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How to best fold a triangle
Christer O. Kiselman

Being neat
When you’re folding a sheet,
That’s mathematics!

Tom Lehrer
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Zusammenfassung. Wie faltet man am besten ein Dreieck?
Wir falten ein Dreieck einmal längs einer geraden Linie und untersuchen, wie klein
der Flächeninhalt der gefalteten Figur sein kann. Er kann immer so klein sein wie
der Bruchteil 2−

√
2 vom Flächeninhalt des ursprunglichen Dreiecks.

Das kann nicht verbessert werden: Zu jeder positiven Zahl ε existiert ein Dreieck,
das nicht besser als 2−

√
2− ε gefaltet werden kann.

Abstract
We fold a triangle once along a straight line and study how small the area of the
folded figure can be. It can always be as small as the fraction 2 −

√
2 of the area of

the original triangle.
This is best possible: For every positive number ε there are triangles that cannot

be folded better than 2−
√

2− ε.

1. The question

Suppose we have a paper in the form of a triangle. We fold it once along a straight line
and ask how small the area of the folded object can be—equivalently, how large the
area of the doubly covered part can be. Clearly this latter area cannot be larger than
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one half of that of the triangle, and it is exactly one half if and only if the triangle is
isosceles. But how large can the area of the doubly covered part be if the triangle is
scalene? And how small is the area in the worst possible case?

We may obviously ask what happens if we fold polygons with four, five, six, . . .
sides. As Bo Senje reports, problems on the folding of rectangles have been given to
students. But rectangles are quite special quadrilaterals. And then we should pass to
polyhedra in n > 3 dimensions . . .

2. The answer

Theorem 2.1. Every triangle can be folded along a straight line so that the area of the
doubly covered part is the fraction

√
2− 1 ≈ 0.4142 of the area of the original triangle.

This is best possible in the sense that, given any positive number ε, there exist
triangles that cannot be folded to yield an area of the doubly covered part larger than
the fraction

√
2− 1 + ε.

The area of the folded figure and the area of its doubly covered part sum up to the area
of the original triangle. To ask for the smallest area of the folded figure is therefore
equivalent to asking for the largest area of the doubly covered part. For the calculations
to be made, it is easier to consider the latter quantity, which we shall do from now on.
(See, e.g., Proposition 7.1. In the simple but important estimate in Proposition 9.1,
the folded object has infinite area, so we can only work with the area of the doubly
covered part of the strip.)

Denote the side lengths of the triangle by A, B and C, with the notation chosen so
that A 6 B 6 C.

We shall fold a triangle in two different ways:

1. If we fold along the bisector of the smallest angle, then the relative area of the
doubly covered part is B/(B + C). This quantity is >

√
2− 1 if and only if

(2.1) B > C/
√

2.

2. If we fold along a line which is orthogonal to the longest side, then the best result
to be obtained is C2/(B2 −A2 + 2C2). This quantity is >

√
2− 1 if and only if

(2.2) B2 6 A2 + (
√

2− 1)C2.

One of (2.1) and (2.2) always holds.
So to obtain the fraction

√
2− 1, we need two different kinds of folding: along lines

that pass through a vertex and lines that are orthogonal to a side. Since we use only
special foldings for these considerations, calculations are not very complicated.

To prove that it is not possible to do anything better, we must consider all foldings,
so calculations become more involved. We shall study triangles with vertices at a =
(0, 0), b = (1, 0), and c = (c1, c2), with c1 = 1

2

√
2 and c2 > 0 very small. This means

that the side lengths A : B : C are almost proportional to (1− 1
2

√
2) : 1

2

√
2 : 1. These

narrow triangles will give us the examples where all foldings are bad.
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When the line avoids the direction of the longest side as well as a direction orthog-
onal to the longest side, a simple estimate shows that the area of the doubly covered
part cannot be close to

√
2−1 (Subsection 9.1). The situations when the line is almost

parallel or almost orthogonal to the longest side of these thin triangles remain to be
studied. This is done in Subsections 9.2 and 9.3, respectively.

3. The history

Sometime during the years 1997–1999, Bo Senje at Halmstad University College asked
a question: How large can the doubly covered part of a folded triangle be? He had seen
some student problems on the folding of rectangles but, to his surprise, never any on
the folding of triangles. (Now we may suspect that the explanation was that triangles
are more difficult than rectangles.)

Georgi Mihailov Tchilikov (1967–2010), also at Halmstad University College, worked
on the problem from time to time since December 2004. Some time later (according to
Bo most probably in 2008) he found formula (6.1) for foldings along a bisector.

Bo also asked: Will the best folding always go through a vertex of the triangle?
The answer to this second question is in the negative as we shall see: for certain

triangles, folding orthogonally to a side gives better results than folding along a bisector
(see Remark 8.2). Also Georgi had found this. His results have not been published.

The questions posed by Bo reached me in April 2005. I did not know about the
results proved by Georgi until February 2015.

Independently of what was known in Halmstad, I proved (in 2005 or 2006) the
formula for foldings along lines through a vertex, and Martin Herschend then found a
triangle where folding orthogonally to a side gives a better result than folding along a
line through a vertex.

