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Abstract
We raise two questions on Euclid’s Elements: How to explain that Propositions
16 and 27 in his first book do not follow, strictly speaking, from his postulates (or
are perhaps meaningless)? and: What are the mathematical consequences of the
meanings of the term eutheia which we today often prefer to consider as different?

The answer to the first question is that orientability is a tacit assumption. The
answer to the second is rather a discussion on efforts to avoid actual infinity, and
having to (in some sense or another) construct equivalence classes of segments to
achieve uniqueness.

Résumé. — Les droites d’Euclide
Deux questions sur les Éléments d’Euclide sont soulevées : Comment comprendre
que les propositions 16 et 27 dans son premier livre ne sont pas des conséquences
strictement dit de ses postulats (ou peut-être sont dénuées de sens) ? et : Quelles
sont les conséquences mathématiques du fait que le terme eutheia a des sens que
nous préferons souvent aujourd’hui à considérer comme divers ?

La réponse à la première question est que l’orientabilité est une hypothèse
tacite. La réponse à la deuxième question est plutôt une discussion sur les efforts
faits pour éviter l’infini actuel et sur la construction d’une classe d’équivalence de
segments (dans un sens ou l’autre) pour obtenir l’unicité d’une droite.

1. Two questions

Stoikheia (Στοιχε̃ια) by Euclid (Εὐκλείδης) is the most successful work on geometry
ever written. Its translation into Latin, Elementa ‘Elements’, became better known
in Western Europe. It can still be read, analyzed—and understood. Nevertheless,
I experienced a difficulty when trying to understand some results.

The First Question. Euclid’s Proposition 27 in the first book of his Στοιχε̃ια

does not follow, strictly speaking, from his postulates (axioms)—or is possibly
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meaningless. Its proof relies on Proposition 16, which suffers from the same
difficulty. There must to be a hidden assumption. What can this hidden
assumption be?

Proposition 27 says:
If a straight line falling on two straight lines make the alternate angles equal to one
another, the straight lines will be parallel to one another. (Heath 1926a:307)

Proposition 16 says:
In any triangle, if one of the sides be produced, the exterior angle is greater than
either of the interior and opposite angles. (Heath 1926a:279)

Some subsequent results will also be affected.
In this note I shall try to save Euclid by reexamining the notions of straight

line and triangle, and expose a possible hidden assumption.
I shall also prove that if we limit the size of the triangles suitably, Proposition

16 does become valid even in the projective plane (see Proposition 7.1).

The Second Question. What does the word εὐθε̃ια (eutheia) mean? It is
often translated as ‘straight line’, which in English is usually understood as
an infinite straight line, but in fact it must often mean instead ‘rectilinear
segment, straight line segment’. Which are the mathematical consequences of
these meanings, which we nowadays often prefer to perceive as different?

Michel Federspiel observes:
La définition de la droite est l’un des énoncés mathématiques grecs qui ont suscité le
plus de recherches et de commentaires chez les mathématiciens et chez les historiens.
(Federspiel 1991:116)

For a thorough linguistic and philosophical discussion of this term, I refer to his
article. He does not discuss there—maybe because the answer is all too evident
for him—whether eutheia means an infinite straight line, a ray, or a rectilinear
segment, meanings that Charles Mugler records in his dictionary:

1◦ Ligne droite indéfinie ; aussi demi-droite. [. . . ] 2◦ Segment de droite. (Mugler
1958–1959:201–202)

This is what I will discuss in Section 4. Before that, however, I shall fix the
terminology concerning two models for Euclid’s axioms, the Euclidean plane and
the projective plane. I will discuss the determination of triangular domains in the
two models in Section 6, the proof of Proposition 16 in Section 7, and the notion
of orientability in Section 9.

2. Approaches to this paper

The following convictions have been driving forces behind this paper.
(1) Geometry is fascinating, especially its logical content—I owe this to Bertil

Broström, my first mathematics teacher.
(2) Languages are fascinating—I owe this to Karl Axnäs, my teacher of German and

my most inspiring teacher all categories. Much later I wanted to understand
Euclid and studied Classical Greek for Ove Strid.

(3) History is fascinating—I owe this to my history teacher Nils Forssell.
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This means that the present text might be difficult to classify: I combine
(A) verbatim quotes from Euclid’s text to show exactly how the terms were used;

with
(B) a critical look at the logic, where I feel free to use the knowledge I have now,

without implying anything about what Euclid could have known.
To prove that a statement, like that of Proposition 16, does not follow from certain
axioms, a standard method is to exhibit a model where the axioms are true while
the statement is not. The nature of the model is not important: it can come from
any time and any place, and does not allow any conclusions relevant for history.
This argument should be compared with the proof by Lobačevskĭı, Bolyai and
Gauss that the Postulate of Parallels is independent of the other axioms.

As Ulf Persson remarked, history shares with mathematics the fact that its sub-
ject does not exist (any longer), while the subject of mathematics has never existed,
except perhaps in some world where Plato lives. For other thoughts comparing his-
tory and mathematics, see his essay (2007) on Robin George Collingwood’s book
The idea of history (1966). The present study combines history and mathematics,
hopefully so that both perspectives are discernable.

3. The Euclidean plane and the projective plane

3.1. Straight lines and rectilinear segments in the Euclidean plane

In this paper I shall use E2 to denote what is now known as the Euclidean plane.
This is an affine space which can be equipped with coordinates which are pairs of
real numbers, in other words elements on R2. More precisely, given three points
a, b, c ∈ E2 which do not lie on a straight line, we can give a point p ∈ E2 the
coordinates (x, y) ∈ R2 if p = a+x(b−a)+y(c−a). (Note that in an affine space,
where there is no origin, a linear combination λa+ µb+ ρc has a good meaning if
λ + µ + ρ = 1, which is the case here.) In order to be able to speak about angles
and areas, we need to equip the associated vector space with an inner product.

In the sequel I shall use the following terms.
A straight line is given by {(1− t)a+ tb ∈ R2; t ∈ R}, were a 6= b; it is infinite

in both directions.1
A rectilinear segment is given by {(1−t)a+tb ∈ R2; t ∈ R, 0 6 t 6 1}. Since I

want to avoid a point being declared as a rectilinear segment, I require that a 6= b.
A ray is given by {(1− t)a+ tb ∈ R2; t ∈ R, 0 6 t}, where a 6= b; it is infinite

in one direction.
We note in passing that the same distinctions are made in Contemporary Greek:

ευθεία γραμμή (f) ‘straight line’; ευθύγραμμο τμήμα (n) ‘rectilinear segment’; ακτίνα
(f) ‘ray’; ‘radius’ (Petros Maragos, personal communication 2007-10-12; Takis
Konstantopoulos, personal communication 2012-01-20).

Given two points a, b on a straight line L in E2, the complement L r {a, b}
has three components, one of which is bounded. So the rectilinear segment with
a and b as endpoints can be recognized as the union of {a, b} with the bounded
component of Lr {a, b}.

1Heath (1926a) uses straight line and Fitzpatrick (2011) straight-line as hypernyms for three
currently used terms: straight line in the sense just defined, which is the sense I shall use,
rectilinear segment, and ray.
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3.2. Straight lines and rectilinear segments in the projective plane

The projective plane, which I shall denote by P2, is a two-dimensional manifold
which can be obtained from the Euclidean plane by adding a line, called the line at
infinity, thus adding to each line a point at infinity. For a brief history of projective
geometry see Torretti (1984:110–116). Johannes Kepler was, according to Torretti
(1984:111), the first in modern times to add, in 1604, an ideal point to a line.

There are no distinct parallel lines in P2. Still I shall consider that it satisfies
Postulate 5:

e'.2 That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced in-
definitely, meet on that side on which are the angles less than the two right angles.
(Book I, Postulate 5; Heath 1926a:202)

This postulate, of course, must be subject to interpretation in the new structure,
and therefore the statement that P2 is a model is not an absolute truth.3

The projective plane can be given coordinates from points in R3 as follows. A
point p ∈ P2 is represented by a triple (x, y, z) 6= (0, 0, 0), where two triples (x, y, z)
and (x′, y′, z′) denote the same point if and only if (x′, y′, z′) = t(x, y, z) for some
real number t 6= 0. In other words, we may identify P2 with (R3 r {(0, 0, 0)})/∼,
where ∼ is the equivalence relation just defined.

We can also say, equivalently, that a point in P2 is a straight line through the
origin in R3 and that a straight line in P2 is a plane through the origin in R3.

