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Resumo: Reguleco de distancaj transformoj en la analizo de bildoj

Distanca transformo donas por ĉiu aro en la bilda ebeno funkcion kiu iel mezuras
la distancon al la aro. Multaj malsamaj metodoj por mezuri la distancon eblas,
kaj kelkaj havas nedezirindajn ecojn. Montriĝas ke multaj gravaj distancoj povas
esti difinitaj per infima kunfaldo. Uzante tiun ĉi ni studas regulecon en la senco
de Borgefors kaj starigas kondiĉojn kiuj ekvivalentas al tiu eco.

Abstract: A distance transformation gives for every set in the image plane a
function which measures the distance to the set. Several different methods of
measuring the distance are possible, and some have undesirable properties. It
turns out that many important distances can be defined by infimal convolution.
Using this operation we study semiregularity in the sense of Borgefors and give
conditions on the distance which are equivalent to this property.

1. Introduction

Distance transformations of digital images are a useful tool in image analysis. A
distance transform of a shape is the set of distances from a given pixel to the shape.
The distances can be measured in different ways, e.g., by approximating the Euclidean
distance in the two-dimensional image, the Euclidean distance between two pixels
x = (x1, x2) and y = (y1, y2) being

√

(x1 − y1)2 + (x2 − y2)2. Other distances that
have been used are the city-block distance |x1 − y1|+ |x2 − y2| and the chess-board
distance max(|x1 − y1|, |x2 − y2|).

While the Euclidean distance is easy to visualize geometrically, it has certain
drawbacks in this context: in the calculation, we need to keep in memory a vector
rather than a scalar at each pixel; we need more operations per pixel; and, perhaps
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most importantly, the Euclidean distance is more difficult to use for various morpho-
logical operations, such as skeletonizing, than for instance the city-block distance; see
Borgefors [3]. For a study of the computation of the Euclidean distance transform in
any dimension, see Ragnemalm [9].

In the case of the city-block and chess-board distances, one first defines the
distances between neighboring pixels; we shall call them, following Starovoitov [13],
prime distances. Then the distance between any two pixels is defined by following a
path and taking as the distance the minimum over all admissible paths of the sum
of the prime distances. As an example, for the city-block distance the admissible
paths consists of horizontal and vertical moves only, and the prime distance between
two pixels which share a side is declared to be one. Thus the distance is calculated
successively from neighboring pixels, which is convenient both for sequential and
parallel computation.

In this paper we shall give a unified treatment of distances created in this way.
It turns out that the metric is conveniently defined from the prime distances by a
well-known procedure called infimal convolution over all grid points.

We then consider a regularity property of distance transforms introduced by
Borgefors [2] and called semiregularity by her. We give several conditions on a dis-
tance function which are necessary and sufficient for semiregularity in two dimensions.
Also in higher dimensions a characterization of semiregularity is given.

2. Distances and metrics

Let X be any nonempty set. We shall measure distances between points in X, which
amounts to defining a real-valued function on the Cartesian product X × X of X
with itself. Let us agree to call a function d: X × X → R a distance if d is positive
definite:

d(x, y) > 0 with equality precisely when x = y, (2.1)

and symmetric:
d(x, y) = d(y, x) for all x, y ∈ X. (2.2)

A distance will be called a metric if in addition it satisfies the triangle inequality:

d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X. (2.3)

All nonempty sets can be equipped with a metric, viz. the discrete metric d0

defined as
d0(x, x) = 0, d0(x, y) = 1 if x 6= y. (2.4)

We shall use the word distance in a noncommital way, thus not implying that it
is a metric.

For us the set X will usually be the image plane Z2 consisting of all points in the
plane with integer coordinates (the pixels), or more generally the image space Zn.
Here also a group operation is defined, viz. vector addition: Z2 is an abelian group.
Whenever X is an abelian group it is of particular interest to use translation-invariant
distances, i.e., those which satisfy

d(x− a, y − a) = d(x, y) for all a, x, y ∈ X. (2.5)

The following result is well known and easy to prove; we include it for ease of
reference.
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Lemma 2.1. Any translation-invariant distance d on an abelian group X defines a
function g(x) = d(x, 0) on X which is positive definite:

g(x) > 0 with equality precisely when x = 0; (2.6)

and symmetric:
g(−x) = g(x) for all x ∈ X. (2.7)

Conversely, a function g which satisfies (2.6) and (2.7) defines a distance d(x, y) =
g(x− y).

Lemma 2.2. Let d be a translation-invariant distance on an abelian group X and g
a function on X related to d as in Lemma 2.1. Then d is a metric if and only if g is
subadditive:

g(x + y) 6 g(x) + g(y) for all x, y ∈ X. (2.8)

Proof. If d is a metric, we can write, using the triangle inequality and the translation
invariance,

g(x + y) = d(x + y, 0) 6 d(x + y, y) + d(y, 0) = d(x, 0) + d(y, 0) = g(x) + g(y).