After having tried many different ways to approach the question—too many to be
remembered—I could finally prove in February 2015 that

√
2− 1 is best possible. The

proof was, however, so cumbersome that I did not dare to submit it to any journal.
Only in the evening of 2016 October 13 did I find a proof that might convince more
than one person. Of course I cannot exclude that there exist simpler proofs.

I thank Bo Senje for having asked these questions—a most important activity and
the starting point of any kind of research. He also checked an earlier version of the
manuscript and sent me comments.

I am grateful to two anonymous referees, whose comments have led to clarifications
in the presentation.

For origamics in general, see Flachsmeyer (2008) and Haga (2008). More recently,
Jäger et al. (2014), Oswald (2015), and Flachsmeyer (2016) studied paper foldings.
The first-mentioned article treats mostly folding of rectangles, then of right-angled
triangles, and finally of general triangles. However, the best possible result is not
obtained. Oswald’s paper is about results on paper foldings obtained by Adolf Hurwitz
(1859–1919).
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4. Calculating with triangles

4.1. Best foldings and the worst best folding

Let T be a triangle, understood as the convex hull of three non-collinear points in the
plane, and let area(T ) be its area. We shall denote by T (a, b, c) the triangle with
vertices a, b, c.

We denote by Y (ϕ, t) the half plane defined by

(4.1) −x1 sinϕ+ x2 cosϕ 6 t, ϕ ∈ R, t ∈ R,

and by L(ϕ, t) its boundary, defined by

(4.2) −x1 sinϕ+ x2 cosϕ = t, ϕ ∈ R, t ∈ R,

forming an angle ϕ with the positive x1-axis. Obviously Y (ϕ + 2π, t) = Y (ϕ, t) and
L(ϕ+ π, t) = L(ϕ,−t).

Let Y be a half plane and let T [∂Y ] = T [L] be the reflection of T in its boundary
∂Y = L. We fold T along L and place the folded object in Y . Then the part which is
doubly covered is T ∩ T [∂Y ] ∩ Y . We denote it by TY . It is in general a quadrilateral.
The folded object is (T ∪ T [∂Y ])∩ Y , to be denoted by T Y . It is in general a heptagon.
See Figures 1 and 4 on pages 5 and 23, respectively.

Depending of the shape of the triangle and the position of the line, some geometric
elements can coincide: the doubly covered part can be a triangle; the folded object can
have less than seven sides: six, five, four, or even three sides. See Figure 3 on page
21 for an example where TY is a quadrilateral and T Y has five vertices. These special
cases need not be treated separately since the calculations in the general case cover
them all.

We have

area(TY ) + area(T Y ) = area(T ∩ Y ) + area(T [∂Y ] ∩ Y ) = area(T ),

so that the relative areas satisfy

area(TY )
area(T ) + area(T Y )

area(T ) = 1.

The problem is to maximize the area of the set TY which is doubly covered.
We define the best folding of T as the largest relative area of the doubly covered

object,

(4.3) BF(T ) = sup
Y

area(TY )
area(T ) ,

where the supremum is taken over all possible half planes Y . For each triangle, the
supremum is attained for at least one choice of Y . The quantity BF(T ) satisfies

(4.4) 0 < BF(T ) 6 1
2 .
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Figure 1. The original triangle T (a, b, c) has its vertices at a, b and c. We fold along
a straight line L(ϕ, t), which intersects [a, b] in a point p and [c, a] in a point q, and
place the folded object to the right of the line. The doubly covered set TY is then a
quadrilateral Q(p, r, s, q) with vertices at p, r, s, q. The folded object T Y is a heptagon
with vertices at p, b, r, a∗, s, c, q, where a∗ is the reflection of a in the line L(ϕ, t).
In the figure, the parameters ϕ and t defining the line L(ϕ, t) are chosen to satisfy
0 < ϕ < α < 1

2π and a1 < p1 = −t/ sinϕ < b1.

As already noticed, the second inequality in (4.4) is an equality if and only if T is
isoceles and is realized when L = ∂Y is the bisector between two equal sides.

How bad can BF(T ) be? Let us define the worst best folding WBF as

(4.5) WBF = inf
T

BF(T ) = inf
T

sup
Y

area(TY )
area(T ) .

4.2. Standard coordinates

It will often be convenient use the following coordinate system.

(4.6)

A triangle in standard coordinates:
The vertices are a = (0, 0), b = (1, 0) and c = (c1, c2) ∈ Γ,where

Γ =
{
c ∈ R2; 1

2 6 c1 < 1, c2 > 0, c2
1 + c2

2 6 1
}
.

The angles at the vertices a, b, c are denoted by α 6 β 6 γ.