Alternatively, we can think of P2 as the sphere

S2 = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1},

with point meaning ‘a pair of antipodal points’ and straight line meaning ‘a great
circle with opposite points identified’. Thus with this representation, P2 = S2/∼.
As pointed out by Ulf Persson, we can construct the projective plane also as the
union of a disk and a Möbius strip, identifying their boundaries.

The projective plane can be covered by coordinate patches which are diffeomor-
phic to R2. For any open hemisphere, we can project the points on that hemisphere
to the tangent plane at its center. Then all points except those on the boundary
of the hemisphere are represented.

On the sphere, angles are well-defined, but not in the projective plane. To
illustrate this, take for example an equilateral triangle with vertices at latitude
ϕ > 0 and longitudes 0, 2π/3 and −2π/3, respectively. Then its angles θ on the
sphere can be obtained from Napier’s rule, and are given by

sinϕ = cos
(π

2
− ϕ

)
= cot π

3
cot θ

2
= 1√

3
cot θ

2
, 0 < ϕ <

π

2
.

Thus θ tends to π as ϕ→ 0 (a large triangle close to the equator). The same is true
of the angle at a vertex if we use the coordinate patch centered at that very vertex.

2Statements are numbered by letters marked by a keraia (keraÐa): a' = 1, b' = 2, . . . , '

(stigma) = 6, . . . , ia' = 11, ib' = 12, . . . , ke' = 25, . . . .
3A better known manifold is the Möbius strip, which can be obtained from P2 by removing a

point, as Bo Göran Johansson points out (personal communication 2012-02-14). Now there are
some parallel lines. However, this interesting structure does not satisfy Postulate 5 if we measure
angles as described later in this subsection.
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But θ tends to π/3 as ϕ → π/2 (a small triangle close to the north pole). The
projection of the triangle onto the tangent plane at (0, 0, 1) is a usual equilateral
triangle, thus with angles equal to π/3 for all values of ϕ, 0 < ϕ < π/2. Thus we
cannot measure angles in arbitrary coordinate patches, only in coordinate patches
with center at the vertex of the angle; equivalently on the sphere.

It is convenient to use this way of measuring angles in the projective plane
as a means of controlling the size of triangles. So, although it is meaningless to
talk about angles in the projective plane itself, the sphere can serve as a kind of
premodel for the projective plane, and the angles on the sphere can serve a purpose.

Given two points a, b on a straight line L in P2, the complement Lr {a, b} has
two components, and we cannot distinguish them. So to define a segment in P2
we need two points a, b and one more bit of information, viz. which component of
L r {a, b} we shall consider. Since it seems that Euclid lets two points determine
a segment without any additional information, shall we conclude already at this
point that he excludes the projective plane? Anyway, in the projective plane, two
distinct points determine uniquely a straight line, but not a rectilinear segment.

Explicitly, in the projective plane a point is given by the union of two rays R+a
and R−a in R3, where a is a point in R3 different from the origin, and where
R+ denotes the set of positive real numbers, R− the set of negative real numbers.
Given two points, we can define two rectilinear segments, corresponding to two
double sectors in R3. These are given as

cvxh(R+a ∪R+b) ∪ cvxh(R−a ∪R−b)
and

cvxh(R+a ∪R−b) ∪ cvxh(R−a ∪R+b),

respectively, where cvxh(A) denotes the convex hull of a set A. There is no way
to distinguish them; to get a unique definition we must add some information as
to which one we are referring to.

So the cognitive content of a segment is different in E2 and P2: a segment in
P2 needs one more bit of information to be defined.

4. What does eutheia mean?

Charles Mugler writes:
[. . . ] l’instrument linguistique de la géométrie grecque donne au lecteur la même
impression que la géométrie elle-même, celle d’une perfection sans histoire. Cette
langue sobre et élégante, avec son vocabulaire précis et différencié, invariable, à
quelques changement sémantiques près, à travers mille ans de l’histoire de la pensée
grecque, [. . . ]

and continues
la diction des Éléments, qui fixe l’expression de la pensée mathématique pour des
siècles, se relève à l’analyse comme un résultat auquel ont contribué de nombreuses
générations de géomètres. (Mugler 1958–1959:7)

May this suffice to show that we are not trying to analyze here some ephemeral
choice of terms.
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4.1. Lines

Euclid defines a line second in his first book:
b'. Grammh̀ dè mh̃koc �platèc. (Book I, Definition 2) — Une ligne est une longueur
sans largeur (Hoüel 1883:11) — A line is a breadthless length. (Heath 1926a:158) —
Une ligne est une longueur sans largeur (Vitrac 1990:152). — And a line is a length
without breadth. (Fitzpatrick 2011:6)

There is no mentioning of lines of infinite length here; also Heath does not take
up the subject. The lines in this definition are not necessarily straight, but in the
rest of the first book, most lines, if not all, are straight, so to get sufficiently many
examples we turn to these now.

4.2. Straight lines: eutheia

Euclid defines the concept of eutheia in the fourth definition in his first book thus:
d'. EÎjẽia gramm  âstin, ¡tic âx Òsou tõic âf� áauth̃c shmeÐoic kẽitai. (Book I,
Definition 4) — La ligne droite est celle qui est située semblablement par rapport à
tous ses points (Hoüel 1883:11) — A straight line is a line which lies evenly with
the points on itself. (Heath 1926a:165) — Une ligne droite est celle qui est placée
de manière égale par rapport aux points qui sont sur elle (Vitrac 1990:154) — A
straight-line is (any) one which lies evenly with points on itself. (Fitzpatrick 2011:6)

Hoüel adds that the definition is “conçue en termes assez obscurs”.
Euclid’s first postulate states:
a'. >Hit sjw4 �pä pantäc shmeÐou âpÈ pãn shmẽion eÎjẽian gramm�n �gagẽin. (Book
I, Postulate 1) — Mener une ligne droite d’un point quelconque à un autre point
quelconque ; (Hoüel 1883:14) — Let the following be postulated : to draw a straight
line from any point to any point. (Heath 1926a:195) — Qu’il soit demandé de mener
une ligne droite de tout point à tout point. Vitrac (1990:167) — Let it have been
postulated [. . . ] to draw a straight-line from any point to any point. (Fitzpatrick
2011:7)

The term he uses for straight line in the fourth definition and the first postulate is
εὐθε̃ια γραμμή (eutheia grammē ) ‘a straight line’,5 later, for instance in the second
and fifth postulates, shortened to εὐθε̃ια ‘a straight one’,6 the feminine form of
an adjective which means ‘straight, direct’; ‘soon, immediate’; in masculine εὐθύς;
in neuter εὐθύ. This brevity is not unique; see Mugler (1958–1959:18) for other
condensed expressions.

4This verb form, written �ι t sjw in lower case letters, is in middle voice, perfect imperative,
singular third person of the verb aÊtẽin ‘to demand’, aÊtèw ‘I demand’. Since it is in the perfect
tense, Fitzpatrick’s translation, “Let it have been postulated,” with the alternative “let it stand
as postulated,” is more faithful than Heath’s.

5Liddell & Scott (1978) gives gramm  as ‘stroke or line of a pen, line, as in mathematical figures’,
and eÎjÔc as ‘straight, direct, whether vertically or horizontally’. Bailly (1950) gives gramm  as
‘trait, ligne’, [. . . ] ‘trait dans une figure de mathématiques’, and eÎjÔc as ‘droit, direct’. Menge
(1967) defines gramm  as ‘Strich, Linie (auch mathem.)’, eÎjÔc as ‘gerade (gerichtet)’, and eÎjẽia

(gramm ) as ‘gerade Linie’. In Millén (1853) I do not find gramm , only gr�mma ‘bokstaf’; ‘det som
är skrifvet, skrift, bok, bref’; eÎjÔc ‘rak, rät’; ‘strax’; ‘snart’. Linder & Walberg (1862) translates
Linie as ‘gramm ’; rät l. as ‘eÎjeia’; Rak as ‘eÎjÔc’.

6Similarly, une droite is very often used for une ligne droite in French, and pr�ma� (pryamáya)
for pr�ma� lini� (pryamáya ĺınya) in Russian.
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Curiously, according to Frisk (1960), the adjective εὐθύς has no etymological
counterpart in other languages: “Ohne außergriechische Entsprechung.”

