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1. Introduction

Duality is a term which represents a collection of ideas where two sets of mathematical
objects confront each other. An important example is the dual of a normed space,
where the linear forms on the space operate on its points. A most successful duality is
that between the space D(Ω) of test functions (smooth functions of compact support)
and its dual D ′(Ω) of distributions. The distributions that are not defined by a locally
integrable function live like ghosts in the dark, perceptible only through their actions
on test functions.

Typically some but not all properties of an object are preserved under a duality.
A function which is nonzero only in a set of Lebesgue measure zero defines the zero
distribution. The support function of a set forgets about holes in the set but the
information retained enables us to reconstruct the closed convex hull of the set.

Mathematical morphology can be quite helpful in providing guiding concepts and
ideas in the study of discrete convolution operators and other topics, like discrete
optimization. We shall now apply these ideas to the duality of convolution operators.

Notation

The family of all subsets of a set X is called the power set of X and will denoted by
P(X). Thus A ∈P(X) if and only if A ⊂ X. This set is ordered by the relation that
A 6 B if and only if A ⊂ B. We denote by Pfinite(X) the family of all finite subsets
of X.

Following Bourbaki (1954: Chapter II, § 5, No. 1, p. 101) we shall denote the set of
all mappings from X into Y by F (X, Y ). If G is an abelian semigroup with zero 0,
we define the support of a function f : X → G as the set where f is nonzero. We
denote by Ffinite(X,G) the subset of F (X,G) consisting of all functions which are zero
outside a finite subset of X.

We shall write R! for the extended real line, obtained by adding two infinities:

R! = R ∪ {−∞,+∞} = [−∞,+∞].

We shall denote by a dot the inner product of two vectors x and y in Rn: x · y =
x1y1 +· · ·+xnyn. The Euclidean norm ‖x‖2 of a vector x is nonnegative and satisfies
‖x‖2

2 = x · x.
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2. Counting with infinities

How shall we define a sum like (+∞)+(−∞)? Can addition R×R 3 (x, y) 7→ x+y ∈ R
be extended to an operation R! ×R! 3 (x, y) 7→ x+ y ∈ R! in reasonable way?

A convenient solution, pioneered by Jean-Jacques Moreau (1970), is to define two
extensions, upper addition and lower addition. The first is an upper semicontinu-
ous mapping from R!×R! into R!; the second a lower semicontinuous mapping. They
are denoted by +· and +· and are defined by the requirements of being commutative
and to satisfy

(2.1)
x +· (+∞) = +∞ for all x ∈ R!;
x +· (−∞) = −∞ for all x ∈ [−∞,+∞[ ; and

x +· y = −
(
(−x) +· (−y)

)
for all x, y ∈ R!.

3. Minkowski addition and infimal convolution

The Minkowski sum A + B of two subsets can be put into the wider framework of
infimal convolution.

Definition 3.1. Given two functions f, g : G → R! defined on an abelian semigroup
G and with values in the extended real line, we define a new function h = f u g, called
the infimal convolution of f and g, as

(3.1) (f u g)(z) = h(z) = inf
x,y∈G

(
f(x) +· g(y); x+ y = z

)
, z ∈ G.

The infimum is taken over all elements x, y ∈ G such that their sum is z, the argument
of h. The complication which arises if f takes the value +∞ at x and g takes the value
−∞ at y is resolved here by declaring that +∞ shall win—see the definition of upper
addition +· in formula (2.1).

We define the indicator function of a set A, denoted by indfA, as the function
which takes the value 0 in A and +∞ in its complement. We have indfA u indfB =
indfA+B, showing a generalization of Minkowski addition.

4. Concepts from mathematical morphology

4.1. Ethmomorphisms

Definition 4.1. A relation denoted by 6 in a set X is called a preorder if it is
reflexive: x 6 x for all x ∈ X, and transitive: for all elements x, y, z ∈ X, if x 6 y and
y 6 z, then x 6 z.

A preorder is called an order if, in addition, it is antisymmetric, i.e., if x 6 y and
y 6 x only if x = y.

In preordered spaces the increasing mappings are of importance:

Definition 4.2. If f : X → Y is a mapping from a preordered set X to a preordered
set Y , then we say that f is increasing if for all x, x′ ∈ X, the relation x 6X x′

implies f(x) 6Y f(x′).
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We shall say that f is decreasing if for all x, x′ ∈ X, the relation x 6X x′ implies
f(x′) 6Y f(x).

We shall call a mapping f : X → Y coincreasing if for all x, x′ ∈ X with f(x) 6Y
f(x′), we have x 6X x′. �

The increasing mappings play the same role in the context of preordered sets as the
linear mappings in the theory of vector spaces and the continuous mappings in the
theory of topological spaces.

A preorder 6 is said to be finer than another preorder 4 if the identity mapping
X6 → X4 is increasing.

Definition 4.3. We shall say that a mapping f : X → X is idempotent if f ◦ f =
f , i.e., if f(f(x)) = f(x) for all x ∈ X. A mapping which is both increasing and
idempotent will be called an ethmomorphism.1 �

4.2. Cleistomorphisms and anoiktomorphisms

Among the ethmomorphisms we shall distinguish those that are either larger than, or
smaller than, the identity mapping.

Definition 4.4. A cleistomorphism in an ordered set X is an ethmomorphism (see
Definition 4.3 above) κ : X → X which is larger than the identity; in other words,
which satisfies the following three conditions.

(4.1) x 6 y implies κ(x) 6 κ(y), x, y ∈ X;

(4.2) κ(κ(x)) = κ(x), x ∈ X;

(4.3) x 6 κ(x), x ∈ X.

The element κ(x) is said to be the closure of x. Elements x such that κ(x) = x are
called invariant for this operator; in the case of cleistomorphisms also closed. An
element is closed if and only if it is the closure of some element (and then it is the
closure of itself).