Thus all possible triangles are represented by the point c in the set Γ, which is bounded
by the segments [(1

2 ,
1
2

√
3), (1

2 , 0)] and [(1
2 , 0), (1, 0)], and the circular arc from (1, 0) to

(1
2 ,

1
2

√
3) with center at the origin and of radius 1. The triangles with c1 = 1

2 as well
as those with c on the circular arc are isoceles, and for them BF(T ) = 1

2 .
We shall prove that, in standard coordinates,

(4.7) BF(T ) > max
(

1
1 + 1/‖c‖2

,
1

2c1 + 1

)
, c ∈ Γ.
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The right-hand side is larger than
√

2−1 for all c ∈ Γ. It follows that BF(T ) >
√

2−1
for all triangles T , and that WBF >

√
2− 1. Thus the first part of the main theorem

follows.
The second part of the main theorem, to be proved in Section 9, says that the

infimum of BF(T ) over all triangles T is equal to
√

2−1. It follows that WBF =
√

2−1.
The right-hand side in (4.7) can be extended to a continuous function of c ∈ Γ =

Γ ∪ [(1/2, 0), (1, 0)], and this extension takes the value
√

2 − 1 only at c = (1/
√

2, 0).
Hence the bad triangles are only those with c close to (1/

√
2, 0). So, the infimum

defining WBF is not attained: there is no worst triangle, but a family (Tε)ε>0 of bad
triangles such that BF(Tε) tends to WBF as ε↘ 0; in standard coordinates, the vertex
c ∈ Γ must tend to (1/

√
2, 0) /∈ Γ.

4.3. A calculus of points and lines

As already mentioned, the vertices of a triangle will be called a, b, c. Its angles will
be denoted by α, β, γ; its side lengths A = ‖b − c‖2, B = ‖c − a‖2, C = ‖a − b‖2,
where ‖x‖2 =

√
x2

1 + x2
2 denotes the Euclidean norm of a vector x. Often, but not

always, we shall choose notation so that A 6 B 6 C. Then also α 6 β 6 γ, and
sinα 6 sin β 6 sin γ = sin(α + β). We have

0 < α 6 π/3, 0 < β < π/2, π/3 6 γ < π.

In addition to these inequalities we have α 6 β 6 1
2π−

1
2α, so that the admissible pairs

(α, β) belong to the closed triangle with vertices at (0, 0), (1
3π,

1
3π) and (0, 1

2π) with
the segment [(0, 0), (0, 1

2π)] removed.
We shall need some explicit calculations on lines and reflections in lines. We study

half planes Y (ϕ, t) defined by (4.1) and lines L(ϕ, t) defined by (4.2).
Two straight lines L(ϕ1, t1) and L(ϕ2, t2) with ϕ1−ϕ2 /∈ πZ meet in a unique point

(4.8) y =
(
t2 cosϕ1 − t1 cosϕ2

sin(ϕ1 − ϕ2) ,
t2 sinϕ1 − t1 sinϕ2

sin(ϕ1 − ϕ2)

)
.

Two different points p and q determine a line L(θ, s) with

(4.9) θ = arccos
(
p1 − q1

‖p− q‖2

)
= arcsin

(
p2 − q2

‖p− q‖2

)
and s = p1q2 − p2q1

‖p− q‖2
.

By reflection in the straight line L(ϕ, t), a point p is mapped to a point p∗, which
is given by

(4.10)
(
p∗1
p∗2

)
=
(

cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)(
p1
p2

)
+ 2t

(
− sinϕ
cosϕ

)
.

A line L(θ1, s1), when reflected in a line L(ϕ, t), is mapped to the line L(θ2, s2),
where

(4.11) θ2 = 2ϕ− θ1, and s2 = 2t cos(ϕ− θ1)− s1.
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4.4. A calculus of areas

We shall use the notation ρT (ϕ, t) for the relative area of TY (ϕ,t), thus

(4.12) ρT (ϕ, t) = area(TY (ϕ,t))
area(T ) , (ϕ, t) ∈ R ×R.

We can take the supremum in two steps:

BF(T ) = sup
ϕ∈R

sup
t∈R

ρT (ϕ, t) = sup
ϕ∈R

σT (ϕ),

where

(4.13) σT (ϕ) = σT (ϕ+ π) = sup
t∈R

ρT (ϕ, t), ϕ ∈ R,

the best that can be obtained if we fold only along lines parallel to a fixed line.
If the vertices a, b, c are taken in the positive direction, the triangle T (a, b, c) has

the area

(4.14) area(T (a, b, c)) = 1
2 (|ab|+ |bc|+ |ca|) ,

where we think of a ∈ R2 as a column vector, a = (a1, a2)T, and write

|ab| = det
(
a1 b1
a2 b2

)
= a1b2 − a2b1.

A quadrilateral with vertices a, b, c, d will be denoted by Q(a, b, c, d). If the vertices
are taken in the positive direction, it has the area

(4.15) area(Q(a, b, c, d)) = 1
2 (|ab|+ |bc|+ |cd|+ |da|) .

4.5. Special foldings

We shall also briefly discuss quantities BFvertex(T ), BF⊥(T ), WBFvertex, and WBF⊥,
defined in analogy with BF(T ) and WBF, but when we fold only along lines that pass
through a vertex or are orthogonal to a side, respectively. Clearly

BFvertex(T ),BF⊥(T ) 6 BF(T ) for every triangle T,

yielding WBFvertex,WBF⊥ 6WBF. Actually we have strict inequality here:

WBF⊥ = 1
3 <WBFvertex = 3

2 −
1
2
√

5 <WBF =
√

2− 1.