4.3. Straight lines: ex isou keitai

A key element in Definition 4 is the expression ἐξ ἴσου [. . . ] κε̃ιται (ex isou [. . . ]
keitai). It is translated as ‘située semblablement’, ‘lies evenly’, ‘placée de manière
égale’. The adverbial evenly is a translation of the prepositional expression ἐξ ἴσου,
which functions like an adverbial—or actually is an adverbial (Federspiel 1991:120).

Michel Federspiel would like to create (“j’aimerais créer”) an adjective iso-
thétique in analogy with homothétique—he argues that homothétique corresponds
to the Greek ὁμοίως κε̃ισθαι

7 “être placé semblablement”, and that isothétique
would correspond to the Greek ἐξ ἴσου κε̃ιται,8 which occurs in Definition 4, and
gives the translation (which he calls a 〈〈 translation 〉〉 within quotation marks)

La droite est la ligne qui est isothétique de ses points. (Federspiel 1991:120)

He does not offer a mathematical definition of the new term, and it probably does
not mean the same thing as in the expression isothetic polygon. Perhaps it is
intended to preserve the vagueness of the original.

4.4. Straight lines: sēmeion

Vitrac (1990:189–190) points out that Euclid treats points as marks which one can
place on straight lines or in relation to straight lines. That points are actually marks
is further developed in two papers by Federspiel, who discusses in detail the meaning
of the word σημείοις in Definition 4, plural dative of σημε̃ιον. He had expected the
word πέρασι ‘extrémités’ at the place of σημείοις here (1992:387), and argues that,
although in general σημε̃ιον certainly means ‘point’, in this particular definition it
has a pre-Euclidean meaning, viz. ‘repère,9 extrémité’ (1992:388), ‘signe distinctif’
(1992:389), or ‘marque, repère’ (1998:67) (perhaps to be rendered as reference mark,
guide mark, landmark, benchmark, extremity, mark, distinctive sign in English).
The word σημε̃ια has the meaning (sens) ‘repères’ and the referent ‘les extrémités’
(1998:56). The referent is almost always the vertex of an angle in a polygon or a
polyhedron, and there is, curiously, no explicit occurrence of the word σημε̃ια with
the endpoints of a rectilinear segment (1998:67). It seems that the only occurrence
is in Definition 4 (1992:388), but it is not explicit there, since it is in a definition
without explanation.

In fact, we are dealing with “un véritable archäısme” (1998:61), whose meaning
‘extremity’ later disappeared (1998:62). However, in spite of this, the word σημε̃ιον

was still understood in Euclid’s time—if Euclid had found σημείοις to be incom-
prehensible in that sense, he would have replaced it by the contemporary πέρασι

‘extrémités’ (1998:62).

7The verb form kẽisjai means ‘to be placed’; middle or passive voice (here most likely passive),
present infinitive.

8The verb form kẽitai means ‘it lies, it is lying’ or perhaps ‘it is laid, placed’; middle or passive
voice, present indicative, singular, third person.

9“Toute marque servant à signaler un point, un enplacement à des fins précises” (Grand
Larousse 1977).
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The argument is supported by the use of σημε̃ιον in the sister science astronomy
(1998:391–395), where it designates stars which delineate a constellation, in other
words are in extreme positions relative to the constellation, essentially like the ver-
tices of a polygon (1992:395), in particular a pentagon (1998:58), a cube (1998:58),
or an icosahedron (1998:59). On the other hand, it is not necessary to consider
astronomy as an intermediary; the meaning can appear directly in mathematics
(1992:396); there is no reason to consider astronomy as a mother science.

The word σημε̃ιον was, according to Federspiel (1992:400) adopted very early in
mathematics in the concrete sense of ‘marque’, and at any rate before the creation
of the concept of point.

At this point comes to mind the statement by Reviel Netz that the lettered
diagram is a combination of the continuous (the diagram itself) and the discrete
(the letters) as well as a combination of visual resources (the diagram) and finite,
manageable models (the letters) (Netz 1999:67).

Federspiel therefore modifies his translation from 1991 quoted above in Subsec-
tion 4.3 to the following.

La ligne droite est la ligne qui est isothétique de ses extrémités. (Federspiel 1992:404)

And then to:

La ligne droite est la ligne qui est isothétique de ses repères. (Federspiel 1998:56)10

In his argument, a straight line thus lies evenly between its extremities. This
presupposes that a straight line does have two endpoints, which is a possible inter-
pretation of Definition 3 (which is actually a proposition rather than a definition):

g'. Grammh̃c dà pèrata shmẽia. (Book I, Definition 3) — Les extrémités d’une ligne
sont des points. (Hoüel 1883:11) — The extremities of a line are points. (Heath
1926a:165) — Les limites d’une ligne sont des points (Vitrac 1990:153) — And the
extremities of a line are points. (Fitzpatrick 2011:6)

However, there are lines which do not have endpoints (circles, ellipses, and infi-
nite straight lines). Heath therefore argues that Definition 3 “is really no more
than an explanation that, if a line has extremities, those extremities are points.”
(1926a:165). Vitrac agrees (1990:153): “Il faut certainement comprendre que la
présente définition signifie simplement : lorsqu’une ligne a des limites, ce sont des
points.”

It seems plausible that the definition was primarily thought of as defining a
rectilinear segment, but that later, a wider use of the term εὐθε̃ια forced mathe-
maticians to accept a broader interpretation.

10Note the indefinite article in the two English translations and the definite article in four of
the five French translations of Definition 4; in the Greek original there is no article. Federspiel
(1995:252; 2005:105, note 29) explains that at the first occurrence of a mathematical term, it is
given without article; at the second occurrence and later, it appears with the article. He calls
this the Loi fondamentale for the use of the article in Classical Greek mathematical texts. When
it comes to translations into French, Vitrac (1990:194, footnote 1) says with reference to his
translation of Proposition 1 quoted in Subsubsection 4.9.4 below: “L’habitude française moderne
est d’utiliser l’article indéfini pour souligner la validité universelle de la proposition.”
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4.5. Discretization

Zeno of Elea (Ζήνων ὁ ᾿Ελεάτης) formulated four paradoxes about motion, discussed
in detail by Segelberg (1945) and Ferber (1981). The first of these is called the
Dichotomy paradox since it uses division into halves. It says, according to Aristotle
(Ἀριστοτέλης):

. . . prw̃toc mèn å (scil.11 lìgoc) per̀i toũ mh̀ kinẽisjai dià tò prìteron eÊc tò ¡misu
dẽin �fikèsjai tò ferìmenon « pròc tò tèloc, . . . — The first says that motion
is impossible, because an object in motion must reach the half-way point before it
gets to the end. (Quoted after Segelberg 1945:16)

By repeating the argument, we conclude that the object, if we agree that it is
supposed to move from 0 to 1, must reach 1

4 before reaching 1
2 , and 1

8 before 1
4 , and

so on. We see that the object must in fact reach all points with a binary coordinate
k/2m, k = 1, . . . , 2m − 1, m = 1, 2, . . . , thus infinitely many. Euclid does construct
the midpoint of a segment (Book I, Proposition 10, quoted in Subsubsection 4.9.4),
so also for him there are infinitely many points on any given segment. We can
think of these points as forming a potential infinity, because we can find the finitely
many points k/2m for a certain m and then proceed to m+1, but the object cannot
move in this order; for the object, the points represent an actual infinity—hence
the alleged impossibility of motion (see, e.g., White (1992:147)).

In his third paradox, on the arrow which cannot move, Zeno can be seen as a
precursor of a discretization of time, and therefore also of the line.

It would be interesting to know what Euclid thought about this paradox. As
I understand it, his lines are neutral with respect to the consequences that Zeno’s
discretized time or line lead to. The points are without parts and thus are atoms:

a'. Shmẽiìn âstin, oÍ̃ mèroc oÎjèn. (Book I, Definition 1) — Un point est ce qui
n’a pas de parties. (Hoüel 1883:11) — A point is that which has no part. (Heath
1926a:155) — Un point[. . . ] est ce dont il n’y a aucune partie (Vitrac 1990:151)
— A point is that of which there is no part. (Fitzpatrick 2011:6)

A line does not consist of points; the points are, as we have seen in Subsection 4.4,
special marks, repères, on the line. And in a construction we can hardly have an
infinity of repères, like all those with coordinates k/2m.