Conversely, if g is subadditive,

d(x, z) = g(x− z) 6 g(x− y) + g(y − z) = d(x, y) + d(y, z),

proving the triangle inequality.

A particular kind of distances on an abelian group X are those which are posi-
tively homogeneous, i.e., those which satisfy

d(mx, my) = md(x, y) for all x, y ∈ X and all m ∈ N. (2.9)

Of course, if g is the function g(x) = d(x, 0) related to a translation-invariant distance,
this is equivalent to g being positively homogeneous:

g(mx) = mg(x) for all x ∈ X and all m ∈ N, (2.10)

and, in view of the symmetry, also to g being homogeneous:

g(mx) = |m|g(x) for all x ∈ X and all m ∈ Z. (2.11)

In these formulas the product mx with m ∈ N is interpreted as the sum of m terms
all equal to x, and mx = (−m)(−x) when m is a negative integer.

We shall also need the notion of midpoint convexity: a function f on an abelian
group X with values in the extended real line [−∞, +∞] is said to be midpoint convex
if it satisfies

f(x) 6
1
2
f(x + y)+

· 1
2
f(x− y) for all x, y ∈ X. (2.12)

Here +
·

is an extension of addition, called upper addition and serving to resolve
the problem of conflicting infinities so that +∞ always wins over −∞: one defines



4 C. O. Kiselman

+∞+
·

a = +∞ for all elements a of [−∞, +∞], and −∞+
·

a = −∞ for all a ∈
[−∞, +∞[. If the conflict between +∞ and −∞ does not arise, for instance if the

function never takes the value −∞, we shall write + instead of +
·

in (2.12).
It is easy to see that a positively homogeneous function is midpoint convex

precisely when it is subadditive, i.e.,

f(x + y) 6 f(x)+
·

f(y) for all x, y ∈ X. (2.13)

Proposition 2.3. Let g be a subadditive function on an abelian group X satisfying
0 6 g < +∞. Then the following three conditions are equivalent:
A. g is midpoint convex and g(0) = 0;
B. g(2x) = 2g(x) for all x ∈ X;
C. g is positively homogeneous.

Proof. If g is midpoint convex, then taking y = x in (2.12) yields

g(x) 6
1
2g(x + x) + 1

2g(x− x) = 1
2g(2x) + g(0),

so that 2g(x) 6 g(2x) if we assume in addition that g(0) = 0. The opposite inequality
follows from the subadditivity. Thus A implies B.

Now assume that B holds. By subadditivity g(2x) 6 g(x + y) + g(x− y). Here
the left-hand side is equal to 2g(x) if B holds, so g is midpoint convex. Moreover,
g(0) = 2g(0), so that g(0) = 0, proving A.

Since B is a special case of C, it only remains to be proved that B implies C.
For any fixed number m ∈ N, denote by C(m) the statement that g(mx) = mg(x)
for all x. Thus B is the statement C(2), and by repeated application we see that B
implies C(2k) for any k ∈ N. Next we shall prove that C(m) implies C(m − 1) for
m > 1. By subadditivity we have

g(mx) = g((m− 1)x + x) 6 g((m− 1)x) + g(x) 6 (m− 1)g(x) + g(x) = mg(x).

If C(m) holds, the first and last elements of this inequality are equal, so we must
have equality throughout, in particular g((m− 1)x) + g(x) = (m− 1)g(x) + g(x). If
g(x) is finite, which we assume, then it follows that C(m − 1) holds. By induction
C(2k − j) holds for all k, j ∈ N with 2k − j > 0, which means that C holds.

3. Metrics defined by infimal convolution

Let f, g be two functions defined on an abelian group X with values in the extended
real line [−∞, +∞]. The infimal convolution f ut g of f and g is by definition

(f ut g)(x) = inf
y∈X

(

f(x− y)+
·

g(y)
)

, x ∈ X. (3.1)

Here +
·

, upper addition, is the extension of addition which was defined after (2.12).
It amounts to the same to use only those y which satisfy f(x − y), g(y) < +∞ in
(3.1). For a survey of the properties of this operation, see Moreau [8], Rockafellar
[10], or Strömberg [14].
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In the definition of an infimal convolution the infimum operator acts over an
infinite set of points, and therefore sometimes cannot be computed in finitely many
steps. However, there are many situations where the infimum is in fact a minimum
over a finite set. One such case is when f is bounded from below and g is coercive
in the strong sense that all sublevel sets {y; g(y) 6 a}, a ∈ R, are finite. Then in
particular the sublevel set {y; g(y) 6 (f ut g)(x)+1− inf f} is finite, and it is enough
to search for a minimizing y in that set. Even simpler is the case when g is less
than +∞ in a finite set P only. Then any infimal convolution with g is equal to the
minimum

(f ut g)(x) = min
y∈P

(

f(x− y)+
·

g(y)
)

, x ∈ X. (3.2)

This is indeed the case for the distances we shall consider: here P is a small set
around the origin where the prime distances are defined.