We shall find families (T vertex
ε )ε>0 and (T⊥ε )ε>0 of bad triangles for these two special

foldings.
In the next sections, we shall start by studying some special foldings. We first fold

along a straight line which is parallel to a side; see Section 5. This kind of folding can
never give a better result than 1

3 <
√

2− 1.
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To prove that a triangle can always be folded to yield the relative area
√

2 − 1 of
the doubly convered set we shall study two special ways of folding a triangle.

We fold along a line which passes through a vertex; see Section 6 and Corollary 6.2.
In this case

(4.16) BFvertex(T ) = max
(

1
1 + sin γ/ sin β ,

1
1 + sin β/ sinα

)
,

where α 6 β 6 γ are the angles of T .
If we fold along a line which is parallel to a bisector, the result is the same, i.e., the

supremum of area(TY ) over all half planes with L = ∂Y parallel to a certain bisector
is the same as the supremum of the area over all half planes Y with L = ∂Y passing
through the vertex of that bisector.

The bad triangles for this kind of folding are those with vertices in (0, 0), (0, 1),
(c1, c2), where c1 = Au and c2 is a small positive number. Here Au = 1

2(
√

5 − 1) ≈
0.6180 is the Golden Ratio (also known as the Golden Section or Golden Proportion).
For them the best folding tends to 1/(1 + 1/Au) = 3

2 −
1
2

√
5 ≈ 0.3820 (see Corollary

6.2).
Then we fold along a straight line which is orthogonal to a side (see Section 7). It

turns out that the worst best folding WBF⊥ for these foldings is 1
3 .

It can happen that the supremum when we keep L parallel to a given direction
which is not a bisector is larger than when L passes through a vertex (see Remark 8.2).

Combining two of the methods, viz. folding either along lines through a vertex or
orthogonally to a side (a choice depending on the triangle), we find that the universal
constant WBF is at least equal to

√
2− 1 ≈ 0.4142; see (4.7).

5. Folding along a line parallel to a side

When folding along a line parallel to a side, it matters whether the angles adjacent to
the side are at most 1

2π or whether one is larger then 1
2π. In the first case, the best

result is always 1/3, thus smaller than
√

2 − 1; in the second case it is even smaller
than 1/3. Thus folding along a line parallel to a side never yields a good result.
Proposition 5.1. Let T be the triangle with vertices at a = (0, 0), b = (1, 0), c =
(c1, c2), assuming 0 6 c1 6 1 and c2 > 0. We fold it along the line L(0, t) = ∂Y (0, t),
thus of equation x2 = t, and put the folded object in the half plane Y (0, t), defined by
x2 6 t. Then the relative area of

TY (0,t) = T ∩ T [∂Y (0,t)] ∩ Y (0, t)
is

ρT (0, t) = area(TY (0,t))
area(T ) =



0 t 6 0;

1
3 −

3
c2

2

(
t− 1

3c2
)2
, 0 6 t 6 1

2c2;

1
c2

2
(c2 − t)2 1

2c2 6 t 6 c2;

0 c2 6 t.
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Its maximum is attained for

t = c2

3 and is σT (0) = ρT (0, c2/3) = 1
3 .

It can be observed that by performing a shear, the general case 0 6 c1 6 1 can be
reduced to the special case when c1 = 1, which means that the line is orthogonal to
the side [a, b]. In turn this is equivalent to the special case when c1 = 1 in Proposition
7.1. Anyway, the proof is very simple even if we assume only that 0 6 c1 6 1, and is
therefore omitted.

If one of the adjacent angles is larger than 1
2π, the best result is smaller than 1/3:

Proposition 5.2. Let T be the triangle with vertices at a = (0, 0), b = (1, 0), c =
(c1, c2), assuming now c1 > 1 and c2 > 0. Then the relative area of

TY (0,t) = T ∩ T [∂Y (0,t)] ∩ Y (0, t),

where the half plane Y (0, t) is defined by x2 6 t, is

ρT (0, t) = area(TY (0,t))
area(T ) =



0 t 6 0

1
2c1 + 1 −

2c1 + 1
c2

2

(
t− c2

2c1 + 1

)2
, 0 6 t 6

c2

2c1
;

1
c2

2(2c1 − 1) (c2 − t)2 c2

2c1
6 t 6 c2,

0 c2 6 t.

Its maximum is attained for

t = c2

2c1 + 1 and is σT (0) = ρT (0, c2/(2c1+1)) = 1
2c1 + 1 .

Thus, in both cases,

σT (0) = min
(1

3 ,
1

2c1 + 1

)
, c1 > 1

2 .