The two ideas—that the line is infinitely divisible while time consists of moments
which cannot be further divided—are not easy to reconcile: we cannot arrive at
the atoms by subdividing a segment. White (1992) discusses this difficulty; see in
particular the section “The Quantum Model: Spatial Magnitude.” Islamic thinkers
in the middle ages resolved the conflict by making time divisible to a high degree
while giving up infinite divisibility. As a prominent example of these ideas, Mosheh
ben Maimon, a Sephardic Jewish philosopher who was born in Córdoba in 1135
or 1138 and died in Egypt in 1204, and who is now better known under his Greek
name Maimonides, wrote that an hour is divisible by 60 ten times or more: “at last
after ten or more successive divisions by sixty, time-elements are obtained which
are not subject to division, and in fact are indivisible” (Whitrow 1990:79). So we
can arrive at the time atoms! Now 60−10 hours is about 6 femtoseconds, 60−11

hours is about 100 attoseconds, and we are then down at the time scale of some
chemical reactions studied nowadays in femtochemistry.

11Abbreviation for scilicet ‘it is permitted to know’.
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4.6. The chord property in the sense of Euclid

A property which is relevant for this discussion is what I called the chord property in
the sense of Euclid (2011:359): for any two points a, b in the set A considered, the
rectilinear segment (chord) [a, b] is contained in A. This agrees with the translations
of Definition 4 given in Subsections 4.2 and 4.3. To reconcile it with Federspiel’s
later translations quoted in Subsection 4.4, one has to note that, for every two
points p, q belonging to a chord [a, b], the segment [p, q] is contained in [a, b].

In fact, the strongest chord property is obtained when we start with the two
endpoints of a rectilinear segment. However, on a straight line one can start quite
naturally with any pair of points as repères and consider for these two points the
segment determined by them using the chord property.

The chord property in the sense of Euclid has a counterpart in digital geometry,
viz. the chord property in the sense of Rosenfeld introduced by Azriel Rosenfeld in
1974 and mentioned in my paper (2011:359). Moses Maimonides would have liked
it.

4.7. The mathematical meaning of eutheia

What does eutheia mean mathematically? Proclus (Πρόκλος ὁ Διάδοχος), in his
commentary to Euclid’s first book (Proclus 1948:92, 1992:83) notes that eutheia
has what we now usually perceive as three different meanings: a straight line;
a rectilinear segment; and a ray. “La ligne est donc prise de trois manières par
Euclide” (Proclus 1948:92); “our geometer makes a threefold use of it” (Proclus
1992:83). Thus already Proclus writes about three different meanings.

Euclid often refers to extension of straight lines, for instance in the famous
Postulate 5, the Axiom of Parallels, quoted in Subsection 3.2, which was to keep
mathematicians busy for more than two millennia. The postulate implies that the
two straight lines do not necessarily meet initially, so he must be talking about rec-
tilinear segments. We may conclude that, here at least, eutheia means a rectilinear
segment, not an infinite straight line.

The Greek original has ἐκβαλλομένας
12 [. . . ] ἐπ’ ἄπειρον, which Heath trans-

lates as ‘produced indefinitely’. Similarly, Definition 23 has ἐκαλλόμεναι
13

εἰς

ἄπειρον, translated in the same way. Fitzpatrick (2011:7) translates both as ‘being
produced to infinity’. However, Heath (1926a:190) explicitly warns against that
interpretation. Similarly, Vitrac (1990:166) makes the distinction between being
extended “indéfiniment” and being extended “à l’infini” and maintains that the
expressions εἰς ἄπειρον and ἐπ’ ἄπειρον refer to the former.

4.8. Infinitely long lines vs. equivalence classes of segments

On the other hand, when two points are given, they determine uniquely a straight
line. Actually, Postulate 1 does not explicitly say so, but the discussion in Heath
(1926a:195), which leads to the conclusion that this is what is meant, is quite

12Middle or passive voice, present participle, plural, feminine, accusative. Of the many meanings
of the verb âkb�llein (ekballein; active voice, present, infinitive), the basic one is ‘to throw out’.
Liddell & Scott (1978) and Menge (1967) explicitly mention the mathematical sense of extending
a line.

13Middle or passive voice, present participle, plural, feminine, nominative.
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convincing. Here it would be natural for us in the twenty-first century to think
about an infinite straight line, but it is also possible to limit the consideration to
rectilinear segments by forming the family of all segments which contain the two
given points—or at least a family of rectilinear segments which go out arbitrarily
far in both directions. If so, we can avoid here actual infinity, and work only with
potential infinity by looking at one segment at a time rather than at an infinitely
long line. Vitrac (1990:169) mentions this possibility: “la droite peut être envisagée
comme indéfinie ou potentiellement infinie.”

Michel Federspiel states quite categorically: “Il n’y a pas d’infini actuel dans
la géométrie grecque.” (1991:118, Note 10). This should be contrasted with an
assertion by Reviel Netz: “[. . . ] Archimedes [Ἀρχιμήδης] calculated with actual
infinities in direct opposition to everything historians of mathematics have al-
ways believed about their discipline.” The quotation refers to the calculation of
a volume in the palimpsest now at the Walters Art Museum in Baltimore, MD,
USA (Netz & Noel 2007:199). It seems the basis for this assertion is not very firm.
More to the point is Euclid’s own statement in his Book X: γ΄. [. . . ] ὑπάρχουσιν

εὐθε̃ιαι πλήθει ἄπειροι [. . . ] (Book X, Definition 3) — [. . . ] there exist an infinite
multitude of straight-lines [. . . ] (Fitzpatrick 2011:282).

We may note that Proclus makes the distinction between “partie infinies en
acte” (actual infinity) and “en puissance seulement” (potential infinity) (1948:140);
“The latter statement [an infinite number of parts] makes an infinite number actual,
the former [a magnitude is infinitely divisible] only potential; the latter assigns
existence to the infinite, the other only genesis” (1992:125).

However, if we act like this—whether under the pressure of Aristotle or not—
there will be a lot of rectilinear segments that contain the two given points: perhaps
one with a length of one hemiplethron, then one with a length of one plethron, one
stadion, one hippikon, then one with a length of a parasang, and one with a length
of one stathmos, and so on—it does not stop. But all of these segments represent
the same line: there has to be only one line. That the segments all represent the
same line is today conveniently expressed in the parlance of equivalence classes.
The formation of an equivalence class is a means of obtaining uniqueness—to unite
the many segments into one single entity.

Let me emphasize again that two points determine a straight line segment if
we are in E2, and that, conversely, a straight line segment uniquely determines
two points, viz. its endpoints. If this were all there is to it, we would have perfect
uniqueness in both directions. But if we extend a segment to a longer segment,
we have two different segments, which, however, represent the same straight line.
What does then represent mean? And what does the same mean? If we nowadays
can speak about equivalence classes, this is a convenient way to understand the verb
represent, but it is only there as a help to the modern reader. I do not know how
Euclid thought, but he must have been aware of this problem of nonuniqueness.

As for actual vs. potential infinity, we may compare with prime numbers: it is
sometimes said that Euclid proved that there are infinitely many prime numbers,
but actually he proved in his ninth book, Proposition 20, that, given three prime
numbers, he can find a fourth. Clearly the proof works for any finite set of primes:
with the idea of the proof we can go from n primes to n + 1 primes for any n.
All prime numbers need not exist at once. So this is an instructive example of
potential infinity; we need not believe in the existence of an actual infinity.
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Aristotle expressed a very clear opinion on the need to consider infinite straight
lines:

I have argued that there is no such ting as an actual infinite which is untraversable,
but this position does not rob mathematicians from their study. Even as things
are, they do not need the infinite, because they make no use of it. All they need
is a finite line of any desired length. (Physics, Book III, Part 7, quoted here from
Aristotle 1996:75–76)

The uniqueness requirement then leads to the need of forming an equivalence class
of all these segments.

Not only is an actual infinity unnecessary for geometry; it is even impossible in
the physical world:

[. . . ] there can be no magnitude which exceeds every specified magnitude: that
would mean that there was something larger than the universe. (Physics, Book II,
Part 7, quoted from Aristotle 1996:75)

However, as Rosenfeld (1988:183) points out, Aristotle’s doctrine “that mathemat-
ical concepts are obtained by abstracting from objects of the real world enables
one to disengage oneself from the finiteness of physical magnitudes.” Ibn Rushd
(Averroes) wrote that a geometer can admit “an arbitrarily large magnitude—
something a physicist cannot do [. . . ]”.