We have seen that subadditive functions are important when it comes to defining
metrics (Lemma 2.2). Therefore it is of interest to know that subadditivity can be
characterized using infimal convolution:

Lemma 3.1. A function f on an abelian group is subadditive (in the sense of (2.13))
if and only if it satisfies the inequality f ut f > f . If f(0) = 0, this is equivalent to
the equation f ut f = f .

Proof. If f is subadditive we have f(x−y)+
·

f(y) > f(x), so taking the infimum over

y gives (f ut f)(x) > f(x). Conversely, f(x)+
·

f(y) > (f ut f)(x + y) for all x, y, so

f ut f > f implies subadditivity. Finally, we always have (f ut f)(x) 6 f(x)+
·

f(0),
so if f(0) = 0 it follows that f ut f 6 f .

Infimal convolution is a commutative and associative operation on functions, so
we can write iterated convolutions as f ut g ut h without using parentheses. A k-fold
convolution can be defined by

(f1 ut · · · ut fk)(x) = inf
k

∑

i=1

fi(x
i), (3.3)

where the infimum is over all choices of elements xi ∈ X such that x1 + · · ·+xk = x,
and with the understanding that the sum receives the value +∞ as soon as one of
the terms has that value, even in the presence of a value −∞. In (3.3) it is natural
to think of a path leading from 0 to x consisting of segments [0, x1], [x1, x1 + x2],...,
[x1 + · · ·+ xk−1, x]; if X = Z2 this path can be realized in R2.

Denoting by dom f = {x ∈ X; f(x) < +∞} the effective domain of f , i.e., the
set where f does not take the value +∞, we see that

dom(f1 ut · · · ut fk) = dom f1 + · · ·+ dom fk. (3.4)

If A is a subset of an abelian group X, we shall write N · A for the semigroup
generated by A:

N ·A = {∑ miai; mi ∈ N, ai ∈ A} , (3.5)

where all but finitely many of the mi are zero. Similarly, we shall write Z ·A for the
group generated by A:

Z ·A = {
∑

miai; mi ∈ Z, ai ∈ A} . (3.6)
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If A is symmetric, A = −A, then of course Z ·A = N ·A.
It seems plausible that if a repeated convolution G ut G ut · · · ut G has a limit

g as the number of factors tends to infinity, then this limit will satisfy the equation
g ut g = g. Indeed this is the case under very general hypotheses:

Theorem 3.2. Let G: X → [0, +∞] be a function on an abelian group X sat-
isfying G(0) = 0. Define a sequence of functions (Gj)

∞

j=1 by putting G1 = G,
Gj = Gj−1 ut G, j = 2, 3, ..., in other words, Gj is the infimal convolution of j factors
all equal to G. Then the sequence (Gj) is decreasing and its limit limGj = g > 0 is
subadditive. Moreover dom g = N · dom G, i.e., g is finite precisely in the semigroup
generated by dom G.

Remark. It is easy to prove that g is the largest subadditive minorant of G.

Proof. That the sequence is decreasing is obvious if we take y = 0 in the definition
of Gj+1:

Gj+1(x) = inf
y

(

Gj(x− y) + G(y)
)

6 Gj(x) + G(0) = Gj(x).

Next we shall prove that g(x + y) 6 g(x) + g(y). If one of g(x), g(y) is equal to
+∞ there is nothing to prove, so let x, y be given with g(x), g(y) < +∞ and fix a
positive number ε. Then there exist numbers j, k such that Gj(x) 6 g(x) + ε and
Gk(y) 6 g(y) + ε. By associativity Gj+k = Gj ut Gk, so we get

g(x + y) 6 Gj+k(x + y) 6 Gj(x) + Gk(y) 6 g(x) + g(y) + 2ε.

Since ε is arbitrary, the inequality g(x + y) 6 g(x) + g(y) follows. Finally, the
statement about dom g is an easy consequence of (3.4).

Theorem 3.3. With G as in Theorem 3.2, assume in addition that there is a metric
d1 on X such that G(x) > d1(x, 0) for all x ∈ X. Then the limit g of the sequence
Gj also satisfies this inequality, g(x) > d1(x, 0), so that it is positive definite. If G
is symmetric, g is also symmetric and defines a metric d(x, y) = g(x− y) > d1(x, y)
on the subgroup Z · P = N · P of X generated by P = dom G.

