 0, and
αc+ β > 0.

An example in the other direction is the floor function t 7→ btc, which is super-
additive but does not belong to Φ. Here btc is the integer part of a real number t;
i.e., the integer satisfying t− 1 < btc 6 t. �

We note that V ϕ
θ +V ϕ

θ = V ϕ
θ and, more generally, that V ϕ

θ ∪V
ψ
θ ⊂ V ϕ

θ +V ψ
θ ⊂ V ϕ∨ψ

θ

for ϕ, ψ ∈ Φ.
If f has its support in V ϕ

θ , ϕ ∈ Φ, the product f(y)g(x−y) is nonzero only when
both y and x − y belong to V ϕ

θ , which implies that y ∈ V ϕ
θ ∩ (x − V ϕ

θ ), a bounded
set for any given x, thus, if f, g ∈ l1loc(Rn), in particular if f, g ∈ Aθ(Rn), then the
convolution (f ∗ g)(x) is defined for each x as the convolution of two functions in
l1(Rn).

The convolution product of two functions with support in V ϕ
θ has its support in

V ϕ
θ .

Definition 3.4. For ϕ ∈ Φ and θ ∈ Rn r {0} we define a convolution algebra
Bϕ
θ (Rn) as the set of functions f ∈ l1loc(Rn) such that supp f is contained in V ϕ

θ .
We define Bθ(Rn) as the union of all the Bϕ

θ (Rn) when ϕ varies. �

Clearly Bθ(Rn) is a subalgebra of Aθ(Rn). In the former, we have some control of
the size of the supports; in the latter not.
Case γ′. Translates. For G = Rn, the functions f such that f ∗ δb is in Aθ(Rn) for
some b depending on f also form an algebra, as is the set of functions with support
in a translate of some V ϕ

θ . We can of course also take the union of V ϕ
θ over all ϕ.

When n = 1, the subalgebra of functions with discrete support is even a field.
However, sometimes we need to define a convolution product in other situations,

thus not in an algebra.
Case δ′. We can define a convolution product f1 ∗ · · · ∗ fk when all factors except
one have finite support in G, or, in the case G = Rn, all factors are in l1loc(Rn) and
all except one are in l10(Rn).
Case ε′. For G = Rn, we can define a convolution product f1 ∗ · · · ∗ fk when all
factors are in l1loc(Rn) and all except one have their support contained in translates
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of a set V ϕ
θ and the remaining one has its support contained in a half space

{x ∈ Rn; θ · x > s}

for some real number s and with the same vector θ. Also here we can take the union
over all ϕ ∈ Φ.

In the five cases α′– ε′, the associative law holds. However, associativity is a
subtle property and can easily be lost:
Example 3.5. Take f(x) = 1 for all x ∈ Z; g = δ−1 − δ0 (a difference operator); and
h(x) = 1 for all x ∈ N, h(x) = 0 for x 6 −1.

Then f ∗ g = 0 (Case δ′) and (f ∗ g) ∗ h = 0, while g ∗ h = δ−1 (Case δ′) and
f ∗ (g ∗ h) = 1 6= 0.

Note that neither f ∗ h nor f ∗ g ∗ h here can be defined in accordance with any
of the cases α′– ε′.

This example is, via the Fourier transformation, the same as Laurent Schwartz’s
example showing that distributions cannot be multiplied while keeping the associa-
tive law. �

We shall study in particular convolution equations of the form ν ∗ w = ρ, where ν
and ρ have finite support (Case δ′), and also when ν has its support in some V ϕ

θ .
In the theory of distributions, convolutions can be defined even more generally,

but this is outside the scope of the present paper.

4. Solving convolution equations

Theorem 4.1. Let ν, ρ : Rn → C be functions with finite support, ν 6= 0. Then there
is a function w : Rn → C with discrete support which solves the equation ν ∗w = ρ.

Since ρ = ∑
a ρ(a)δa, it is enough to solve ν ∗ wa = δa for a ∈ supp ρ and then form

the finite linear combination w = ∑
a ρ(a)wa.

We can generalize the last theorem as follows.

Theorem 4.2. Let ρ : Rn → C be a function with finite support and ν a function
such that (ν− ν(b)δb) ∗ δ−b belongs to Aθ(Rn) (see Definition 3.1) for some nonzero
vector θ and some point b ∈ supp ν. Then there is a function w ∈ l1loc(Rn) which
solves the equation ν ∗ w = ρ. If w(x) = 0 when θ · x is negative and sufficiently
large, then suppw ⊂ {x ∈ Rn; θ · b 6 θ · x}.