We should also add that on the sphere, a straight line in the plane corresponds to
a great circle, μέγιστος κύκλος (megistos kuklos; Mugler 1958–1959:19). Certainly
Aristotle would not object to considering a circle on a sphere as a complete, existing
entity.14 But I guess he did not see a great circle as a compactification of a straight
line as we now do quite easily—after so many years.

Since every rectilinear segment determines a unique straight line, it might ap-
pear that there is no big difference whether we say that two distinct points deter-
mine a straight line or that two distinct points determine a rectilinear segment.
However, the latter assertion is untenable (if we keep ourselves strictly to the
axioms) in view of the fact that, as noted in Subsection 3.2, two points in the
projective plane determine not one segment but two.

4.9. Examples

4.9.1. Eutheia bounded

That the English term straight line or straight-line can denote a rectilinear segment
is explicitly mentioned by Heath “if two straight lines (‘rectilinear segments’ as
Veronese would call them) have the same extremities [. . . ]” (1926a:195); “what
modern Italian geometers aptly call rectilinear segment, that is, a straight line
having two extremities.” (1926a:196). For both the Greek term and the English
term, this is clear as well from several examples, e.g., the first few propositions in
Book I:

b'. Präc tw̃ι dojènti shmeÐwι th̃ι dojeÐshι eÎjẽiaι Òshn eÎjẽian jèsjai. (Book I, Propo-
sition 2) — A partir d’un point donné A [. . . ], placer une droite égale à une droite
donnée BC (Hoüel 1883:16) — To place at a given point (as an extremity) a straight
line equal to a given straight line. (Heath 1926a:244) — Placer, en un point donné,

14For the history of spherical geometry, see Rosenfeld (1988: Chapter 1).
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une droite égale à une droite donnée. (Vitrac 1990:197) — To place a straight-line
equal to a given straight-line at a given point (as an extremity). (Fitzpatrick 2011:8)

Equality of lines here means equality of their lengths.
g'. DÔo dojeisw̃n eÎjeiw̃n �nÐswn �pä th̃c meÐzonoc th̃ι âl�ssoni Òshn eÎjẽian
�felẽin. (Book I, Proposition 3) — Étant données deux droites inégales, AB, C
[. . . ], retrancher de la plus grande AB une droite égale à la plus petite C (Hoüel
1883:17) — Given two unequal straight lines, to cut off from the greater a straight
line equal to the less. (Heath 1926a:246) — De deux droites inégales données, re-
trancher de la plus grande, une droite égale à la plus petite. (Vitrac 1990:199) —
For two given unequal straight-lines, to cut off from the greater a straight-line equal
to the lesser. (Fitzpatrick 2011:9)
d'. >E�n dÔo trÐgwna t�c dÔo pleur�c [tãic] dusÈ pleurãic Òsac êqhι ákatèran ákatèraι
kaÈ t�n gwnÐan th̃ι gwnÐaι Òshn êqhι t�n Ípä tw̃n Òswn eÎjeiw̃n perieqomènhn, [. . . ]
(Book I, Proposition 4) — Si deux triangles ABC, DEF [. . . ] ont les deux côtés
AB, AC respectivement égaux aux deux côtés DE, DF, et si les angles BAC, EDF,
compris entre les côtés égaux, sont égaux, [. . . ] (Hoüel 1883:18) — If two triangles
have the two sides equal to two sides respectively, and have the angles contained by
the equal straight lines equal, [. . . ] (Heath 1926a:247) — Si deux triangles ont deux
côtés égaux à deux côtés, chacun à chachun [. . . ], et s’ils ont un angle égal à un
angle, celui contenu par les droites égales, [. . . ] (Vitrac 1990:200) — If two triangles
have two sides equal to two sides, respectively, and have the angle(s) enclosed by
the equal straight-lines equal, [. . . ] (Fitzpatrick 2011:10)

We note that here the sides of a triangle are sometimes called sides, cotés; some-
times straight lines, straight-lines, droites.

e'. Tw̃n Êsoskelw̃n trig¸nwn aÉ präc th̃ι b�sei gwnÐai Òsai �ll laic eÊsÐn, kaÈ prosek-
blhjeisw̃n tw̃n Òswn eÎjeiw̃n aÉ Ípì t�n b�sin gwnÐai Òsai �ll laic êsonvtai. (Book
I, Proposition 5) — Dans tout triangle isoscèle ABC [. . . ], 1◦ les angles à la base
ABC, ACB sont égaux entre eux ; 2◦ si l’on prolonge les côtés égaux AB, AC,
les angles formés au-dessous de la base, DBC, ECB, seront aussi égaux entre eux.
(Hoüel 1883:18–19) — In isosceles triangles the angles at the base are equal to one
another, and, if the equal straight lines be produced further, the angles under the
base will be equal to one another. (Heath 1926a:251) — Les angles à [. . . ] la base
des triangles isoscèles sont égaux entre eux, et si les droites égales sont prolongées
au-delà, les angles sous la base seront égaux entre eux. (Vitrac 1990:204) — For
isosceles triangles, the angles at the base are equal to one another, and if the equal
sides are produced then the angles under the base will be equal to one another.
(Fitzpatrick 2011:11)

In Book I, Proposition 12, εὐθε̃ια receives the attribute ἄπειρος (apeiros) ‘un-
bounded, infinite’:

ib'. >EpÈ t�n dojẽisan eÎjẽian �peiron �pä toũ dojàntoc shmeÐou, ç m  âstin âp�
aÎth̃c, k�jeton eÎjẽian gramm�n �gagẽin. (Book I, Proposition 12) — D’un point
donné C [. . . ], abaisser une perpendiculaire sur une droite indéfinie donnée AB.
(Hoüel 1883:24) — To a given infinite straight line, from a given point which is not
on it, to draw a perpendicular straight line. (Heath 1926a:270) — Mener une ligne
droite perpendiculaire à une droite indéfinie [. . . ] donnée à partir d’un point donné
qui n’est pas sur celle-ci. (Vitrac 1990:219) — To draw a straight-line perpendicular
to a given infinite straight-line from a point which is not on it. (Fitzpatrick 2011:17)

Here the qualification ἄπειρος would not be necessary if an εὐθε̃ια were always
something unbounded in both directions.
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Apollonius (Ἀπολλώνιος) mentions an εὐθε̃ια in a context that clearly indicates
that it refers to a segment; he needs to extend it in both directions:

>E�n �pì tinoc shmeÐou präc kÔklou perifèreian, çc oÎk êstin ân tw̃ι aÎtw̃ι âpipèdwι tw̃ι
shmeÐwι , eÎjẽia âpizeuqjẽisa âf> ák�tera prosekblhjh̃ι , [. . . ] (>Apoll¸nioc, Kwnikw̃n
a'. VOroi prw̃toi. Apollonius, Conics, Book 1, First definitions) — If a point is
joined by a straight line with a point in the circumference of a circle which is not
in the same plane with the point, and the line is continued in both directions, [. . . ]
(Rosenfeld 2012:3)

4.9.2. Segment

The Classical Greek word τμη̃μα (n) (tmēma) is translated by Liddell & Scott
(1978) as ‘part cut off, section, piece’; ‘segment of a line, of a circle (i.e. portion
cut off by a chord), also of the portion cut off by radii, sector ’ [. . . ] ‘of segments
of other figures cut off by straight lines or planes; and of segments bounded by a
circle and circumscribed polygon’. Bailly (1950) translates it as ‘morceau coupé,
section, part, segment de cercle’, and Menge (1967) as ‘Schnitt’; ‘Abschnitt’.

In all cases it is about some part cut out from a given object. This object could
be a disk or a rectilinear segment, viz. when a rectilinear segment is given, and one
then cuts out a part of it (Book II, Propositions 3 and 4). As I understand it, the
term is not used for a rectilinear segment per se, only for a certain part cut out
from something else in the course of a construction (in Section 5 we shall take a
look at how the Greek viewed geometric constructions). So in general an εὐθε̃ια is
not thought of as being cut out from a straight line.