When applying this theorem we could for instance let d1 be εd0, where ε is a small
positive number and d0 is the discrete metric defined by (2.4). In Zn we can also use
d1(x, y) = ε‖x− y‖ for any norm on Rn.

We call G a prime distance function. This is the term used by Starovoitov [13];
Borgefors [2] calls G(x− y) the local distances.

Proof. Define H(x) = d1(x, 0) and let Hj be the infimal convolution of j factors equal
to H. From Lemmas 2.2 and 3.1 it follows that H ut H = H and so all Hj = H.
Therefore G > H implies Gj > H and also the limit g must satisfy g > H. This
proves the theorem.

Corollary 3.4. Let P be a finite set in an abelian group X containing the origin
and let G be a function on X with G(0) = 0, taking the value +∞ outside P and
finite positive values at all points in P r {0}. Then g = limGj is a positive definite
subadditive function. If P is symmetric and G(−x) = G(x), then g defines a metric
on the subgroup Z · P = N · P of X generated by P .
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Proof. Since P is finite, there is a positive number ε such that G(x) > ε for all x ∈ P
except x = 0. Thus G(x) > εd0(x, 0), where d0 is the discrete metric defined by
(2.4). We can now apply the theorem.

Example 3.5. It is by no means necessary that g be positively homogeneous. In fact,
we can let P = {0,±1,±2} ⊂ Z and define G(±1) = a, G(±2) = b, where a and b are
arbitrary positive numbers. If b > 2a, then g(x) = a|x| for all x ∈ Z, but if b < 2a,
then g(x) = 1

2
b|x| when x is even, x = 2k, k ∈ Z, whereas g(x) = b|k| + a > 1

2
b|x|

when x is odd, x = ±(2k + 1), k ∈ N. But nevertheless g is subadditive.

Example 3.6. A more interesting example is perhaps this in two dimensions. Let
P = {x ∈ Z2; |xj| 6 1}, and define the prime distances as G(±1, 0) = G(0,±1) =
a > 0, G(±1,±1) = b > 0. Then if b > a we get g(x1, 0) = a|x1|. But if b < a, then
g(2, 0) = 2b < 2a, so that g(2, 0) < 2g(1, 0) = 2a. In fact, by the definition of infimal
convolution, g(2, 0) 6 G2(2, 0) 6 G(1, 1)+ G(1,−1) = b + b. On the other hand, it is
not difficult to see that for any k, Gk(2, 0) > 2b, so that actually g(2, 0) = 2b. This
is because if we take k > 2 nonzero steps to go from the origin to (2, 0), the distance
assigned to the path is at least G(x1) + · · ·+ G(xk) > kb.

Example 3.7. Several metrics on Z2 have been studied. When presenting the
generating function G defining the prime distances it shall be understood in the sequel
that G is invariant under permutation and reflection of the coordinates. Therefore
it is enough to define G(x) for 0 6 x2 6 x1. Also it is understood that G(0) = 0
in all cases, and that G(x) = +∞ when not mentioned. Consider first P = {x ∈
Z2;

∑ |xj | 6 1} and G(1, 0) = 1. Then the corresponding metric is the city-block
metric, introduced and studied by Rosenfeld & Pfaltz [11]. If instead we let P = {x ∈
Z2; |xj | 6 1} and G(1, 0) = G(1, 1) = 1, then the metric is the chess-board metric,
introduced by Rosenfeld & Pfaltz [12]. Some other metrics that have been studied
are modifications of this; to define them, put G(1, 0) = a and G(1, 1) = b. Then the
choices (a, b) = (1,

√
2) (Montanari [7]); (a, b) = (2, 3) (Hilditch & Rutovitz [6]); and

(a, b) = (3, 4) (Borgefors [1]) have all been studied. Next we can increase the size
of the neighborhood where prime distances are defined to include the knight’s move
(2, 1) as an element of P . The distance defined by this move only has been studied
by Das & Chatterji [5]. It seems more natural, however, to allow also (1, 0) and (1, 1)
in P . Then a very good choice under certain criteria is G(1, 0) = 5, G(1, 1) = 7, and
G(2, 1) = 11 (the 5-7-11 weighted distance). This distance was proposed and studied
by Borgefors [2].

Example 3.8. We always have g 6 G, and it may happen that g(x) < G(x) for some
pixel x ∈ P . Let for instance G(1, 0) = a, G(2, 1) = c, and extend G by reflection
and permutation of the coordinates. Then

g(1, 0) 6 G3(1, 0) 6 G(2, 1) + G(1,−2) + G(−2, 1) = 3c,

so if 3c < a we get g(1, 0) 6 3c < a = G(1, 0). This is undesirable, because we expect
the prime distance originally defined between the origin and (1, 0) ∈ P to survive and
to be equal to the distance defined by the minimum over all paths. It is therefore
natural to require that g = G everywhere in P .