Definition 4.5. An anoiktomorphism in an ordered set X is an ethmomorphism
(see Definition 4.3 above) α : X → X which is smaller than the identity; in other words,
which satisfies the following three conditions.

(4.4) x 6 y implies α(x) 6 α(y), x, y ∈ X;

(4.5) α(α(x)) = α(x), x ∈ X;

(4.6) α(x) 6 x, x ∈ X.

The invariant elements are also called open when we are considering an anoiktomor-
phism.

1The term ethmomorphism defined here, as well as the terms cleistomorphism and anoiktomor-
phism in the next subsection, were introduced by the author in (2007; 2010), and are formed in analogy
with the many terms homomorphism, isomorphism, automorphism, homeomorphism etc. Their ori-
gins are in the Classical Greek words ἠθμός(m) (ethmós) ‘strainer, colander’; κλείς(f ) (kleis) ‘key’,
κλειστός (kleistós) ‘closed, that can be shut or closed’; ἄνοιξις(f ) (ánoixis) ‘opening’, ανοικτός (anoik-
tós) ‘opened’. Ebbe Vilborg advised me concerning the choice of terms. In English we have other
terms of the same origin such as ethmoid bone, cleistogamy.
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4.3. Lattices; upper and lower inverse of a mapping

An ordered set L is said to be a complete lattice, if for any family (xj)j∈J of elements
of L, there is an infimum z = ∧

xj and a supremum w = ∨
xj. This means that z 6 xj

for all j ∈ J and that, if z′ 6 xj for all j ∈ J , then z′ 6 z; and that w > xj and that, if
w′ > xj for all j ∈ J , then w′ > w. If J has only two elements x1, x2, we write x1 ∧ x2
and x1 ∨ x2.

An ordered set L is said to be a lattice if the conditions above hold for finite index
families J .

In general a mapping does not have an inverse. However, to a mapping defined in a
complete lattice, we can define two mappings in the opposite direction that can serve
as inverses:

Definition 4.6. Let L be a complete lattice, M a preordered set, and g : L→M any
mapping. We then define the lower inverse g[−1] : M → L and the upper inverse
g[−1] : M → L by

g[−1](y) =
∨
x∈L

(
x; g(x) 6M y

)
, y ∈M ;

g[−1](y) =
∧
x∈L

(
x; y 6M g(x)

)
, y ∈M.

5. Convolution

Definition 5.1. If G is an abelian semigroup we define the convolution product
h = f ∗ g of two functions f, g defined on G and with real or complex values by the
formula

(5.1) h(z) =
∑
x,y∈G
x+y= z

f(x)g(y), z ∈ G,

provided the sum can be given a meaning. �

If one of f, g is nonzero only in a finite subset of G, the sum is always well defined, but
we need to consider more general situations.

The Kronecker delta δa is the function which takes the value 1 at a and is zero
elsewhere. For a = 0 we get a neutral element: f ∗ δ0 = f for all functions f .

It is actually impossible to define a general associative convolution product, as
shown by the following simple example.
Example 5.2. Define on G = Z three functions: f = 1 identically; g the difference
operator δ0− δ1; h = the Heaviside function, defined by h(x) = 0 for x 6 −1, h(x) = 1
for x > 0. Then f ∗ g and g ∗ h are well defined: f ∗ g = 0; g ∗ h = δ0. It follows that
(f ∗ g) ∗ h = 0 while f ∗ (g ∗ h) = f 6= 0. (We get a warning here: f ∗ h cannot be
defined to have finite values—neither can (f ∗ |g|) ∗ h, nor f ∗ (|g| ∗ h).) �

Via the Fourier transformation this example is the same as Laurent Schwartz’s fa-
mous result (1954) that it is impossible to define an associative multiplication for
distributions. (We leave aside the question whether there might exist an interesting
non-associative convolution algebra.)

If G is an abelian group, we have the well-known inequality

(5.2) ‖f ∗ g‖1 6 ‖f‖1 · ‖g‖1, f, g ∈ F (G,R),
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making l1(G), the space of summable functions, into a convolution algebra, and more
generally

(5.3) ‖f ∗ g‖p 6 ‖f‖1 · ‖g‖p, f, g ∈ F (G,R), 1 6 p 6∞.

If f or g has finite support, commutativity and associativity follow easily. But
we will need more general results, with functions that are not summable or even un-
bounded, just with finite values but possibly growing very fast.

While we cannot hope for a general convolution algebra, we can confront a family
of functions with another family, which is an instance of duality. The simplest example
of this is that Ffinite(G,R) can work against F (G,R) and conversely. But there are
several other cases of interest.

Provided that we accept +∞ as a value, we can define the convolution product
|f | ∗ |g| of the absolute values of any two functions f, g ∈ F (G,R). The sum is simply
defined to be the supremum of all finite partial sums:

(|f | ∗ |g|)(z) = sup
A∈Pfinite(G)

∑
x,y∈A

x+y = z

|f(x)| · |g(y)| 6 +∞.

Therefore it makes sense to require that |f | ∗ |g| be finite everywhere. If this is so,
then also f ∗ g is well defined as a function with finite values; the sum defining it being
absolutely convergent at every point. More precisely, we have the following result
concerning commutativity and associativity.

Proposition 5.3. Let G be an abelian group and fj : G → R, j = 1, 2, 3, three func-
tions.

(1). If |f1|∗ |f2| is finite everywhere, then f1∗f2 is defined everywhere as an absolutely
converging series, f1 ∗ f2 = f2 ∗ f1, and |f1 ∗ f2| 6 |f1| ∗ |f2|.

(2). If (|f1| ∗ |f2|) ∗ |f3| is finite everywhere, then (f1 ∗ f2) ∗ f3 and f1 ∗ (f2 ∗ f3) are
defined everywhere as absolutely converging series, and they are equal.

First a word about convergence. We shall say that, given a function F : G → R, a
series ∑x∈G F (x) converges to a sum s if for every ε > 0 there exists a finite subset
A of G such that, for every finite subset B ⊃ A, we have∣∣∣∣∣∑

x∈B
F (x)− s

∣∣∣∣∣ 6 ε.