The term τμη̃μα is used for a segment of a circle15 in Book III:
ke'. KÔklou tm matoc dojèntoc prosanagr�yai tòn kÔklon, oÍ̃pèr âsti tmh̃ma. (Book
III, Proposition 25) — Given a segment of a circle, to describe the complete circle
of which it is a segment. (Heath 1926b:54) — Etant donné un segment de cercle,
décrire complètement [. . . ] le cercle duquel il est un segment. (Vitrac 1990:440) —
For a given segment of a circle, to complete the circle, the very one of which it is a
segment. (Fitzpatrick 2011:94)

The meaning ‘segment of a disk’ occurs, e.g., in Definition 6 in Book III:
'. Tmh̃ma kÔklou âstÈ tä perieqìmenon sqh̃ma Ípì te eÎjeÐac kaÈ kÔklou perifereÐac

(Book III, Definition 6) — A segment of a circle is that contained by a straight
line and a circumference of a circle. (Heath 1926b:1) — Un segment de cercle est la
figure contenue par une droite et une circonférence de cercle (Vitrac 1990:388) —
A segment of a circle is the figure contained by a straight-line and a circumference
of a circle. (Fitzpatrick 2011:70)

A definition of segment has also been “interpolated” after Definition 18 in Book I;
see Definition 19 in Euclid (1573:39), Hoüel (1883:12), and the remark on Definition
18 in Heath (1926a:187). It seems that the term is not used for a chord.

In conclusion, τμη̃μα is related to the verb τέμνειν ‘to cut’, τέμνω ‘I cut’, and
is firmly attached to the act of cutting. Therefore it is not used for rectilinear
segments in general, which are just there, not being the result of any cutting.

The English word segment, from the Latin segmentum ‘a piece cut out’, formed
from secare ‘to cut’, also carries this connotation, like the Russian pr�moline�ny�

15Here it does not really matter whether kÔkloc means ‘circle’ or ‘circular disk’.
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otrezok (pryamoliné̆ıny̆ı otrézok) ‘rectilinear segment’, from rezat~ (rézat ′) ‘to
cut’. This connotation is completely absent in the German Strecke, the Esperanto
streko, and the Swedish sträcka.

4.9.3. Radius and chord

In a circle there are rectilinear segments which have received special names in many
languages: radii and chords.

The Greeks had no distinct word for radius, which is with them [. . . ] the (straight
line drawn) from the centre � âk toũ kèntrou (eÎjẽia) [hē ek tou kentrou (eutheia)]
(Book III, Definition 1; Heath 1926b:2)

Mugler (1958–1959:17) gives the full expression for radius as ἡ ἐκ του̃ κέντρου (sc.16

πρὸς τὴν περιφέρειαν ἠγμένη εὐθε̃ια γραμμή).
There is also a word διάστημα (n) (diastēma) used for ‘radius’, or often for ‘the

length of a radius’ (Mugler 1958–1959:17).
Federspiel (2005:98, note 5) opposes the statement by Heath quoted above: he

says that the Greek had two words for ‘radius’, viz. the two just mentioned.
He explains that the first expression needs the article ἡ, and in a situation where

one needs the indefinite form, it cannot be used; here the word διάστημα comes in,
a fact which also explains why they are in complementary distribution (2005:105).

In Contemporary Greek, the word used for radius is ακτίνα (f) (Petros Maragos,
personal communication 2007-10-12; Takis Konstantopoulos, personal communica-
tion 2012-01-20). However, this word also means ‘ray’.

Similarly, they did not have a simple word for chord (in a circle): it is ἡ ἐν τω̃ι

κύκλωι εὐθε̃ια (hē en tō kuklō eutheia) as used not by Euclid but later by Heron
(Erik Bohlin, personal communication 2012-01-18; cf. Mugler 1958–1959:202) and
by Ptolemy (1898:48), who in the heading of Table ια΄ (11) writes: Κανόνιον τω̃ν

ἐν κύκλοω
ι
εὐθειω̃ν. With Euclid, not the expression itself but the words used in

referring to a chord appear in Definition 4 in Book III, see Heath (1926b:3); and
in Proposition 14 in Book III, see Heath (1926b:34).

The word χορδή (f) (khordē ) is given by Liddell & Scott (1978) as ‘guts, tripe’
[. . . ] ‘string of gut, ‘string of musical instrument’. Bailly (1950) translates it as
‘boyau’, [. . . ] ‘corde à boyau, corde d’un instrument de musique’. Frisk (1960) as
‘Darm, Darmsaite, Saite, Wurst’ and Menge (1967) as ‘Darm, Darmsaite’. Frisk
(1960) states that it is “Ohne genaue Außergreich. Enstprechung”. Linder & Wal-
berg (1862) translate Sträng p̊a ett instrument as ‘χορδή’, and Tarm as ‘ἔντερον,
χορδή’. But χορδή is missing in Millén (1853).

In Contemporary Greek the word used for chord and string is χορδή (f) (Takis
Konstantopoulos, personal communication 2012-01-20).

4.9.4. Eutheia unbounded

However, sometimes εὐθε̃ια carries another qualification:
b'. KaÈ peperasmènhn eÎjẽian kat� tä suneqàc àp� eÎjeÐac âkbalẽin.17 (Book I,
Postulate 2) — Prolonger indéfiniment, suivant sa direction, une ligne droite finie ;
(Hoüel 1883:14) — To produce a finite straight line continuously in a straight line.

16This abbreviation stands for scilicet ‘it is permitted to know’.
17The verb form âkbalẽin is in active voice, strong aorist, infinitive.
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(Heath 1926a:196) — Et de prolonger continûment en ligne droite une ligne droite
limitée. (Vitrac 1990:168) — And to produce a finite straight-line continuously in
a straight-line. (Fitzpatrick 2011:7)

From this it is obvious that an εὐθε̃ια can be explicitly qualified as bounded, which
indicates that the term could refer also to an unbounded line. Or, with a potential
infinity, a family of rectilinear segments! In other words, we can interpret Postulate
2 to mean that we can extend a given segment to another segment, as long as we
wish, but still of finite length.

a'. >EpÈ th̃c dojeÐshc eÎjeÐac peperasmènhc trÐgwnon Êsìpleuron sust sasjai.
(Book I, Proposition 1) — Sur une droite finie donnée AB [. . . ], construire un
triangle équilatéral. (Hoüel 1883:15) — On a given finite straight line to construct
an equilateral triangle. (Heath 1926a:241) — Sur une[. . . ] droite limitée donnée,
construire un triangle équilatéral. (Vitrac 1990:194) — To construct an equilateral
triangle on a given finite straight-line. (Fitzpatrick 2011:8)
i'. T�n dojẽisan eÎjẽian peperasmènhn dÐqa temẽin. (Book I, Proposition 10) —
Partager une droite finie donnée AB [. . . ] en deux parties égales. (Hoüel 1883:22) —
To bisect a given finite straight line. (Heath 1926a:267) — Couper en deux parties
égales[. . . ] une droite limitée donnée. (Vitrac 1990:216) — To cut a given finite
straight-line in half. (Fitzpatrick 2011:15)

The attribute πεπερασμένη ‘finite, bounded’ (passive voice, perfect participle, sin-
gular, feminine, nominative) would not be necessary here if εὐθε̃ια always meant
‘rectilinear segment’.

In the proof of Proposition 12, Euclid uses the fact that an eutheia divides the
plane into two half planes. This of course must imply that the line is infinite in
both directions.

4.9.5. Eutheia as ray

Finally, we note that sometimes εὐθε̃ια can mean ‘ray’:
>EkkeÐsjw tic eÎjẽia � DE peperasmènh màn kat� tä D �peroic dà kat� tä E, [. . . ]
(Book I, Proof of Proposition 22) — Tirons une droite DE, terminée en D, indéfinie
vers E. (Hoüel 1883:31) — Let there be set out a straight line DE, terminated at
D but of infinite length in the direction of E, [. . . ] (Heath 1926a:292) — Que soit
d’abord proposée une certaine droite DE, limitée d’un côté au point D, illimitée
de l’autre en E, [. . . ] (Vitrac 1990:237) — Let some straight-line DE be set out,
terminated at D, and infinite in the direction of E. (Fitzpatrick 2011:25)

In the statement of this proposition the lines are of finite length, but in its proof
there suddenly appears a ray.

5. Constructions

The discussion on segments in Subsubsection 4.9.2 opens up the question what the
Greek mathematicians could have meant when they talked about constructions.

Hellenistic mathematics was certainly constructive (every new figure introduced by
Euclid comes with a description of its construction), but in a sense much stronger
than that of modern constructivism, because the construction was not just a meta-
phor used for providing a demonstration of existence, but the actual goal of the
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theory, just as the machine described by Heron was constructed to lift weights and
not just to prove a “theorem of existence” about the machine. (Russo 2004:186)

Who is constructing?