In particular there is a fundamental solution, i.e., a function w such that ν ∗w = δ0
for certain choices of ν as indicated.

We first find a normal form for these equations.

Lemma 4.3. Given ν, ρ : Rn → C and any point b ∈ supp ν, define

u = (ν(b)w) ∗ δb−a and µ = −
∑
x 6=b

ν(x)ν(b)−1δx−b.

Then w solves the equation ν∗w = δa if and only if u solves the equation (δ0−µ)∗u =
δ0.
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Proof. The equation ν ∗ w = δa can be written

δb ∗ (ν(b)w) +
∑
x 6=b

(ν(x)ν(b)−1δx) ∗ (ν(b)w) = δa,

equivalently

δ0 ∗ (ν(b)w ∗ δb−a) +
∑
x 6=b

(ν(x)ν(b)−1δx−b) ∗ (ν(b)w ∗ δb−a) = δ0.

We can now introduce u and µ as indicated. �

In general this lemma is not so useful, viz. when b is in the convex hull of suppµ.
However, if ν has finite support and if b is a vertex of cvxh(supp ν), then 0 does
not belong to the convex hull of suppµ, a very useful fact as we shall see. In this
situation, we note that the support of µ is contained in a strict convex cone:

Lemma 4.4. Given any finite set A in Rn such that the origin does not belong to
its convex hull, there exists a vector θ ∈ Rn r {0} and a strict convex cone K such
that

A ⊂ K ∩ {x ∈ Rn; θ · x > 1} ⊂ V ϕ
sθ r {0},

where s = supa∈A ‖a‖(θ · a)−1, provided A 6= Ø, and where ϕ(t) = 0 for 0 6 t < 1
and ϕ(t) = t for t > 1; ϕ ∈ Φ.

Proof. In view of the Hahn–Banach theorem there exists a vector θ such that every
x ∈ A satisfies θ · x > 1. We can then define the smallest cone of the form (3.9) as
Vsθ, where s is as defined in the statement of the lemma. (This strict convex cone
depends on the choice of norm and need not be the smallest convex cone containing
A.) �

Proof of Theorems 4.1 and 4.2. In view of Lemma 4.3 it suffices to study the equa-
tion (δ0 − µ) ∗ u = δ0, where µ ∈ Aθ. Define

(4.1) v = δ0 + µ+ µ ∗ µ+ µ ∗ µ ∗ µ+ · · · =
∞∑
k=0

µ∗k.

There are two situations where convergence of (4.1) is easily established. The
first is when there are no points of suppµ with θ · x < r for some positive r. Then

suppµ∗k ⊂ {x ∈ Rn; θ · x > kr}, k ∈ N,

which implies that, in each bounded set, the sum ∑
µ∗k is finite.

The second situation is when ‖µ‖1 is less than 1. Then ‖µ∗k‖1 6 ‖µ‖k1 and the
series (4.1) converges uniformly in the whole space.

We shall now combine these two simple situations.
In the general case we first determine a positive number r such that the mass of

µ in the slab Srθ (see Definition 3.1) is at most 1
2 . Then, given any number s ∈ N,

as large as we wish, we denote by Ms the l1-norm of µ restricted to the slab defined
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by r < θ · x 6 (s+ 1)r. Let us write µ = µ0 + µ1, where µ0 is the restriction of µ to
the slab Srθ , and µ1 is the restriction of µ to the half space determined by r < θ · x.

We then have, in the half space defined by θ · x 6 (s+ 1)r,

µ∗k = (µ0 + µ1)∗k =
k∑
j=0

(
k

j

)
µ
∗(k−j)
0 µ∗j1 =

s∑
j=0

(
k

j

)
µ
∗(k−j)
0 µ∗j1 ,

since, for j > s+ 1, the support of the function µ∗j1 does not meet the half space we
consider. The mass of µ∗k in S(s+1)r

θ can therefore be estimated, when k > 2s, by
s∑
j=0

(
k

j

)
2−k+jM j

s 6

(
k

s

)
2−k

s∑
j=0

(2Ms)j 6 ks2−kCs,

where Cs is a constant which is independent of k. We see that this norm tends to
zero as k → +∞, and even so rapidly that (4.1) converges uniformly in the half
plane θ · x 6 (s+ 1)r.