We will write this as

lim
A→G

∑
x∈A

F (x) = s, or just
∑
x∈G

F (x) = s.

A well-known necessary and sufficient condition for convergence is Cauchy’s cri-
terion:

For every ε > 0 there exists a finite subset A of G such that, for every finite set
C ⊂ {A, we have |∑x∈C F (x)| 6 ε.

If |∑x∈C F (x)| 6 ε for all finite sets C which are disjoint from A, then also ∑x/∈A F (x)
is well defined and satisfies |∑x/∈A F (x)| 6 ε.
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Proof. (1). We denote by gj the functions defined as fj in a finite subset Aj of G and
as 0 in Gr Aj, j = 1, 2, 3. Clearly |gj| 6 |fj| and |gj| ∗ |gk| 6 |fj| ∗ |fk|.

We know that g1 ∗ g2 = g2 ∗ g1 and that |f1| ∗ |f2| = |f2| ∗ |f1|.
For the first part of the theorem it is easy to see that Cauchy’s criterion is satisfied.

For any finite subset B of G we have∑
y∈B

(f1(y)− g1(y))g2(x− y) =
∑

y∈BrA1

f1(y)g2(x− y),

which implies that the absolute value of the last sum is majorized by∑
y/∈A1

|f1(y)| · |f2(x− y)|,

which is smaller than ε if A1 is large. Hence limA1→G(g1 ∗ g2) = f1 ∗ g2.
We go on and find that∑

y∈B
f1(x− y)(f2(y)− g2(y)) =

∑
y∈BrA2

f1(x− y)f2(y),

with absolute values∣∣∣∣∣∣
∑

y∈BrA2

f1(x− y)(f2(y)− g2(y))

∣∣∣∣∣∣ 6
∑
y/∈A2

|f1(x− y)| · |f2(y)| 6 ε,

which shows that limA2→G(f1 ∗ g2) = f1 ∗ f2. We conclude that the itererated limit is
as we wished for:

lim
A2→G

lim
A1→G

(g1 ∗ g2) = f1 ∗ f2.

Since g1 ∗ g2 = g2 ∗ g1, commutativity follows.

(2). We know that (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3), and also that (|f1| ∗ |f2|) ∗ |f3| =
|f1| ∗ (|f2| ∗ |f3|).

Now, since (|f1| ∗ |f2|) ∗ |f3| is finite everywere, we see that also |f1| ∗ |f2| is finite
everywhere; similarly for all the |fj| ∗ |fk|. We have now∑

y∈B
(f1 ∗ f2)(x− y)(f3(y)− g3(y)) =

∑
y∈BrA3

(f1 ∗ f2)(x− y)f3(y),

with absolute values majorized by∑
y/∈A3

|(f1 ∗ f2)(x− y)| · |f3(y)|,

which by hypothesis can be arbitrality small when A3 is large. So the limit
limA3→G((f1 ∗ f2) ∗ g3) is equal to (f1 ∗ f2) ∗ f3, and we conclude for the iterated limit
that

lim
A3→G

lim
A2→G

lim
A1→G

((g1 ∗ g2) ∗ g3) = (f1 ∗ f2) ∗ f3.

Since the gj satisfy the associative law, so do the fj. We are done. �
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6. Duality in convolution

Definition 6.1. Given an abelian semigroup G, we define

(6.1) Θ(G ,H ,K ) = {f : G→ R; for all g ∈ G , |f | ∗ |g| ∈H and f ∗ g ∈ K },

where G ,H ,K ⊂ F (G,R), thus defining a transformation

Θ: P(F (G,R))×P(F (G,R))×P(F (G,R))→P(F (G,R)).

Clearly Θ(G ,H ,K ) is decreasing in G and increasing in H and K .
Three particular cases will be of interest:

Definition 6.2. If we take both H and K equal to F (G,R), then

(6.2) Θ(G ,H ,K ) = Γ(G ) = {f ∈ F (G,R); for all g ∈ G , |f | ∗ |g| < +∞},

where the formula defines a mapping Γ: P(F (G,R))→P(F (G,R)). �

Definition 6.3. If H = F (G,R) and K = {f ∈ F (G,R); f > 0}, then
Θ(G ,H ,K ) is equal to

(6.3) Γ>0(G ) = {f ∈ F (G,R); for all g ∈ G , |f | ∗ |g| < +∞ and f ∗ g > 0},

where the formula defines Γ>0 : P(F (G,R))→P(F (G,R)). �

Definition 6.4. If H = F (G,R) and K = {f ∈ F (G,R); f = 0}, then
Θ(G ,H ,K ) is equal to

(6.4) Γ0(G ) = {f ∈ F (G,R); for all g ∈ G , |f | ∗ |g| < +∞ and f ∗ g = 0},

where the formula defines Γ0 : P(F (G,R))→P(F (G,R)). �

Given two preordered sets X and Y , a Galois correspondence is a pair (F,G) of
mappings, F : X → Y and G : Y → X which are both decreasing and such that the
two compositions G ◦ F : X → X and F ◦ G : Y → Y are larger than the identity
mappings. It follows that G ◦ F and F ◦G are cleistomorphisms.

The Galois correspondences can be subsumed under the concept of lower and upper
inverses: If we provide Y with the opposite preorder, then both F and G are increasing
and the lower inverse of F is equal to G; the lower inverse of G is equal to F .

Clearly the pairs (Γ,Γ), (Γ>0,Γ>0), and (Γ0,Γ0) are all Galois correspondences.
We should determine all classes of functions which are fixed points for the corre-

sponding cleistomorphisms.
When studying convolution equations µ ∗ u = f with µ of finite support, it is

convenient to introduce two variants of Γ>0 in (6.3):

(6.5) Γ>0
0 (G ) = {u ∈ F (G,R); for all µ ∈ G , µ ∗ u > 0}, G ⊂ Ffinite(G,R);

(6.6) Γ>0
1 (G ) = {µ ∈ Ffinite(G,R); for all u ∈ G , µ ∗ u > 0}, G ⊂ F (G,R).