Le géomètre grec ne reconnait qu’exceptionnellement des constructions dans le sens
que nous attachons communément à ce terme, c’est-à-dire dans le sens de la réalisa-
tion progressive d’une figure au moyen de lignes et de points ajoutés successivement
aux lignes et aux points qui constituent les données primitives du problème. Pour
le géomètre grec la figure, même si ses propriétés sont encore à démontrer, préexiste
à toute intervention humaine [. . . ] (Mugler 1958–1959:19)

Proclus (1992:64), Mugler (just quoted), Vitrac (1990:134) and Federspiel (2005:
106) all state that the Ancient Greek never constructed anything. The figures are
already there for all eternity:

Proclus nous avertit en effet que certains soutenaient que toutes les propositions
étaient des théorèmes, en tant que propositions d’une science théorétique portant
sur des objets éternels, lesquels n’admettent, en tant que tels, ni changement, ni
devenir, ni production : ce qu’on appelle 〈〈 construction 〉〉 n’est tel, de ce point de
vue, qu’au regard de la connaissance que nous prenons des choses éternelles (Vitrac
1990:134)

[. . . ] une thèse fondamentale de Platon et de ses successeurs [. . . ] : en mathéma-
tiques, on ne construit pas : les figures sont en réalité déjà construites de toute
éternité ; il n’y a donc pas d’avant ni d’après. (Federspiel 2005:105–106)

So any movement in time refers only to the way we learn about these things.
Christian Marinus Taisbak explains similarly:

When mathematicians are doing geometry, describing circles, constructing triangles,
producing straight lines, they are not really creating these items, but only drawing
pictures of them. (Taisbak 2003:27)

Plato, in The Republic, asserts (as we could expect): “[. . . ] geometry is the knowl-
edge of the eternally existent.” (Plato 1935:171, Book VII, 527B).

This Platonic idea is often reinforced by the language itself: the authors use the
passive voice, without indicating an agent, and the perfect tense, i.e., a tense which
indicates that something has occurred in the past and has a result remaining up to
the present time (Mugler 1958–1959:20; Michel Federspiel, personal communication
2012-04-16). This is in slight contradiction to Plato’s statement about the language
of geometricians:

Their language is most ludicrous,[. . . ] though they cannot help it,[. . . ] for they
speak as if they were doing something [. . . ] and as if all their words were directed
towards action. (Plato 1935:171, Book VII, 527B)

There are, however, some exceptions to the use of the passive voice: In Euclid’s
Data (Δεδομένα), the first two definitions use the pronoun we. “The use of ‘we’ in
the definitions is alien to Euclid’s style; in the Elements no person is involved in
constructions or proofs in any way [. . . ]” (Taisbak 2003:18).

Regardless of these philosophical and linguistic considerations it is convenient
for us nowadays to think of an ongoing construction, just as a way of thinking—not
implying any opinion on this interesting historical question.
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6. Triangular domains

A triangular domain can be given in three different ways: using points, segments,
or straight lines, respectively.

6.1. Triangular domains in the Euclidean plane

E1. In E2, three points which do not lie on a straight line determine a triangular
domain: it is the convex hull of the three points. If the points are a, b, c, their
convex hull is the set

cvxh({a, b, c}) = {λa+ µb+ ρc; λ, µ, ρ > 0, λ+ µ+ ρ = 1}.

This is the closed triangular domain defined by a, b, c.
E2. A triangular domain can also be given by three segments [a, b], [b, c], [c, a] with
pairwise common endpoints but not contained in a straight line. The complement
of the union [a, b] ∪ [b, c] ∪ [c, a] has two components, and one is bounded—this is
the open triangular domain.
E3. Finally, a triangular domain in E2 can be given by three straight lines
L1, L2, L3 which meet in exactly three different points. The complement of the
union L1 ∪ L2 ∪ L3 has seven components, and exactly one of them is bounded;
this defines the open triangular domain.

To be precise, if the equations of the three lines are fj(x, y) = 0, j = 1, 2, 3,
where the fj are affine functions, and if the signs are chosen so that fj(p) < 0 for
some point p in the bounded component of E2 r {L1 ∪L2 ∪L3}, then the other six
components are defined by the conditions that fj(q) shall be nonzero for all j and
positive for one or two choices of j; there is no point q with fj(q) positive for all j.
The set of points where the convex function f = max(f1, f2, f3) is negative is the
open triangular domain determined by the three lines.

To sum up, in E2 we can define a triangular domain using indifferently points,
segments or straight lines.

6.2. Triangular domains in the projective plane

In P2 the determination of triangular domains takes on a different quality.
P1. We first look at three points in P2 which do not lie in a straight line. They
are given by three rays in R3,

Rj = R+a
(j) = {ta(j); t > 0}, j = 1, 2, 3,

where the a(j) are three nonzero vectors in R3. We can now form

cvxh(R1 ∪ θ2R2 ∪ θ3R3) ∪ (− cvxh(R1 ∪ θ2R2 ∪ θ3R3)),

where (θ2, θ3) = (±1,±1) (four possibilites). These are the four triangular domains
that we can form in P2 from the three points, and we see that two bits of information
are needed in addition to the information contained in the three points in order to
determine which domain we shall consider.
P2. The complement of the union of three segments which do not lie in a straight
line and have pairwise common endpoints has two components, and they are of
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equal status. A triangular domain in this case is given by three segments and the
additional information which of the two components is meant. And remember that
the segments also require one bit of information each in addition to the information
contained in the endpoints.
P3. The complement of three lines in P2 which meet in exactly three different
points has four components, all of equal status. So a triangular domain is given by
three lines plus the additional information which of the four components is meant.

Explicitly, if the lines are given by three planes in R3 passing through the origin
with linear equations lk(x, y, z) = 0, the four triangular domains are( 3⋂

k=1
Yθ,k

)
∪

(
−

3⋂
k=1

Yθ,k

)
, θ = (θ1, θ2, θ3) ∈ {−1, 1}3,

where Yθ,k is the half space

Yθ,k = {(x, y, z) ∈ R3r{(0, 0, 0)}; θklk(x, y, z) > 0}, k = 1, 2, 3, θ ∈ {−1, 1}3,

and where θ = (θ1, θ2, θ3) = (1,±1,±1) (four possibilities).
We may conclude that, just as for segments, the notion of triangular domain

comes with different cognitive content in P2 compared with E2.

7. Proposition 16

Proposition 16 says, as we have seen in Section 1, that an exterior angle in a triangle
is greater than any of the two opposite interior angles. Let a triangle with vertices
a, b, c be given, and let us examine the proof that the exterior angle at c is strictly
larger than the interior angle ∠bac at a (see the figure on page 20). Euclid extends
the side [b, c] beyond c to a point d such that c lies between b and d (the exact
position of d is not important; it serves only to define the exterior angle ∠acd at c).
The problem is now to prove that the exterior angle ∠acd is larger than the interior
angle ∠bac. Euclid introduces a new point e as the midpoint of the side [a, c] and
extends the segment [b, e] to a point f , defined so that e is the midpoint of [b, f ].
He therefore obtains two congruent triangles 4abe and 4cfe, where ∠ecf = ∠eab.
Hence the angle at c in the triangle 4cfe is equal to the angle at a in the triangle
4abe. So far everything is OK. Euclid then says:

meÐzwn dè âstin � Ípä EGD th̃c Ípä EGZ; (Sjöstedt 1968:22; Fitzpatrick 2011:21)
(But the angle ∠ecd is greater than the angle ∠ecf ;)

This is something we should see from a (deceptive) lettered diagram. (On the
significance of the lettered diagram in Greek mathematics, see Section 8.)

At this point, it is convenient to continue the argument on a sphere. We need
only look at a triangle on the sphere such that the distance δ(b, e) between b and
e is π/2. (We measure as usual the length of a side by the angle subtended by it
as viewed from the center of the sphere.) Then the distance between f and b is π,
that is, they are antipodes and will be identified in the projective plane. Hence the
great circle determined by the side [b, c] and the great circle through b and e meet
at f , and the exterior angle at c is equal to the interior angle at a.

This is the simplest example I have found; by perturbing it a little (taking the
distance between b and e to be a little larger than π/2), we can arrange that the
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exterior angle at c is smaller than the interior angle at a.18 In fact, the crucial
quantity here is the length of the median [b, e]:

Proposition 7.1. Let a triangular domain on the sphere be given with vertices
in a, b, c. We assume that all sides and all angles are less than π. Let e be the
midpoint on the side [a, c].
(1) If the distance between b and e is less than π/2, then the conclusion in Euclid’s
Proposition 16 holds: the exterior angle at c is larger than the interior angle at a.
(2) If the distance between b and e is equal to π/2, then the exterior angle at c is
equal to the interior angle at a.
(3) If the distance between b and e is larger than π/2, then the exterior angle at c
is smaller than the interior angle at a.