The proof of this proposition is also easy and is omitted here.
When c1 ↗ +∞, equivalently β ↗ π, the best folding becomes very bad: the

relative area of the doubly covered set tends to 0

Corollary 5.3. If no angle in a triangle is larger than 1
2π, then the best result for the

area of the doubly covered object when folding along a line parallel to a side is 1
3 in all

three cases.
If one angle, say β, is larger than 1

2π, then folding along a line parallel to [a, b],
[b, c], and [c, a] yields, respectively, the best result

1
2‖c− a‖2 cosα + 1 <

1
3 ,

1
2‖c− a‖2 cos γ + 1 <

1
3 , and 1

3 .
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6. Folding along a line parallel to a bisector

Proposition 6.1. Let T be the triangle with vertices at a = (0, 0), b = (b1, b2), c =
(c1, c2), assuming c1 < 0 < b1 and 0 < c2 6 b2. Assume that the line L(−π/2, t),
i.e., the line of equation x1 = t, is parallel to the bisector between the sides [a, b]
and [a, c]. It follows that c2/c1 = −b2/b1. Then the relative area of TY (−π/2,t) =
T ∩ T [∂Y (−π/2,t)] ∩ Y (−π/2, t) is

ρT (−π/2, t) = area(TY (−π/2,t))
area(T ) =



0 t 6 c1

K1(t− c1)2, c1 6 t 6 0;
K2(b1 − t)2 0 6 t 6 b1,

0 b1 6 t,

where
K1 = b1

c2
1(b1 − c1) and K2 = 1

b1(b1 − c1) .

Its maximum is attained for

t = 0 and is σT (−π/2) = ρT (−π/2, 0) = −c1

b1 − c1
= c2

b2 + c2
= B

B + C
.

Proof. It is clear that, for c1 6 t 6 0, the value of the doubly covered area is propor-
tional to the the square of t− c1, and similarly proportional to (b1− t)2 for 0 6 t 6 b1.
To determine K1 and K2 we only have to calculate ρT (−π/2, 0) = K1c

2
1 = K2b

2
1. �

We see that the side [a, b] reflected in the line L(−π/2, t) is parallel to the side [a, c],
and this accounts for the discontinuity in the derivative of ρT (−π/2, t) for t = 0.

Corollary 6.2. If we fold a triangle with side lengths A 6 B 6 C along the bisector
of its smallest angle, then the relative area of the doubly covered set is B/(B + C).
Similarly, folding along the bisector of the angle opposite to B yields A/(A+C). If we
fold along the bisector of the largest angle, the result is A/(A+B). If the lengths of the
sides of a triangle are A, B and C with A 6 B 6 C and we fold along lines through a
vertex, the maximum of area(TY )/ area(T ) is

(6.1) max
(

B

B + C
,

A

A+B

)
= max

(
1

1 + sin γ/ sin β ,
1

1 + sin β/ sinα

)
.

It follows that

BFvertex(T ) = max
(

1
1 + sin γ/ sin β ,

1
1 + sin β/ sinα

)
,

and that the universal constant WBFvertex is equal to

WBFvertex = 3
2 −

1
2
√

5 ≈ 0.3820.
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Hence the constant WBFvertex is 3
2 −

1
2

√
5, and the constant WBF is therefore larger

than or equal to this number.

Proof. There are three bisectors, and Proposition 6.1 shows that the best we can do
is the maximum of the three quantities is B/(B + C), A/(A + B) and A/(A + C).
However, the last quantity is always majorized by each of the other two. �

The bad triangles for this kind of folding are T vertex
ε = T (a, b, c) in standard coordinates

with c1 = Au = 1
2

√
5− 1

2 ≈ 0.6180 and c2 = ε.
We see that BFvertex(T ) = B/(B +C) when the middle side is large, meaning that

B >
√
AC, the geometric mean of the lengths of the two other sides. To get a good

result, we then fold along the bisector of the smallest angle, α. When the middle side
is small, meaning that B 6

√
AC, then BFvertex(T ) = A/(A+B). Then we fold along

the bisector of the largest angle, γ. In particular, when A ≈ 1− 1
2

√
2, B ≈ 1

2

√
2, and

C = 1, then B >
√
AC, so the best result is obtained by folding along the bisector at

a, yielding B/(B + C) ≈
√

2− 1.
While the infimum of all BFvertex(T ) is 1

2(3 −
√

5), we can see easily that equality
cannot occur in the inequality BFvertex(T ) > 1

2(3−
√

5), for if so, we must have

max
(

B

B + C
,

A

A+B

)
= 1

2(3−
√

5),

which implies that C/B > 1
2(
√

5 + 1), B/A > 1
2(
√

5 + 1), which in turn implies that
A+B 6 C, contradicting the strict triangle inequality C < A+B.

7. Folding along a line orthogonal to a side

Proposition 7.1. Let T be a triangle in standard coordinates (4.6). We fold along a
line L(−π/2, t) = L(π/2,−t), i.e., of equation x1 = t, orthogonal to [a, b]. Then the
relative area ρT (−π/2, t) of the triangle TY (π/2,−t) is

area(TY (−π/2,t))
area(T ) =



0 t 6 0;
1
c1
t2, 0 6 t 6 1

2 ;

1
2c1 + 1 −

2c1 + 1
c1(2c1 − 1)

(
t− 2c1

2c1 + 1

)2
, 1

2 6 t 6 c1;

1
1− c1

(1− t)2, c1 6 t 6 1;

0 1 6 t.