Remark. Let us say that a metric d(x, y) = g(x − y) is finitely generated if it is
constructed as in Corollary 3.4. It is easy to prove that the Euclidean metric d(x, y) =
√

∑

(xj − yj)2 on Zn is finitely generated if and only if n 6 1.
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Since g(x) is the limit of an infinite sequence Gj(x), it is reassuring to know that
this sequence is in fact stationary in the cases of interest here. It is easy to explicitly
give an index j such that Gj(x) is equal to the limit g(x):

Proposition 3.9. Let G be as in Corollary 3.4. Then the sequence (Gj) is pointwise
stationary, i.e., for every x ∈ X there is an index jx such that Gj(x) = g(x) for all
j > jx.

Proof. If g(x) = +∞, then of course Gj(x) = +∞ for all j. Consider a point such that
g(x) < ∞. Then there is an index m such that Gm(x) < +∞. For every j there are
elements y1, y2, ..., yj in P such that x = y1+· · ·+yj and Gj(x) = G(y1)+· · ·+G(yj)
(cf. (3.2) and (3.3)). Now by hypothesis G(y) > ε > 0 for all y ∈ P except y = 0,
so that Gj(x) > j1ε, where j1 is the number of indices i such that yi 6= 0. If j > m
we conclude that Gm(x) > Gj(x) > j1ε, so that j1 6 Gm(x)/ε = C. Therefore the
number of nonzero terms in the representation of Gj(x) is never larger than C. Now
Gj(x) = Gj1(x), so the fact that j1 is bounded means that the sequence is stationary.

4. Regularity properties

Let G be a function as in Theorem 3.2 and g = limGj the limit of the sequence (Gj)
of infimal convolutions of G. We have seen that it may happen that g < G at some
point in P (see Example 3.8), but it is not enough to rule out that behavior. For
every multiple mx of a point x ∈ P we have a representation mx = x + · · ·+ x (m
terms), so that g(mx) 6 Gm(mx) 6 mG(x). This means that we have a path from
0 to mx consisting of m steps equal to x. This is so to speak the most natural path.
But usually there exist also other paths from 0 to mx, in fact infinitely many, and
it is not desirable that they give a smaller value of the distance. This is the reason
behind the introduction of the notion of semiregularity.

We shall say following Borgefors [3, Definition 2] that a prime distance function
G is semiregular if g(mx) = mG(x) for all x ∈ P and all m ∈ N. (Note that this is
a property of G and not of g, since G is not uniquely determined from g. In most
cases of interest, however, g = G in P , and then we can say that the metric itself
is semiregular, viz. when it satisfies g(mx) = mg(x) for all x ∈ P and all m ∈ N.)
Now g(mx) is the infimum of all Gj(mx), j ∈ N, and each Gj(mx) is the infimum
of all sums G(y1) + · · · + G(yj) where the yi ∈ P and mx = y1 + · · · + yj , so
semiregularity means that for any representation mx = y1 + · · ·+ yj with x, yi ∈ P
we have mG(x) 6 G(y1) + · · ·+ G(yj). Slightly more generally we shall say that an
arbitrary function G: X → [−∞, +∞] is semiregular if

G(x) < +∞, mx = y1 + · · ·+ yj implies mG(x) 6 G(y1)+
· · · · +· G(yj). (4.1)

Borgefors [3] also introduced the notion of regularity: G is said to be regular if for
any point mx with x ∈ P and m ∈ N and any representation mx = y1 + · · ·+yj with
yi ∈ P but not all equal to x or 0 we have a strict inequality G(y1) + · · ·+ G(yj) >
mG(x).

Thus regularity means that the straight line is the unique minimal path from 0
to mx, whereas semiregularity means that the straight line from 0 to mx is minimal,
but not necessarily the only minimal path.
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Summing up, we conclude that the prime distance function G always defines a
metric via the limit g = limGj , but that this metric agrees with the one we would
like to have on the rays Ny, y ∈ P , if and only if G is semiregular.

Example 4.1. As an example, consider the distance which is like the chess-board
distance but assigns the value a to the points (±1, 0) and (0,±1) and the value b to
the four points (±1,±1); see Example 3.7. It is regular if and only if a < b < 2a,
and semiregular if and only if a 6 b 6 2a; see Borgefors [3]. For instance, there are
many admissible paths from (0, 0) to (2, 0), and the path (1, 0) + (1, 0) is assigned
the value 2a, the path (1, 1) + (1,−1) the value 2b; therefore semiregularity implies
2a 6 2b, regularity 2a < 2b.

There is a sufficient condition for semiregularity which we note for later reference:

Proposition 4.2. Let G: X → [−∞, +∞] be a function on an abelian group X.
Assume that there exists a function f which is positively homogeneous, midpoint
convex and agrees with G wherever G is less than +∞. Then G is semiregular.