The first is just the restriction of Γ>0 to the set of functions with finite support. Now
(Γ>0

0 ,Γ>0
1 ) is a Galois correspondence.
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Example 6.5. Let us define G0 = Ffinite(G,R) and G1 = F (G,R). Then Γ(G0) = G1
and Γ(G1) = G0; it follows that (Γ◦2)(Gj) = Gj, j = 0, 1. So both G0 and G1 are fixed
points for Γ◦2. �

Several other types of duality may be studied.
We note that Γ(G ) is a vector subspace of F (G,R) which contains Ffinite(G,R).

Also
G ⊂ G + Ffinite(G,R) ⊂ Γ◦2(G ),

which implies that

Γ(G ) = Γ(G + Ffinite(G,R)) = Γ(Γ◦2(G )) = Γ◦3(G ).

This implies that Γ can be defined in the quotient space F (G,R)/Ffinite(G,R), a
space analogous to the space of singularities D ′(Ω)/E (Ω), the space of distributions
modulo the subspace of smooth functions. Also the more elementary singularity space
C0(Ω)/C∞(Ω) is interesting.
Example 6.6. Let G be the subfamily of F (G,R) whose only member is the constant
function with the value 1. Then Γ(G ) = l1(G), the set of functions g : G → R such
that ∑x∈G |g(x)| is finite. Moreover (Γ ◦ Γ)(G ) = l∞(G), the family of all bounded
functions h : G→ R. The higher powers Γ◦k(G ) are alternatively equal to l1(G) (odd
k > 1) and l∞(G) (even k > 2). So both l1(G) and l∞(G) are fixed points for Γ ◦ Γ.

�

7. Concepts from convexity theory

A subset A of Rn is said to be convex if

{a, b} ⊂ A implies that [a, b] ⊂ A,

where [a, b] is the segment with endpoints a and b:

[a, b] = {(1− t)a+ tb; 0 6 t 6 1}.

A function f : Rn → R! is said to be convex if its finite epigraph

epifinite(f) = {(x, t) ∈ Rn ×R; f(x) 6 t}

is convex.
The convex hull of a set A, denoted by cvxh(A), is the smallest convex set which

contains A. The convex envelope of a function f : A → R!, denoted by cvxe(f), is
the largest convex function F : Rn → R! such that F (x) 6 f(x) for all x ∈ A.

A function f with real values can be written as f = f+ − f−, where f+ = f ∨ 0
and f− = (−f) ∨ 0.

Definition 7.1. A Jensen function is a function µ : Rn → R of the form

(7.1) µ =
N∑
j=1

λjδb(j) − δa,
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where the scalars λj and the points b(j) satisfy the restrictions

(7.2) λj > 0, j = 1, · · · , N,
N∑
j=1

λj = 1, and
N∑
j=1

λjb
(j) = a.

The set of all Jensen functions will be denoted by J (Rn).
We shall say that µ : Rn → R is a generalized Jensen function if

(α′). µ is nonzero at finitely many points only;

(β′).
∑
x∈Rn

µ(x) = 0;

(γ′).
∑
x∈Rn

µ(x)x = 0;

(δ′).
∑
x∈Rn

µ(x)g+(x) > 0 for all functions g of the form g(x) = γ · x + c, where γ is a

vector in Rn and c a real constant.

We shall denote the set of all generalized Jensen functions by Jgen(Rn). �

Here (β′) means that the mass of µ+ shall be equal to the mass of µ−.
We define the barycenter, to be denoted by bary(f), of a nonnegative function

f ∈ Ffinite(Rn,R) which is not identically zero as

bary(f) =

∑
x∈Rn

f(x)x∑
x∈Rn

f(x)
∈ Rn.

Thus (γ′) says that µ+ and µ− shall have the same barycenter if µ 6= 0.
It is well known that a function f : Rn → R is convex if and only if µ ∗ f > 0 for

all Jensen functions µ.
Clearly J (Rn) ⊂Jgen(Rn).
Given f : A → R!, where A is a subset of Rn, its convex envelope (cvxe(f))(a) is

the infimum of all expressions (f ∗ µ)(a) where

µ =
N∑
j=1

λjδb(j) ,

when the λj and the b(j) vary under the restrictions (7.2).
A function f : A→ R! is said to be convex extensible if it is the restriction of a

convex function defined in all of Rn.

8. Duality in convexity theory: the Fenchel transformation

Given any function f : Rn → R! we define its Fenchel transform f̃ by

(8.1) f̃(ξ) = sup
x∈Rn

(ξ · x− f(x)), ξ ∈ Rn.
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The function f̃ is convex, lower semicontinuous, and takes the value −∞ only if it is
identically equal to −∞. The second Fenchel transform ˜̃

f is the largest minorant of
f with these three properties. We have ˜̃

f = f if and only if f itself has the three
mentioned properties.

A special case is when f = indfA. Then f̃ = HA, the support function of A, defined
by

(8.2) HA(ξ) = sup
x∈A

ξ · x, ξ ∈ Rn.

Starting from the support function we can form the set

(8.3) B = {x ∈ Rn; for all ξ ∈ Rn, ξ · x 6 HA(ξ)}.

The Hahn–Banach theorem shows that B is the closed convex hull of A.
Thus from knowledge of the support function we can reconstruct the closed convex

hull of A, but we lose information concerning holes in A.
Remark 8.1. By embedding a set into a space of higher dimension, we can reconstruct
its closure from its support function, thus with a much smaller loss of information. To
be precise, given A in Rn we can define a function f : Rn → R by

f(x) =


1
2‖x‖

2
2 when x ∈ A;

+∞ when x /∈ A.