The function t 7→ ρT (−π/2, t) is a spline function of degree 2. Its derivative at the
nodes t = 0, 1/2, c1, 1 has the values 0, 1/c1, −2, and 0, respectively. Its maximum is
attained for

t = 2c1

2c1 + 1 and is σT (π/2) = σT (−π/2) = ρT (−π/2, 2c1/(2c1 + 1)) = 1
2c1 + 1 .
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By choosing c1 < 1 close to 1 we can obtain that the best relative area is just a
little bit larger than 1

3 , similarly to the result when we fold along a line parallel to
a side; see Proposition 5.1. In fact, the bad triangles for this kind of folding are
T⊥ε = T (a, b, c) with c1 = 1−ε and c2 = ε2. Then folding along a normal to [a, b] yields
1/(2c1 + 1) = 1/(3 − 2ε) ↘ 1

3 as ε ↘ 0. Foldings along normals to [b, c] or [c, a] give
worse results since γ > 1

2π. Therefore WBF⊥ = 1
3 .

If we choose c1 = 1
2

√
2, the largest relative area is

√
2− 1, attained for t = tmax =

2−
√

2. The expression for t ∈ [1/2, 1/
√

2] is

(7.1) ρT (−π/2, t) =
√

2− 1− (4 + 3
√

2)(t− tmax)2,
1
2 6 t 6

1
2
√

2.

We get the following values of ρT (−π/2, t) for three values of t:

t = 0.5 yields ρT (−π/2, t) = 1
4

√
2 ≈ 0.3536;

t = tmax = 2−
√

2 ≈ 0.5858 yields ρT (−π/2, t) = σT (−π/2) =
√

2− 1 ≈ 0.4142;

t = c1 = 1
2

√
2 ≈ 0.7071 yields ρT (−π/2, t) = 1− 1

2

√
2 ≈ 0.2929.

Proof. The formulas for t 6 1
2 and c1 6 t are easily found.

For 1
2 < t < c1, the two segments [(2t, 0), (t, c2t/c1)] and [(c1, c2), (1, 0)] intersect at

a point s = (s1, s2) with

s1 =
1
2c1 − (1− c1)t

c1 − 1
2

, s2 = c2
2t− 1
c1 − 1

2
.

We shall calculate the area of the doubly covered figure, which is the quadrilateral
Q(p, r, s, q) with vertices at p = (t, 0), r = b = (1, 0), s = (s1, s2) just defined, and
q = (t, c2t/c1).

By (4.15), twice the area of Q(p, r, s, q) is given by the formula

det
(
t 1
0 0

)
+ det

(
1 s1
0 s2

)
+ det

(
s1 t
s2 c2t/c1

)
+ det

(
t t

c2t/c1 0

)

= 0 + s2 + c2s1t

c1
− s2t−

c2t
2

c1
,

which divided by c2, twice the area of the triangle, gives the second-degree polynomial
in the statement of the proposition. The derivative is zero at t = 2c1/(2c1 + 1) and
this yields the maximum area. �

When c1 − 1/2 is a small positive number, the second derivative of ρT with respect to
t in the interval [1/2, c1] is a large negative number. When c1 = 1/2, we pass directly
from the expression 2t2 for 0 6 t 6 1/2 to 2(1− t)2 for 1/2 6 t 6 1; there is a jump in
the first derivative.

We note that, when c1 > 1/2, the maximum is not attained when the line passes
through the vertex (t = c1) but at a point t to the left of c1: 1/2 < t = 2c1/(2c1+1) < c1.

If we want to find only the maximum of ρT (−π/2, t), we can observe that, using
the notation in the proof, it is attained when c2(s1 − t)/c1 is half of q2 = c2t/c1.
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8. Combining two methods of folding

We have seen that folding through a vertex and folding orthogonally against a side
sometimes yields good results, but for different shapes. We now combine the two
methods.

Theorem 8.1. Any triangle can be folded along a straight line so that the area of the
doubly covered part is at least

√
2−1 ≈ 0.4142. This bound can be obtained by using one

of two methods: folding along the bisector of the smallest angle and folding orthogonally
to the largest side. This proves the first part of the main result. In standard coordinates,
the best relative area that can be obtained by these two methods is

Φ(c) = max
(

1
2c1 + 1 ,

1
1 + 1/‖c‖2

)
, c ∈ Γ.

The values of Φ satisfy
√

2 − 1 < Φ(c) 6 1
2 . The infimum of Φ is

√
2 − 1. It is not

attained, but is the limit as c approaches the boundary point c = (1
2

√
2, 0) ∈ ∂Γ.

Remark 8.2. We can see from the expression for Φ that folding along a line orthogonal
to the longest side gives a strictly better result than folding along a bisector if and
only if c ∈ Γ, 1

2 6 c1 6 1
2

√
2, and 2c1‖c‖2 < 1. They give the same result on a

portion of the four-degree curve of equation 4c2
1(c2

1 + c2
2) = 1. In polar coordinates

(c1, c2) = (r cosϕ, r sinϕ), the equation of the curve is 2r2 cosϕ = 1, 0 6 ϕ 6 1
3π.