Proof. Let mx = y1 + · · ·+ yj . We shall prove that mG(x) 6 G(y1)+
· · · · +· G(yj)

when x ∈ dom G. If one of the G(yi) = +∞, this inequality certainly holds; on the
other hand, if yi ∈ domG for all i, we know that G(x) = f(x) and G(yi) = f(yi), so
that the inequality follows from the subadditivity of f :

mG(x) = mf(x) = f(mx) 6 f(y1)+
· · · · +· f(yj) = G(y1)+

· · · · +· G(yj).

5. Semiregularity of distances in two dimensions

The results up till now have a sense for all abelian groups X. In this section we let
X be the image plane Z2; we can then embed it into the Euclidean plane R2 and use
also functions defined there.

A very natural idea to construct a distance in Z2 from a function G defining
prime distances is the following, used by Montanari [7: Theorem 1]. We first define
it on all rays R+pi defined by P , i.e., we define f(spi) = sG(pi) for s ∈ R+ and pi

an element of P . This makes sense if two different rays R+pi and R+pj intersect
only at the origin, so we assume this to be true. Here we denote by R+ the set of all
nonnegative real numbers, so that R+p is the ray from the origin through p:

R+p = {tp; t ∈ R, t > 0}.
We then extend f to all of R2 so that it becomes linear in each sector defined by
two neighboring vectors in P . To make this precise we let the nonzero elements of P
be p1, ..., pk enumerated in the counterclockwise direction, so that p1 and p2 define a
sector free from elements of P , and so on until the sector defined by pk and p1. Then
in the sector defined by pi and pi+1 we define

f(spi + tpi+1) = sG(pi) + tG(pi+1), s, t ∈ R+. (5.1)

Here of course pi+1 shall be understood as p1 if i = k.
The function f will then actually be piecewise linear on R2, and defines a dis-

tance there as well as on Z2. Is it also convex? Is the distance a metric? It turns
out that the answers to these questions are intimately connected to the notion of
semiregularity of the prime distance function in the sense of Borgefors.
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Theorem 5.1. Let a finite symmetric set P in Z2 be given, P = {p0, p1, ..., pk},
where p0 = 0. Assume that two rays R+pi and R+pj, i 6= j, intersect only at the
origin and that P contains two linearly independent vectors. Let also a symmetric
function G be given with finite positive values in P r{0}, G(0) = 0, and the value +∞
outside P . Then define f in R2 to be equal to G in P , to be positively homogeneous
and piecewise linear in each sector which does not contain any point from P in its
interior. Explicitly, this means that we define f by (5.1) above. The following five
conditions are equivalent:
A. The prime distance function G is semiregular in the sense of Borgefors;
B. The function f is (midpoint) convex in R2;
C. The restriction of f to Z2 is midpoint convex;
D. The distance df (x, y) = f(x− y) is a metric on R2;
E. The distance df (x, y) = f(x− y) is a metric on Z2.

Remark. It is well known and not difficult to prove that a midpoint convex function
on a real vector space which has some kind of boundedness must be convex; it satisfies
f((1− λ)x + λy) 6 (1− λ)f(x) + λf(y) for all λ ∈ [0, 1]. (Using the axiom of choice
one can construct midpoint convex functions which are not convex, but they must
be unbounded both from below and from above near every point.) In our case the
function is continuous, so midpoint convexity is equivalent to convexity. We also note
that f > g on Npi + Npi+1 if g is the function constructed from G as in Corollary
3.4. Indeed,

f(kpi + mpi+1) = kG(pi) + mG(pi+1) > Gk+m(kpi + mpi+1) > g(kpi + mpi+1).

It may happen that g(x) > f(x) for certain pixels x.

Proof. To start at the easy end, let us first point out that B and C are equivalent.
In fact B implies C by taking the restriction from R2 to Z2. If C holds, it follows
from the homogeneity that f(x) 6

1
2
f(x+y)+ 1

2
f(x−y) for all vectors with rational

components, and then for all vectors by continuity. The proof that D and E are
equivalent is of course similar.

Next we shall first prove the equivalence of B and D (and of C and E; the proof
is the same):

Lemma 5.2. Let f be a real-valued function defined on an abelian group X such
that

f(−x) = f(x) > 0 with equality only for x = 0; (5.2)

and
f(2x) = 2f(x) for all x ∈ X. (5.3)

Define a distance on X by d(x, y) = f(x− y). Then d is a metric if and only if f is
midpoint convex.