So A is lifted to the paraboloid in Rn × R of equation t = 1
2‖x‖

2
2. Then the second

Fenchel transform ˜̃
f(x) is equal to 1

2‖x‖
2
2f if and only if x belongs to the closure of A.

This is also visible in the support function of the set
{

(x, t); t > ˜̃
f(x)

}
. See also my

paper (1981). �

9. Representations in terms of elementary convex functions

The most elementary convex functions are the affine ones, and the Fenchel transforma-
tion shows that certain convex functions can be represented as a supremum of affine
functions, viz., ˜̃

f(x) = sup
ξ∈Rn

(ξ · x− f̃(ξ)), x ∈ Rn.

So the affine functions x 7→ h(x) = ξ · x + c, where γ is a vector in Rn and c a
real constant, are the building blocks of the convex function ˜̃

f ; we know the exact
conditions under which the latter equals f . This is in analogy with Fourier synthesis,
where a function is represented as a sum or integral of simple oscillations x 7→ eiξ·x,
ξ ∈ Rn.

However, in relation to convolution it would be of interest to build up a convex
function as a sum rather than a supremum of elementary convex functions. Of course
a sum of affine functions is itself affine, so we must go one step further:

Definition 9.1. Let us say that a function g on Rn is an elementary convex func-
tion if it has the form g = (h1 ∨ h2)|Zn for some affine functions h1, h2 : Rn → R.

�
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Since h1∨h2 = h1 +(h2−h1)+, it is equivalent to use affine functions and their positive
part.

The question is now whether all convex extensible functions on Zn can be written
as the restriction of a sum of elementary convex functions.
Example 9.2. The function given by f(x) = |x1 +x2|∨ |x1−x2|, x ∈ Z2, can be written
as a sum g of four elementary convex functions: g(x) = x+

1 + x−1 + x+
2 + x−2 . �

Example 9.3. Let now f(x) = ‖x‖2
2, x ∈ Z2. The affine function ha, a ∈ Z2, defined by

ha(x) = ‖a‖2
2 + (2a1 + 1)(x1 − a1) + (2a2 + 1)(x2 − a2), x ∈ R2,

agrees with cvxe(f) in the square

Pa = [a1, a1 + 1]× [a2, a2 + 1] ⊂ R2, a ∈ Z2.

We note that h(x) = λ1x1 + λ2x2 is a maximal affine minorant of cvxe(f) for all λj
satisfying |λj| 6 1, but not all of these agree with cvxe(f) in a maximal set.

We now measure the distance from the origin to a point a in Z2 by the infinity
norm ‖a‖∞ = max |aj| and define

(9.1) g(x) = h0 +
∞∑
k= 1

∑
a∈Z2

‖a‖∞= k−1

∑
b∈Z2

‖b‖∞= k

(hb − ha)+, x ∈ Z2,

a denumerable sum of elementary convex functions. We have g|Z2 = f . �

Let us say that a function f : Zn → R! is of fast growth if

lim inf
‖x‖2→+∞

f(x)
‖x‖2

= +∞.

This property implies that the graph of the convex envelope of f consists of bounded
polytopes in Rn ×R.

Theorem 9.4. Given a convex extensible function f : Zn → R of fast growth, there
are denumerably many elementary convex functions gj : Rn → R, j ∈ Z, such that
f(x) = ∑

j∈Z gj(x), x ∈ Zn.

Proof. This result is easy to prove for n = 1 and less so for n > 2. Let us therefore
take the case of one dimension first.

Given f : Z→ R we define hj(x) = f(j) + λj(x− j), x ∈ R, where λj =
f(j + 1) − f(j). Thus hj is an affine function taking the same value as f at x = j
and x = j + 1. We note that λj 6 λj+1 and that (hj+1(x) − hj(x))+ = 0 for j, x ∈ Z
satisfying j > x− 1.

Then
g =

−1∑
j=−∞

(hj − hj+1)+ + h0 +
∞∑
j=1

(hj − hj−1)+

is a sum of elementary convex functions taking the same values as f at all integer
points. Indeed, for a given x ∈ N, the first sum is zero and the last sum goes only over
j = 0, . . . , x−1, yielding a telescoping series with sum equal to hx(x)−h0(x), implying
that g(x) = hx(x) = f(x) since we add h0(x). Similarly, for x ∈ Z, x 6 0, the last sum
is zero and the first goes only over j = x, . . . ,−1, resulting again in g(x) = f(x).
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For n > 2, we have to construct a distance like we did in Example 9.3. This will
be done by means of a neighborhood relation.

We note that the convex envelope of f is a supremum of denumerably many maximal
affine functions hj, j ∈ N. If f is not the restriction of an affine function, it has in
fact non-denumerably many maximal affine minorants, but we shall restrict attention
to those that are maximal not only as to their values, but also in the sense that the
set of all x ∈ Rn where the affine minorant agrees with cvxe(f) is maximal. It cannot
then be contained in a hyperplane and must have a nonempty interior.

We define a polytope

Pj = {x ∈ Rn; hj(x) = supi∈N hi(x)}, j ∈ N,

thus a convex set of nonempty interior. Then we define a neighborhood relation � in
N by declaring that j � k if and only if j 6= k and Pj ∩ Pk 6= ‰. We start with an
arbitrary polytope P0 and define a distance from 0 by saying that the distance between
a ∈ N and 0 is equal to k if there are indices t0, t1, . . . , tk such that t0 = 0 and tk = a
and ti � ti+1, i = 0, . . . , k − 1, but there is no shorter chain. Then the index set Mk,
k ∈ N, is defined to be the set of indices with distance k to 0. So N is a disjoint union
of all the index sets Mk. With this notation we define

g = h0 +
∑
k∈N

∑
j∈Mk

∑
i∈Mk−1

(hj − hi)+,

where we define M−1 = ‰. It follows that g = supj∈N hj = cvxe(f). Thus g|Zn = f .
�

10. Some examples of duality

We may ask for descriptions of Γ0(G ), defined by (6.4), for any given class of functions
G . Also of interest is the second power (Γ0)◦2 = Γ0 ◦ Γ0 of Γ0, the cleistomorphism
associated to Γ0.