It is reasonable to assume that no side or angle in the triangle is equal to π or
larger—we avoid the trouble of defining the exterior angle of a concave angle.

Note that this result is a result on the geometry of the projective plane. I have
chosen to formulate it for the sphere only because in this way it will be easier to
visualize.

Proof. Note that we cannot speak about the midpoint between two non-antipodal
points of the sphere, since there are two midpoints (they are antipodal). However,
if a triangular domain is given, we take the midpoint which belongs to it. This is
how we define e.

By the Spherical Sine Theorem applied to the triangle 4bcf we obtain

sin(π − ∠ecd+ ∠ecf) sin δ(b, c) = sin(∠bfc) sin δ(b, f).

Now

sin(π − ∠ecd+ ∠ecf) = sin(∠ecd− ∠ecf) = sin(∠ecd− ∠bac),

and since sin δ(b, c) and sin(∠bfc) = sin(∠abc) are positive by assumption, the
sine of the difference ∠ecd − ∠bac has the same sign as sin δ(b, f) = sin 2δ(b, e).
The three cases (1), (2), (3) are obtained if δ(b, e) < π/2, = π/2, and > π/2,
respectively. �

Thus if all three medians in the triangle we consider are less than π/2, Euclid is
all right.

8. Relying on diagrams

Reviel Netz devotes the first chapter of his book (1999:12–67) to an instructive
account of the all-important role of the lettered diagram in Greek mathematics.
The lettered diagram is a combination of different elements on the logical plane, the
cognitive plane, the semiotic plane, and the historical plane; “the fertile intersection
of different, almost antagonistic elements which is responsible for the shaping of
deduction” (Netz 1999:67).

18Also Heath (1926a:280) remarks that in order for the proof to be valid, it is necessary that
the line cf should fall within the angle ∠acd, and Bernard Vitrac (personal communication 2012-
04-01) directs my attention to the fact that also he points this out (Vitrac 1990:228).
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When I studied Euclidean geometry at Norra real in Stockholm some sixty years
ago, our teacher, Bertil Broström, repeatedly emphasized that we were not allowed
to draw any conclusions from the diagrams: all proofs should depend only on the
axioms and the chain of logical implications. Nevertheless, the diagrams served as
inspiration and mnemonic help—and perhaps a little bit more.

It is an interesting fact that we can actually draw some valid conclusions from
a diagram—provided it is not too special (whatever that means). And it is not
obvious where to draw the boundary between legitimate and forbidden use of visual
information. This point was brought up in a discussion with the authors of the
paper by Avigad et al. (2009). They discuss there the role of diagrams in the
proofs, and the formal logical system called E which they have constructed accepts
Euclid’s proof considered in Section 7 without protest.19 John Mumma explains
that the system E licenses the inference that the angle ∠ecd is larger that the angle
∠ecf .

Similarly, one cannot generally infer, from inspecting two angles in a diagram, that
one is larger than the other, but one can draw this conclusion if the diagram “shows”
that the first is contained in the second. (Avigad et al. 2009:701)

So clearly the formal system E does accept some information from a diagram.
The relations of betweenness and same-sidedness are primitives in the system E.

The possibility of a non-orientable plane is ruled out not by any explicit assumption
but by the rules for reasoning with betweenness and same-sidedness (John Mumma,
personal communication 2012-04-15). Conceivably, one could construct a similar
formal system which does not have the betweenness relation for triples of points,
nor the same-sidedness relation. (Cf. the Kernsatz of Pasch quoted in the next
section.)

9. Orientability

Orientability of a manifold means, roughly speaking, that you can walk around
it with a watch and the hands of the watch still go around clockwise (as viewed
from the outside) when you return to the starting point after an excursion. The
Euclidean plane E2 and the sphere S2 are both orientable. However, the sphere
is not a model for Euclid’s axioms (postulates), since two lines in general position
will intersect in two points, not in one, and two antipodal points do not determine
a great circle uniquely. This is what forces us to identify antipodes; the projective
plane becomes a bona fide model—at least we so argued—but orientability is lost.
Nevertheless, it is often convenient to conduct an argument on the sphere, as I
have done in Proposition 7.1 above.

Postulate 5, the Postulate of Parallels, quoted in Subsection 3.2, states that two
lines meet on a certain side. In the projective plane it is meaningless to talk about
the side of a straight line. Given a point on a straight line, you can define two sides
of the line in a neighborhood of the point, but if you go along the line and have
your watch on your left wrist, you come back after a while with the watch on your
right wrist (as viewed from the outside). So the very fact that Euclid talks about

19The system E is proved to be equivalent to an earlier formal system for Euclidean geometry
due to Alfred Tarski.
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“the same side” and “that side” means that he assumes the plane to be orientable.
Hence projective geometry is excluded.

One can retain from Postulate 5 merely that the lines are not parallel, i.e., that
they do meet somewhere, not mentioning any side. In this modified form, Postulate
5 is true also in the projective case.

Here it is of interest to note one of Pasch’s axioms, viz.
III. Kernsatz. — Liegt der Punkt C innerhalb der Strecke AB, so liegt der Punkt
A außerhalb der Strecke BC (Pasch 1926:5). — (III. Axiom. If the point C lies
within the segment AB, then the point A lies outside the segment BC.)

In the projective plane this can have a meaning only if we define both segments
carefully; see the discussion in Subsection 3.2.

10. Conclusion

10.1. The first question

Propositions 16 and 27 become true if we suppose orientability or introduce some
other hypothesis which will rule out the projective plane. And orientability is a
reasonable hypothesis: Euclid in his Postulate 5 talks about the sides of a straight
line, which is meaningless without orientability.

With the projective plane as a model, we can either conclude that Proposition
16 is meaningless, since we cannot compare angles, or false if we measure angles as
discussed in Subsection 3.2. Proposition 27 can be interpreted as saying that the
mentioned lines do not meet, and if so it is false whether we measure the angles
on the sphere or not. The reasonable way out of this confusion is, again, to accept
the tacit hypothesis of orientability.

If our beloved teacher, ὁ στοιχειωτής, could see my paper, he might react in one
of two possible ways. Either

a'. Sure, my boy, I do assume orientability—I just forgot to jot it down. (I was
too busy thinking about Postulate Five.) In the next edition, which is now being
prepared here in the Mousẽion, I shall include orientability as Postulate Six. Who
wants to live on a Möbius strip anyway?

or
b'. >IdoÔ! — Hey, that’s interesting! Seems to be a more general geometry. I shall
write about it in Book Fourteen. And I like Napier’s rule and the Spherical Sine
Theorem which you learnt from your navigating father Sam Svensson even before
you studied my geometry and plane trigonometry for Bertil Broström. We are all
navigators here in Africa, aren’t we? Navigare necesse est, as somebody will soon
quip.

Can you guess which?

10.2. The second question

We have observed that the term εὐθε̃ια often means a rectilinear segment. Perhaps
this is its most basic meaning. In other contexts it could be interpreted as an infinite
straight line, but also, if we want to avoid an actual infinity, as a family of equivalent
rectilinear segments, thus as a potential infinity. However, in projective geometry,
the infinite straight lines are just great circles with opposite points identified, thus
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hardly infinitely large. This gives us one more reason to believe that Euclid did
not think about projective geometry. Finally, but rarely, it can mean ‘ray’.

For straight lines in the sense of Heath that are infinite in one or both direc-
tions there appears the problem of actual infinity; if we avoid that by considering
only segments, we have to obtain uniqueness by forming equivalence classes, which
is certainly an anachronistic viewpoint, but maybe was exactly what Euclid did
implicitly.

Let us listen to our beloved teacher once more, this time on eutheia:
g'. Lhrẽite! — Bah! What is straight is straight, and the wise understand. I do
not waste words in my geometry. You young people use too many. Maybe you left
Africa too early. I am afraid you will have to set up a Terminology Center in a
futile effort to control the flood.

And on infinity:
d'. Aristotle and his gang of physicists are harassing us mathematicians. We must
nowadays be careful when writing about infinity—potential infinity has rapidly
become PO—but at night I am free to think about actual infinity. I can even see
it.
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