Proof. The properties (2.1) and (2.2) of a metric being obviously fullfilled, the only
question can be whether d satisfies the triangle inequality (2.3). If f is midpoint
convex we get

d(x, z) = f(x− z) 6
1
2f(2x− 2y) + 1

2f(2y − 2z))

= f(x− y) + f(y − z) = d(x, y) + d(y, z),
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so the triangle inequality is true.
Conversely, suppose now that the triangle inequality holds. Then f is midpoint

convex:

2f(x) = f(2x) = d(2x, 0) 6 d(2x, x− y) + d(x− y, 0) = f(x + y) + f(x− y).

This concludes the proof of the lemma.

Proof of Theorem 5.1, continued. Having established the equivalence of B, C, D, and
E, we shall now see that B implies A. Indeed, if f is convex, then G is semiregular
by Proposition 4.2. (In this case we have g > f everywhere in R2.)

Finally we shall prove that A implies B. Thus assume that the prime distance
function G is semiregular. We have to prove that f is convex, but since it is piecewise
linear in the sectors defined by the vectors in P , it is enough to prove that the linear
interpolation fi−1,i+1 of f between the rays R+pi−1 and R+pi+1 lies above f on the
ray R+pi. The function fi−1,i+1 is given by

fi−1,i+1(sp
i−1 + tpi+1) = sG(pi−1) + tG(pi+1), s, t ∈ R+,

cf. (5.1). Now the value of fi−1,i+1 at a point x = spi−1 + tpi+1 in the sector defined
by pi−1 and pi+1 with s, t ∈ N is precisely the length assigned to the path from 0
to spi−1 + tpi+1 consisting of the segment from 0 to spi−1 followed by the segment
from that point to x = spi−1 + tpi+1. Suppose now that the latter point is on the
ray R+pi, thus spi−1 + tpi+1 = rpi for some r ∈ R+. By semiregularity, the value
of that length is not smaller than the value of f at rpi, assuming s, t and r to be
integers. This means that f 6 fi−1,i+1 at the point rpi. In general, if s, t ∈ N, r will
be a rational number. Therefore r will be an integer if we choose s and t as multiples
of some integer. In view of the positive homogeneity of f and fi−1,i+1 we must then
have f 6 fi−1,i+1 on the whole ray R+pi, which, as we remarked, means that f is
convex.

6. Semiregularity of distances in any dimension

Distance transformations are of interest also in higher dimensions, cf. Borgefors [4].
We shall therefore take at look at distances defined in Z3, which we identify with the
space of voxels, and more generally in Zn for any n. We embed that group into the
vector space Rn and find that it is easy to formulate a converse to Proposition 4.2:

Theorem 6.1. Let G:Rn → [0, +∞] be any given function. If there exists a convex
positively homogeneous function which agrees with G in dom G, then G is semiregular.
If all coordinates of all points in domG are rational, then the converse holds.

Proof. The first part is a special case of Proposition 4.2. For the converse, let FG

denote the largest minorant of G which is convex and positively homogeneous. We
can describe it as

FG(x) = inf
∑

λiG(yi), x ∈ Rn,

where the infimum is taken over all points yi and all positive numbers λi such that
∑

λiy
i = x (a finite linear combination). If there is some convex and positively ho-

mogeneous function which agrees with G in dom G, then FG must have this property.
We thus want to prove that FG > G in dom G, which amounts to

G(x) 6
∑

λiG(yi) (6.1)
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for all representations of x as a finite linear combination x =
∑

λiy
i ∈ domG, λi > 0.

We see that semiregularity is a special case of this, viz. λi = 1/m. Since we can lump
the yi together if some of them are equal, semiregularity implies that (6.1) holds if
all the λi are positive and rational.

Now if all components of x and the yi are rational, then by classical linear
algebra, to every representation x =

∑

λiy
i with λi real there is a representation

x =
∑

µiy
i with µi rational and arbitrarily close to λi, so also

∑

µiG(yi) is as close
to

∑

λiG(yi) as we wish. It follows that if (6.1) holds for λi rational and positive,
then it also holds for λi real and positive. This proves the theorem.

In Theorem 5.1, the piecewise linear function f is convex precisely when G admits
a convex and positively homogeneous interpolating function. But in the construction
of f we used a circular ordering of the elements of P , and this is no longer possible
in three or more dimensions: the relation between P and the function f has to be
described somewhat differently.

Consider a positively homogeneous function f :Rn → [0, +∞] which is piecewise
linear, i.e., linear in each of a finite number of cones. This means that there exists
a finite set P in Rn, P = {p0, p1, ..., pk}, p0 = 0, which defines the cones in the
following way. For every subset I of the set of indices {1, ..., k} let C(I) denote the
convex cone spanned by the pi with i ∈ I:

C(I) =
{
∑

i∈I sip
i ∈ Rn; si > 0

}

.