Similarly we can study Γ>0(G ) and (Γ>0)◦2(G ) defined by (6.3).

10.1. Functions of one variable

In particular we shall take G as a singleton, G = {β} for some β ∈ Ffinite(Z,R).
We may always assume that inf(x; β(x) 6= 0) is equal to 0, and that β = δ0 − γ for
some γ ∈ F (Z,R) which vanishes for all points x 6 0. Then γ∗j has its support in
[jq,+∞[ ⊂ [j,+∞[ if the support of γ is contained in [q,+∞[, q > 1. A convolution
inverse to β is given by

β∗(−1) = (δ0 − γ)∗(−1) = δ0 + γ + γ ∗ γ + γ ∗ γ ∗ γ + · · · =
∞∑
j=0

γ∗j.

It is the only inverse of β which is zero for large negative arguments. The series
converges nicely, but β∗(−1) usually does not have finite support. Given any function
µ, we may ask whether β∗(−1) ∗ µ has finite support.

We obtain

Γ0({β}) = {f ∈ F (Z,R); β ∗ f = 0} = {f ; γ ∗ f = f},
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which is a kind of periodicity for f .
Also

(Γ0)◦2({β}) =
{
µ ∈ F (Z,R); such that, for all f ∈ F (Z,R) satisfying

|µ| ∗ |f | < +∞, |β| ∗ |f | < +∞, and β ∗ f = 0, we have µ ∗ f = 0
}
.

For brevity, let us write ρ for ∑∞j=1 γ
∗j, so that the inverse of δ0 − γ is δ0 + ρ. Let

now µ ∈ Ffinite(Z,R) be given. In order for β∗(−1) ∗ µ = µ + ρ ∗ µ to have finite
support, it is necessary and sufficient that (ρ ∗ µ)(x) vanish for large positive values of
x. The functions ρ that can occur are those which have a certain periodicity property:
ρ ∗ γ = ρ− γ.

If (ρ ∗µ)(x) = 0 for large values of x, then µ = β ∗ ν for some ν with finite support,
and this implies that Γ0({µ}) contains Γ0({β}). In general I find it difficult to say
more now in this general framework, but for special choices of β we can analyze the
situation completely.

Let Ya : Z → Z be the Heaviside function which is zero for x 6 a − 1 and one
for x > a. Then Ya ∗ (δ0 − δ1) = δa. So we can solve the equation (δ0 − δ1) ∗ u = f for
an f which vanishes for large negative arguments by taking u = Y0 ∗ f . We also define

(10.1) Va(x) = x− a+ 1, x, a ∈ Z,

the restriction of an affine function, and note that V +
a ∗ (δ0 − δ1) = Ya, thus

V +
a ∗ (δ0 − δ1)∗2 = δa.
The convolution product Y0 ∗ Y0 is an inverse of (δ0 − δ1)∗2; we have (Y0 ∗ Y0)(x) =

V +
0 (x), where V0(x) = x+ 1, x ∈ Z.

Example 10.1. A first example is β = δ0−δ1, γ = δ1. Then (β∗f)(x) = f(x)−f(x−1),
and Γ0({β}) is equal to the set of all constant functions.

For ((Γ0)◦2)({δ0 − δ1}) the following three properties are equivalent.

(10.1.1). µ ∈ (Γ0)◦2({β});

(10.1.2). µ ∗ 1 = 0;

(10.1.3). µ = β ∗ ν for some ν ∈ Ffinite(Z,R).

To see that the second property implies the third we note that, for any given µ ∈
Ffinite(Z,R),

(β∗(−1) ∗ µ)(x) = (Y0 ∗ µ)(x) =
∞∑
y=0

µ(x− y),

a sum which is equal to (µ ∗ 1)(x) for large positive values of x, and which vanishes for
large x if and only if µ ∗ 1 = 0, i.e., if and only if µ vanishes on all constants. �

Example 10.2. Second, we take β = (δ0 − δ1)∗2, implying that γ = δ0 − β = 2δ1 − δ2.
Then (β ∗ f)(x) = f(x) − 2f(x − 1) + f(x − 2), implying that the functions f which
satisfy β ∗ f = 0 are the restrictions to Z of the affine functions, and that Γ0({β}) is
equal to the set of all restrictions of affine functions.

For (Γ0)◦2({β}) the following three properties are equivalent.

(10.2.1). µ ∈ (Γ0)◦2({β});
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(10.2.2). µ ∗ f = 0 for all functions f which are restrictions to Z of an affine function;

(10.2.3). µ = β ∗ ν for some ν ∈ Ffinite(Z,R).

To see that the second property implies the third, we first note that V +
0 = β∗(−1)

and that (10.2.2) implies that µ ∗ V0 = 0 for the function V0 defined in (10.1) above;
V0(x) = x+ 1. For any function µ ∈ Ffinite(Z,R),

(β∗(−1) ∗ µ)(x) = (V +
0 ∗ µ)(x) =

∞∑
y=0

V +
0 (x− y)µ(y), x ∈ Z,

a sum which is equal to (V0 ∗ µ)(x) for large positive values of x and vanishes for large
negative values of x. Thus (β∗(−1) ∗ µ)− (V0 ∗ µ) · Y0 has finite support. We denote it
by ν, so that

β∗(−1) ∗ µ = (V0 ∗ µ) · Y0 + ν

and, if V0 ∗ µ = 0,
µ = β ∗ β∗(−1) ∗ µ = β ∗ ν.