In particular, if B < 1
2

√
2, then c1 < B < 1

2

√
2 and folding along a normal to the

side [a, b] gives 1/(2c1 + 1) >
√

2 − 1 while folding along the bisector at a yields
B/(B + C) <

√
2− 1.

Proof. Let the notation be chosen so that A 6 B 6 C. We shall see that it is enough
to fold along a line through a or orthogonally against the side opposite to c.

Consider the two inequalities

(8.1) B > C/
√

2;

(8.2) B2 6 A2 + (
√

2− 1)C2.

If we choose coordinates as in (4.6), these inequalities are equivalent to

(8.3) c2
1 + c2

2 >
1
2 ;

(8.4) c1 6 1
2

√
2.

The first covers the permitted values of c except those in the set with c2
1 + c2

2 <
1
2 and

c2 > 0. These points are then taken care of by the second case.
If (8.1) holds, we fold along the bisector through a and obtain from Corollary 6.2

BFvertex(T ) = max
(

B

B + C
,

A

A+B

)
>

B

B + C
>
√

2− 1.

If (8.1) does not hold, then (8.2) and (8.4) hold, and we can fold along a line
orthogonal to the side [a, b]. We obtain 1/(2c1 + 1) >

√
2− 1. �
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9. The constant found is best possible

We shall now prove the second part of Theorem 2.1. This will be done in three steps.
First we shall prove that if the angle ϕ of the line avoids the set 1

2πZ, then an easy
estimate shows that the doubly covered set cannot have a relative area larger than√

2 − 1 (Subsection 9.1). Next we shall study the behavior of the best folding when
the angle is in a neighborhood of zero (Subsection 9.2); finally when the angle is in a
neighborhood of 1

2π (Subsection 9.3).
The triangles which will provide us with examples are those which in standard co-

ordinates have c = (c1, c2) with c1 = 1
2

√
2 and c2 positive and very small. Equivalently,

c1 = 1
2

√
2 and the angle α is very small. The smaller ε in the statement of Theorem

2.1 is, the smaller we have to take α. This has the advantage that we can approximate
to simplify many expressions, for example all of the quantities c2/c1 = tanα, sinα,
1
2 sin 2α can be approximated by α + O(α3) as α ↘ 0, which means that the error is
not larger than a constant times α3 when α is positive and sufficently small; in fact for
all α satisfying 0 6 α 6 π/4. Similarly, cosα = 1 + O(α2) as α↘ 0. In the sequel we
shall use these approximations many times, however without repeating the expression
“as α↘ 0.”

When c1 = 1
2

√
2, we have

B

B + C
=
√

2− 1 +O(α2), and 1
2c1 + 1 =

√
2− 1,

implying that these two special methods of folding give approximately the same result
when α is small. However, this is not sufficient: we now have to consider all kinds of
folding.

9.1. Folding along a line with angle avoiding 1
2πZ

Proposition 9.1. Let T be a triangle in standard coordinates (4.6). With a half plane
Y (ϕ, t) and its boundary L(ϕ, t) as defined in (4.1) and (4.2), assume that ϕ /∈ 1

2πZ.
Then the relative area of the doubly covered set when folding along L(ϕ, t) is less than
c2/| sin 2ϕ|.

In the inequality for the relative area, we can either fix an angle ϕ /∈ 1
2πZ and choose

a small c2 to make the inequality area(TY )/ area(T ) < c2/| sin 2ϕ| 6
√

2− 1 valid, or
fix c2 and consider the set of angles ϕ which satisfy the inequality.

This means that when | sin 2ϕ| > (
√

2 + 1)c2, the relative area is smaller than√
2−1, implying that only a certain neighborhood of 1

2πZ remains to be studied. This
neighborhood is

(9.1) W (c2) =
⋃
k∈Z

{
ϕ ∈ R; |ϕ− 1

2πk| < η
}
,

where η, which depends on c2, is given by the conditions 0 < η < 1
4π and sin 2η =

c2(
√

2+1). When α is small, the angle η is approximately equal to (1
2 + 1

4

√
2)α; actually

η/α tends to 1
2 + 1

4

√
2 ≈ 0.8535 as α tends to zero.
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p q

rs

ϕ

L(0, c2)

L(0, 0)

L(ϕ, 0)L(2ϕ, 0) L(2ϕ,−c2)

T (p, q, r)
2ϕ

Figure 2. We reflect the strip S bounded by L(0, 0) and L(0, c2) in the line L(ϕ, 0),
here with 0 < ϕ 6 π/4, and put the reflected strip, which is bounded by L(2ϕ, 0)
and L(2ϕ,−c2), in the half plane Y (ϕ, 0). The doubly covered area is the triangle
T (p, q, r). The original triangle (not shown) is T (a, b, c) with a = (0, 0), b = (1, 0)
and c2 > 0. In the rhomboid Q(p, q, r, s) all sides are equally long; in particular
‖q − r‖2 = ‖r − s‖2 = r1 − s1.