Each set C(I) is a closed cone which may or may not have interior points. Then for
any x ∈ Rn there is a set Ix of at most n indices such that f is linear in the cone
C(Ix). This means that

y =
∑

i∈Ix

tip
i, ti > 0, implies f(y) =

∑

i∈Ix

tif(pi). (6.2)

If we let x vary, we see that the union of the (finitely many) C(Ix) cover Rn, so that
those of them which do possess interior points also cover Rn.

A difficulty in dimensions three and higher is that the restriction of f to P
does not define f . (To illustrate this, let P be the set consisting of the four points
(0,±1, 1), (±1, 0, 1) in R3. In the convex cone spanned by these points we can consider
two piecewise linear functions f1(x) = |x3|+ |x1| and f2(x) = 2|x3| − |x2|; they have
the same restriction to P and none is a more canonical extension than the other.)
Also of course the function f does not determine the set P uniquely; we may add
points at will. Such redundant points will change the restriction G of f to P as well
as the metric g defined by G. Also, we can multiply the elements of P by different
positive scalars without affecting its relation to f . This will change both G and the
metric g. We shall therefore have to assume that both f and P are given. The result
below holds for all G obtained in this way.

Theorem 6.2. Let f :Rn → [0, +∞] be positively homogeneous and piecewise linear,
and let P be a finite set in Rn, P = {p0, p1, ..., pk}, p0 = 0, which describes f as in
(6.2). Let us assume (in order to get a distance) that f and P are symmetric, i.e.,
f(−x) = f(x) and −P = P . Define G to be equal to f in P and equal to +∞ outside
P . Consider the following five conditions:
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A. The prime distance function G is semiregular in the sense of Borgefors;
B. The function f is (midpoint) convex in Rn;
C. The restriction of f to Zn is midpoint convex;
D. The distance df (x, y) = f(x− y) is a metric on Rn;
E. The distance df (x, y) = f(x− y) is a metric on Zn.

Then B–E are all equivalent. They imply A but not conversely for n > 3.

Concerning property A we should remark that G defines a metric via infimal
convolution on the subgroup Z ·P generated by P ; this subgroup may or may not be
a subgroup of Zn. The property A depends on the choice of P and is stronger the
larger P is, but it is desirable to choose a minimal P .

Proof of Theorem 6.2. All implications in the proof of Theorem 5.1 except A implies
B are valid without change. This proves the theorem except for the last remark,
which will follow from the next example.

Example 6.3. Let f(x) = a max |xj|+b min |xj|, x ∈ Rn, where a and b are positive
numbers. This function is positively homogeneous and piecewise linear. Let P be
the set consisting of the 3n points in Zn with |xj| 6 1. This set is sufficient to
describe f using (6.2). Let G be equal to f in P and to +∞ outside. If n = 2,
f(x) = b(|x1|+ |x2|) + (a− b) max |xj | is convex if and only if b 6 a, and the prime
distance function G is semiregular simultaneously—in agreement with Theorem 5.1.
If n > 3, f is never convex. In fact, f(x1, 1, ..., 1, 2) = 2a + b min(x1, 1) when
0 6 x1 6 2, and this is not a convex function of x1. Then G is semiregular if and
only if (n− 1)b 6 a. In fact, if there is a function f1 which agrees with f on P and
is convex and positively homogeneous, then

a + b = f1(1, ..., 1) =
n

n− 1
f1((n− 1)/n, ..., (n− 1)/n) 6

n

n− 1
a,

since a is the value of f at the n points with one zero and n − 1 ones, and since
((n− 1)/n, ..., (n− 1)/n) is the barycenter of these points. Hence a + b 6 na/(n− 1)
is a necessary condition for the existence of such a function f1. It is also sufficient,
since we may define

f1(x) = max
(

a|xk|,
a + b

n

∑

|xj |
)

, x ∈ Rn,

which always gives the wanted value a + b at the point (1, ..., 1), and the wanted
value a at the point (0, 1, ..., 1) if (a + b)(n− 1)/n 6 a, i.e., if (n− 1)b 6 a. We can
conclude in view of Theorem 6.1 that G is semiregular if and only if (n − 1)b 6 a,
but, as already remarked, f is never convex when n > 3.

7. Conclusion

In this paper we have shown that the operation of infimal convolution offers a con-
venient formalism for the construction of distances in the image plane: most of the
distances used in image analysis can be obtained as limits of a sequence of convolu-
tion products of a prime distance function defining the distances between neighboring
pixels (Corollary 3.4). The triangle inequality for a translation-invariant distance is
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easily expressed as an infimal convolution equation (Lemmas 2.2 and 3.1). This is
true in all dimensions.

It has also been shown that, in two dimensions, semiregularity in the sense of
Borgefors [2] of these distances can be expressed in terms of midpoint convexity of an
associated function; alternatively, in terms of the triangle inequality of the distances
(Theorem 5.1). In all dimensions, semiregularity is equivalent to the existence of a
convex interpolating function (Theorem 6.1).
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