So property (10.2.2) implies property (10.2.3). �

Example 10.3. Third, we take again β = (δ0 − δ1)∗2 and now ask for Γ>0
0 ({β}) and

Γ>0
1 (Γ>0

0 ({β})). The first set is the set CVX(R,R)|Z of all convex extensible functions,
and the second is the set of all functions µ of the form β ∗σ where σ has finite support
and satisfies σ > 0. Since Γ>0

1 ◦ Γ>0
0 is idempotent, we conclude that

(Γ>0
1 ◦ Γ>0

0 )◦k(β) = (Γ>0
1 ◦ Γ>0

0 )(β), k = 1, 2, . . . ,

and
Γ>0

0 ◦ (Γ>0
1 ◦ Γ>0

0 )◦k(β) = CVX(R,R)|Z, k = 0, 1, . . . .

More precisely, let us consider the following three conditions.

(10.3.1). µ ∈ Γ>0
1 (Γ>0

0 ({β})).

(10.3.2). µ = β ∗ σ for some σ ∈ Ffinite(Z,R) with only nonnegative values.

(10.3.3). µ is a finite positive sum of translations of β: µ = ∑
j∈Z λj(β ∗ δj), with

λj > 0 and only finitely many of them nonzero.

That (10.3.2) and (10.3.3) are equivalent is easy to see. That (10.3.2) implies (10.3.1)
is also easy: If (10.3.2) holds we obtain

µ ∗ f = (β ∗ σ) ∗ f = σ ∗ (β ∗ f) > 0

for all convex extensible functions f , so µ belongs to Γ>0
1 (Γ>0

0 ({β})), i.e., (10.3.1) holds.
Conversely, suppose now that (10.3.1) holds. We define σ as the function which

vanishes for large negative values of the argument and is such that β ∗ σ = µ. Then,
since µ ∗V +

a > 0 for the elementary convex extensible functions V +
a (x) = (x− a+ 1)+,

where Va(x) = x− a+ 1 as in (10.1), we obtain

0 6 (µ ∗ V +
a )(x) = ((β ∗ σ) ∗ V +

a )(x) = (σ ∗ (β ∗ V +
a ))(x) = (σ ∗ δa)(x) = σ(x− a).
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(Note that the associativity formula (β ∗σ)∗V +
a = σ∗(β ∗V +

a ) holds, since both factors
σ and V +

a vanish for large negative arguments.)
So clearly σ > 0 everywhere; secondly, if x− a is a large positive number, then

(µ ∗ V +
a )(x) =

∑
y6x−a

µ(y)(x− y − a+ 1) =
∑
y∈Z

µ(y)(x− y − a+ 1)

vanishes; consequently, so does σ for large positive arguments. This proves that σ has
finite support. �

10.2. Duality for functions of several variables

Proposition 10.4. Γ>0
0 (J (Rn)) = CVX(Rn)|Zn, where J (Rn) is as in Definition

7.1.

Proof. This is just the well-known statement that a function f : Zn → R satisfies
µ ∗ f > 0 for all Jensen functions µ if and only if is has a convex extension. �

Proposition 10.5. (Γ>0
1 ◦ Γ>0

0 )(J (Rn)) = Jgen(Rn). Continuing, we have

(Γ>0
1 ◦ Γ>0

0 )◦k = Γ>0
1 ◦ Γ>0

0 and Γ>0
0 ◦ (Γ>0

1 ◦ Γ>0
0 )◦k = Γ>0 , k = 1, 2, . . . .

Proof. By definition, (Γ>0
1 ◦ Γ>0

0 )(J (Rn)) is equal to{
µ ∈ Ffinite(Zn,R); µ ∗ f > 0 for all f ∈ CVX(Rn)|Zn

}
.

If µ belongs to Γ>0
1 (CVX(Rn)|Zn), then µ ∗ f > 0 for all functions f in CVX(Rn),

in particular if f is an elementary convex function: the conditions (α′), (β′), (γ′) and
(δ′) in Definition 7.1 are satisfied. Thus Γ>0

1 (CVX(Rn)|Zn) ⊂Jgen(Rn).
In the other direction, assume now that µ belongs to Jgen(Rn). Then µ ∗ g > 0

for every elementary convex function, and therefore also µ ∗ f > 0 if f is a finite sum
of elementary convex functions. We can now apply Theorem 9.4 to the function fε
defined as fε(x) = f(x) + ε‖x‖2

2, with ε > 0, a function of fast growth, to prove that
µ ∗ fε > 0 even if f is a denumerably infinite sum of elementary convex functions: at
every given point x, the convolution (µ ∗ fε)(x) agrees with the convolution of µ with
a finite partial sum of the infinite sum of elementary convex functions. Letting ε tend
to zero we see that also µ ∗ f > 0. �

11. Duality between classes of functions and second-order
difference operators

We define the difference operator Da by (Daf)(x) = f(x+ a)− f(x).
The idea is to go in two directions: fix a set of difference operators and consider the

set of all functions that are convex with respect to these, and, conversely, fix a class of
functions and consider the set of difference operators for which this class satisfies the
inequality DbDaf > 0.

Given an abelian semigroup G, we define two mappings, special cases of the map-
pings Γ>0

1 and Γ>0
0 defined in Section 6:

Φ: P(G×G)→P(F (G,R)) and Ψ: P(F (G,R))→P(G×G)
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by

(11.1) Φ(A) =
{
f ∈ F (G,R); DbDaf > 0 for all (a, b) ∈ A

}
, A ∈P(G×G),

and

(11.2) Ψ(G ) =
{

(a, b) ∈ G×G; DbDaf > 0 for all f ∈ G
}
, G ∈P(F (G,R)).

This is just the operations Γ>0
1 and Γ>0

0 with elements of the special form

µ = δ0 − δ−a − δ−b + δ−a−b

and indexed by the pair (a, b): µ ∗ f = DbDaf . The definitions are motivated by
the fact that these special convolution operators play an important role for discrete
convexity, in particular for the study of convexity of marginal functions, which we now
come to.

11.1. Duality applied to marginal functions

Given a function of two groups of variables, F : Rn×Rm → R!, we define itsmarginal
function H in Rn as

H(x) = inf
y∈Rm

F (x, y), x ∈ Rn.