As to uniqueness, if µ ∈ Aθ(Rn) and u solves (δ0−µ)∗u = δ0, we have (δ0−µ)∗v =
δ0 = (δ0−µ) ∗ u. Here v(x) vanishes when θ · x < 0. If also u(x) vanishes when θ · x
is negative and sufficiently large, then it follows that v = u.

If µ ∈ Bϕ
θ (Rn), the support of µ∗k is included in V ϕ

θ + V ϕ
θ + · · ·+ V ϕ

θ (j terms),
which is equal to V ϕ

θ , since ϕ is superadditive. Therefore also the support of v is
contained in V ϕ

θ . �

Corollary 4.5. With ν, b, θ, and ϕ as in Theorem 4.2, let ρ now be any function
with discrete (possibly infinite) support. Then there is a solution w to the equation
ν ∗ w = ρ which vanishes for θ · x negative and sufficiently large in each of the
following cases.
1. If supp ρ ⊂ c+ V ϕ

θ for some c, then w has its support in c− b+ V ϕ
θ .

2. If ρ ∗ δ−c ∈ Bθ(Rn) for some c, then w ∗ δb−c ∈ Bθ(Rn).
3. If the support of ρ ∈ c+ Aθ(Rn) is contained in some half space
{x ∈ Rn; θ·x > s}, then w has its support in the half space {x ∈ Rn; θ·x > s−θ·b}.

Proof. Let w0 be the solution to ν ∗w0 = δ0 which vanishes when θ ·x is negative and
sufficiently large. Then w = ρ∗w0 is well defined and is the solution with the desired
properties in each of the three cases mentioned (Cases γ′ and ε′). For instance, if in
the second case supp ρ ∈ c + V ψ

θ with ψ ∈ Φ, then suppw ∈ c − b + V ϕ∨ψ
θ , and, as

noted, ϕ ∨ ψ ∈ Φ. �

Formula (4.1) lends itself to estimates of the solution. However, it seems to be
difficult to get estimates as good as those that can be obtained with the help of the
Fourier transformation.

5. Inverses of convolution operators

Let now µ ∈ Bϕ
θ (Rn) (see Definition 3.4) for some nonzero vector θ and some

function ϕ ∈ Φ. Let u be the solution to (δ0− µ) ∗ u = δ0 which vanishes when θ · x
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is negative and sufficiently large. We know then that u has its support contained in
V ϕ
θ .

With this vector θ we define Cθ(Rn) as the set of all functions v ∈ l1loc(Rn) such
that v(x) is nonzero only if θ · x > −Cv for some constant Cv. Then, defining

P (v) = u ∗ v, v ∈ Cθ(Rn), and Q(w) = (δ0 − µ) ∗ w, w ∈ Cθ(Rn),

(Case ε′), we obtain

Q(P (v)) = (δ0 − µ) ∗ (u ∗ v) = ((δ0 − µ) ∗ u) ∗ v = δ0 ∗ v = v, v ∈ Cθ(Rn),

and

P (Q(w)) = u ∗ ((δ0 − µ) ∗ w) = (u ∗ (δ0 − µ)) ∗ w = δ0 ∗ w = w, w ∈ Cθ(Rn).

The associative law holds under the conditions mentioned.

6. Infimal convolution

Tropicalization means, roughly speaking, that we replace an integral or a sum by a
supremum.

A typical example is the tropicalization of the lp-norm:

‖x‖p =
(∑
|xj|p

)1/p
is replaced by (sup |xj|p)1/p = sup |xj| = ‖x‖∞.

In this case we have convergence:

‖x‖p =
(∑
|xj|p

)1/p
→ sup

j
|xj| = ‖x‖∞ as p→ +∞, x ∈ Rn.

To understand how infimal convolution can be viewed as a tropicalization of
ordinary convolution, let us study the convolution product of two functions of the
form e−f :

e−h1(x) =
∑
y∈Rn

e−f(x−y)e−g(y), x ∈ Rn,

assuming that f, g are equal to +∞ outside some discrete set. If for instance f , g
have their support in Zn and f(x), g(x) > ε‖x‖ − C, we have good convergence.
The tropicalization of this convolution product is

e−h∞(x) = sup
y∈Rn

e−f(x−y)e−g(y), x ∈ Rn,

which can be written

h∞(x) = inf
y∈Rn

(f(x− y) + g(y)), x ∈ Rn.

If we define hp by

e−php(x) =
∑
y∈Rn

e−pf(x−y)e−pg(y), x ∈ Rn, 0 < p < +∞,
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then hp converges to h∞ as p→ +∞. So, also in this case we have nice convergence
as p tends to infinity.

The function h∞ is the infimal convolution of f and g, denoted by f u g. Here
of course we need not assume that f and g are equal to +∞ outside a discrete set.
More generally, we define it when f and g take values in R! using upper addition:

(f u g)(x) = inf
y∈Rn

(f(x− y)+· g(y)), x ∈ Rn, f, g ∈ F (Rn,R!).

The function ind{0} is a neutral element for infimal convolution: f u ind{0} = f for
all f .

Of course we have also the supremal convolution defined as
(f t g)(x) = sup

y∈Rn
(f(x− y)+· g(y)), x ∈ Rn, f, g ∈ F (Rn,R!).

The superadditivity of a function ϕ ∈ Φ can for example be described by the in-
equality ϕ t ϕ 6 ϕ, understanding that ϕ(t) = −∞ for t < 0.
Remark 6.1. Infimal convolution generalizes Minkowski addition: indA u indB =
indA+B if A and B are arbitrary subsets of Rn.

In the other direction, Minkowski addition in a higher dimension can be used
to define infimal convolution: epiFs (f u g) = epiFs (f) + epiFs (g), where epiFs (f) is the
strict finite epigraph of f : Rn → R!, defined as

epiFs (f) = {(x, t) ∈ Rn ×R; f(x) < t}.

7. The Fenchel transformation

The Fenchel transform f̃ of a function f : Rn → R! is defined as
f̃(ξ) = sup

x∈Rn
(ξ · x− f(x)), ξ ∈ Rn.

Clearly ξ · x− f(x) 6 f̃(ξ), which can be written as
ξ · x 6 f(x)+· f̃(ξ), (ξ, x) ∈ Rn ×Rn,

called Fenchel’s inequality. It follows that the second transform ˜̃f satisfies ˜̃f 6 f .
We have equality here if and only if f is convex; lower semicontinuous; and takes
the value −∞ only if it is −∞ everywhere.

The Fenchel transformation f 7→ f̃ , named for Werner Fenchel (1905–1988), is a
tropical counterpart of the Fourier transformation. This is perhaps even more obvi-
ous if we look at the Laplace transform of a function g: (L g)(ξ) =

∫∞
0 g(x)e−ξxdx,

ξ ∈ R. If we replace the integral by a supremum and take the logarithm, we get
log(Ltrop g)(ξ) = sup

x
(log g(x)− ξx) = f̃(−ξ), f(x) = − log g(x).

We have
(f u g)̃ = f̃ +· g̃ 6 f̃ +· g̃.

If ϕ and ψ are convex, then ϕ+· ψ is convex, but not always ϕ+· ψ. However, when
ϕ = f̃ and ψ = g̃, this is true: f̃ +· g̃ is always convex, and is often equal to f̃ +· g̃.
In fact equality holds except for a few special cases.
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7.1. Transforms of indicator functions: supporting functions

If f is an indicator function, then f̃ is positively homogeneous of degree 1 as the
supremum of a family of linear functions:

f̃(ξ) = sup
x∈Rn

f(x)= 0

ξ · x, ξ ∈ Rn.

Thus the Fenchel transform of an indicator function indA is positively homogeneous
of degree 1, and actually equal to the supporting function HA of A, which is defined
as

HA(ξ) = (indA) (̃ξ) = sup
x∈A

ξ · x, ξ ∈ Rn.

7.2. Transforms of positively homogeneous functions

Conversely, if ϕ is positively homogeneous of degree one, then ϕ̃ can take only the
values 0, +∞, −∞. Indeed, if ϕ(tx) = tϕ(x) for all t > 0, then tϕ̃ = ϕ̃ for all t > 0,
and this is only true for the three values 0, +∞, −∞. If ϕ is not identically +∞, ϕ̃
is an indicator function: ϕ̃ = indM for some set M .

If A is a set such that HA = (indA)˜= ϕ, then ϕ̃ is the second Fenchel transform
of indA, equal to the indicator function of the closure cvxh(A) of the convex hull
cvxh(A) of A.