That H is convex if F is convex is a simple fact. However, it is not trivial to extend
this result to discrete situations.

Let now G be a set of functions g defined on Z×Z and let h(x) = infy∈Z g(x, y) be
the marginal function of g. Define H as the set of all such marginal functions obtained
from g ∈ G .

Then, given a set G of functions on Z × Z, we may consider the set Ψ(G ) of all
pairs (a, b) ∈ Z2 × Z2 such that DbDag > 0 for all g ∈ G and also the set Ψ(H )
of all pairs (a, b) ∈ Z × Z such that DbDah > 0 for all h ∈ H , the set of marginal
functions obtained from functions in G . We can then study the relation between Ψ(G )
and Ψ(H ).

In Kiselman & Samieinia (2010, 2017) we have obtained results on marginal func-
tions in a discrete setting, but these can be generalized using the described duality. We
can go up to higher dimensions, and we can study other discrete subsets of Rn ×Rm

than Zn × Zm.

12. Discrete convexity defined by convolution

Let us take up again the definition of Γ>0
0 , defined by equation (6.5). We shall say that

a function f ∈ F (G,R) is M -positive if it satisfies the inequality f ∗ µ > 0 for all
µ ∈M . Here M can be any subset of Ffinite(G,R), including the case of a singleton
subset {µ}. Thus the definition is an instance of duality: the set of all M -positive
functions is equal to Γ>0

0 (M ).
Example 12.1. The simplest example is when µ = δ0. Then f is {µ}-positive if and only
if f > 0. A more interesting guiding example is when is G = Z and µ = 1

2δ−1−δ0 + 1
2δ1.

Then f ∗ µ > 0 if and only if f is convex extendible. �
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We know from Section 7 that a nonzero function µ satisfies µ ∗ h = 0 for all affine
functions h on Rn if and only if µ+ and µ− have the same mass and the same barycenter.

Convex functions defined on Rn have the property that f ∨ g is convex if both f
and g are. This would be a desirable property, and we can characterize the classes M
which have this property. We first need the following lemma.

Lemma 12.2. Let µ ∈ Ffinite(Rn,R) be a nonzero function. Then there is a natural
number m such that µ ∗ p = 0 for all polynomials p of order at most m − 1 and a
polynomial q of order m such that µ ∗ q is the constant 1.

Proof. If µ∗p = 0 for all polynomials we shall prove that µ is zero. The Fourier–Laplace
transform of µ is

µ̂(ζ) =
∑
x∈Rn

µ(x)e−iζ·x, ζ ∈ Cn,

an entire function. We differentiate it and get

∂k1

∂ζk1
· · · ∂

kn

∂ζkn
µ̂(ζ) =

∑
x∈Rn

µ(x)e−iζ·x(−i)‖k‖1xk1
1 · · ·xkn

n , ζ ∈ Cn, k ∈ Nn.

So if µ∗p = 0 for all monomials p(x) = xk = xk1
1 · · · xkn

n , then all derivatives of µ̂ at the
origin vanishes, which implies that µ̂ is zero; thus also µ. This proves that for every
nonzero µ there is an integer m such that µ ∗ p vanishes for polynomials of order < m
but not for all polynomials of order m. This also implies that µ ∗ q is a constant for
every polynomial of order m, since lower-order terms in q do not influence the value
of the convolution product. The constant is nonzero for some choice of q and can be
taken to be 1. �

Theorem 12.3. Let M be any subset of Ffinite(Rn,R), the elements of which are
nonzero and annihilate all affine functions, thus satisfying the conditions (β′) and (γ′)
in Definition 7.1. Suppose that supp µ− is a singleton set for all elements µ of M . If
(fj)j∈J is any family of M -positive functions, then also f = supj∈J fj is M -positive.

Conversely, if µ is a nonzero function which annihilates all affine functions and is
such that f ∨ g is {µ}-positive for all {µ}-positive functions f and g, then the support
of µ− is a singleton.

Proof. For every j ∈ J we have

µ− ∗ fj 6 µ+ ∗ fj 6 µ+ ∗ f.

We now take the supremum over all j and obtain

sup
j

(µ− ∗ fj) 6 µ+ ∗ f.

The general inequality µ− ∗ f > supj(µ− ∗ fj) is an equality when the support of µ− is
a singleton set. So we have

µ− ∗ f = sup
j

(µ− ∗ fj) 6 sup
j

(µ+ ∗ fj) 6 µ+ ∗ f,

proving that f is M -positive.
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For the converse we take m and q according to Lemma 12.2. (We note that m must
be at least 2 under the hypotheses, but can be arbitrarily large.)

Let a and b 6= a be such that µ(a) < 0 and µ(b) < 0. Without loss of generality we
may suppose that µ(a) = minµ. Take

f = δ−a + Aq and g = δ−b + Aq,

where q is the polynomial we get from Lemma 12.2 and A is a constant to be deter-
mined. Then

f ∨ g = (δ−a ∨ δ−b) + Aq = δ−a + δ−b + Aq.

We have

(µ ∗ f)(x) = µ(a+ x) + A, (µ ∗ g)(x) = µ(b+ x) + A,

as well as
(µ ∗ (f ∨ g))(x) = µ(a+ x) + µ(b+ x) + A, x ∈ Rn.

To prove the proposition it suffices to have

µ(a+ x) > −A, µ(b+ x) > −A for every x ∈ Rn and µ(a) + µ(b) < −A.

We now choose A = −µ(a) = −minµ. The inequalities then become

µ(a+ x) > µ(a), µ(b+ x) > µ(a) for every x ∈ Rn and µ(a) + µ(b) < µ(a),

which are all true. �

Adama Arouna Koné’s doctoral dissertation (2016) contains a result like Theorem 12.3
but where the converse is stated and proved under two special hypotheses, viz. that the
minimum of µ is attained at one point only, and thatm = 2 (Koné 2014:79, Proposition
4.3.11). Here these hypotheses have been eliminated.
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