Now if ϕ is positively homogeneous of degree one and not identically +∞ (so
that ϕ̃ does not take the value −∞), we define M as the set such that ϕ̃ = indM .
Fenchel’s inequality says that

(7.1) −ϕ(x) 6 −η · x+ ϕ̃(η) = −η · x, x ∈ Rn, η ∈M.

This inequality can be used to determine the domain of holomorphy of the Fourier
transform of a function f with support in Nn and satisfying |f(x)| 6 Ce−ϕ(x),
x ∈ Nn.

7.3. Transforms of indicator functions that are positively homogeneous

Let f = indC be an indicator function which is also positively homogeneous. Then
C is a cone, and the Fenchel transform of f is also both positively homogeneous
and an indicator function, say f̃ = indΓ, where Γ is a cone, necessarily closed and
convex since f̃ is lower semicontinuous and convex.

The dual of a cone C is a closed convex cone: Cdual = −Γ, where indΓ = (indC) .̃

8. Measuring the growth: The radial indicators

Definition 8.1. Given any subset A of Rn we define A∞ as the union of {0} and
the set of all x ∈ Rn r {0} such that there exists a sequence (a(j))j∈N of points in
A with ‖a(j)‖ tending to +∞ and a(j)/‖a(j)‖ → x/‖x‖.
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If A = Zn, then A∞ = Rn. The same holds for all asymptotically dense sets A as
defined in Section 2.
Definition 8.2. Given a function f : A→ C we define its upper radial indicator as

pf (x) = lim sup
a∈A

‖x‖
‖a‖

log |f(a)|, x ∈ A∞ r {0},

where the limit superior is taken over all a ∈ A such that ‖a‖ → +∞ and a/‖a‖ →
x/‖x‖. Similarly, we define its lower radial indicator as

qf (x) = lim inf
a∈A

‖x‖
‖a‖

log |f(a)|, x ∈ A∞ r {0}.

Finally, we define pf (0) = qf (0) = 0.
Theorem 8.3. Let A be any subset of Rn and f : A → C any function defined on
A. Fix σ = (σ1, . . . , σn) ∈ Rn. Then the following four properties are equivalent.
(A). For every positive ε there exists a constant Cε such that

|f(a)| 6 Cεe
σ·a+ε‖a‖ , a ∈ A.

(A′). The upper radial indicator of f satisfies

pf (x) 6 σ · x x ∈ A∞.

(A′′). The Fenchel transform of −pf satisfies (−pf )˜(−σ) 6 0. (Here we take
pf = −∞ in Rn r A∞.)
(A′′′). −σ ∈Mf , where Mf is the set such that (−pf )˜= indMf

.
Proof. That (A′), (A′′) and (A′′′) are all equivalent is obvious from the definitions.

Now suppose that (A) holds. If x ∈ A∞ and a converges as described in the
definition of A∞, we get

‖x‖
‖a‖

log |f(a)| 6 ‖x‖
‖a‖

logCε + ‖x‖
‖a‖

σ · a+ ε‖x‖ → σ · x+ ε‖x‖.

Hence pf (x) 6 σ · x+ ε‖x‖ for all x ∈ A∞. Letting ε→ 0 we get (A′).
Conversely, let us assume that (A) does not hold. Then there exists a positive

number ε such that for every k ∈ N there is a point a(k) ∈ A such that

|f(a(k))| > keσ·a
(k)+ε‖a(k)‖ .

It follows that ‖a(k)‖ must tend to +∞. Define b(k) = a(k)/‖a(k)‖. The points
b(k) belong to the unit sphere, a compact set, so there exists a subsequence which
converges to some point b on the sphere. After a change of notation we may assume
that the sequence (b(k))k itself converges to b. We obtain

pf (b) > lim sup
k→∞

1
‖a(k)‖

log |f(a(k))| > lim sup
k→∞

1
‖a(k)‖

(σ · a(k) + ε‖a(k)‖)

= lim sup
k→∞

(σ · b(k) + ε) = σ · b+ ε > σ · b.

Hence (A′) does not hold. We are done. �
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Hörmander, Lars. 1958. On the division of distributions by polynomials. Ark. mat. 3, 555–568.
 Lojasiewicz, Stanis law. 1958. Division d’une distribution par une fonction analytique de variables
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