Proof. We denote by S the strip S = {x ∈ R2; 0 6 x2 6 c2}, bounded by L(0, 0)
and L(0, c2). Since T ⊂ S, even strictly, the area of TY (ϕ,t) is less than that of SY (ϕ,t)
(the area of SY (ϕ,t) is infinite). Let now ϕ /∈ 1

2πZ. It is enough to consider the case
0 < ϕ 6 1

4π; the other cases, like −1
2π < ϕ 6 −1

4π, −
1
4π 6 ϕ < 0, and 1

4π 6 ϕ < 1
2π

being similar. Then SY (ϕ,t) is a triangle with vertices p, q and r, given by

p = (p1, 0), the intersection of L(0, 0) and L(ϕ, t);
q = (q1, 0), the intersection of L(0, 0) and the reflection of L(0, c2) in L(ϕ, t);
r = (r1, c2), the intersection of L(0, c2) and L(ϕ, t).

We find that p1 < q1 < r1 and that

sin 2ϕ = c2

‖q − r‖2
= c2

r1 − s1
,

where s = (s1, c2) is the reflection of q in L(ϕ, t). The area of TY (ϕ,t) is therefore less
than 1

2c2(r1 − s1) = 1
2c

2
2/ sin 2ϕ. The area of T is 1

2c2, so that the relative area is less
than c2/ sin 2ϕ, a finite positive number. �

9.2. Folding with an angle near zero

Consider a triangle T (a, b, c) with standard coordinates (4.6) and intersect it with a
line L(ϕ, t). In view of Proposition 9.1 it is enough to study the lines L(ϕ, t) with ϕ
either close to 0 or close to 1

2π, more precisely, when ϕ belongs to the intervals [−η, η]
and [π/2− η, π/2 + η], where η is defined after formula (9.1). To do so, it is enough to
use the approximations that follow.
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For ϕ near 0 and in the neighborhood W (c2) defined by (9.1), we shall study angles
ϕ ∈ [−η, η]. When −α 6 ϕ 6 0, we can use the results on folding along a line parallel
to the bisector of the angle at b. Then the best result is

A

A+ C
≈ 3

7 −
1
7
√

2 ≈ 0.2265;

see Corollary 6.2. So this is much worse than the results for positive ϕ to be discussed
now. We study separately the cases 0 6 ϕ 6 1

2α and 1
2α 6 ϕ 6 α.

Proposition 9.2. Let the angle ϕ satisfy 0 6 ϕ 6 α, and let ε be any positive number.
Then, for α small enough, the relative area of the doubly covered set TY is never larger
than

√
2− 1 + ε.

Proof. We reflect the line L(α, 0), which contains the side [a, c], in the line L(ϕ, t) to
obtain the line L(2ϕ−α, 2t cos(ϕ−α)). We reflect the line L(−β, sin β) ⊃ [c, b] in the
line L(ϕ, t) and obtain the line L(2ϕ+ β, 2t cos(ϕ+ β)− sin β).

We then define four points p, q, r, s by intersecting these lines:

L(ϕ, t) ∩ [a, c] ⊂ L(ϕ, t) ∩ L(α, 0) = {p};
L(ϕ, t) ∩ [c, b] ⊂ L(ϕ, t) ∩ L(−β, sin β) = {q};
L(2ϕ− α, 2t cos(ϕ− α)) ∩ [a, b] ⊂ L(2ϕ− α, 2t cos(ϕ− α)) ∩ L(0, 0) = {r};
L(2ϕ+ β, 2t cos(ϕ+ β)− sin β) ∩ [a, b] ⊂ L(2ϕ+ β, 2t cos(ϕ+ β)− sin β) ∩ L(0, 0)

= {s}.

We have c2 = c1 tanα = (1− c1) tan β, so that

tan β = c1

1− c1
tanα.

The triangles that are of interest for us now are the ones with c1 = 1
2

√
2 and c2

positive and very small. For these triangles we have good approximations,

c2 = c1 tanα = 1
2

√
2α +O(α3) ≈ 0.7071α,

β = (1 +
√

2)α +O(α3) ≈ 2.4142α,

η = (1
2 + 1

4

√
2)α +O(α3) ≈ 0.8536α.

For the line L(ϕ, t) to actually intersect the sides [a, c] and [c, b], we must, for
0 6 ϕ 6 α, have t in the interval

0 6 t 6 −c1 sinϕ+ c2 cosϕ = c1 cosϕ(tanα− tanϕ) = c1(α− ϕ) +O(α3),

so also t is of the order α when we study lines with angle ϕ close to zero that actually
cut the triangle.

The relative area, which is a polynomial in t ∈ R with coefficients that are rational
functions of sines and cosines of α, β and ϕ, can therefore be approximated by a
polynomial in t with coefficients that are rational functions of α and ϕ.
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We obtain the following values for the coordinates of the points introduced above.

p =
(

t cosα
sin(α− ϕ) ,

t sinα
sin(α− ϕ)

)
=
(

t

α− ϕ
,

tα

α− ϕ

)
+O(α2);

q =
(

sin β cosϕ− t cos β
sin(ϕ+ β) ,

sin β sinϕ+ t sin β
sin(ϕ+ β)

)
=
(
β − t
β + ϕ

,
βϕ+ βt

β + ϕ

)
+O(α2);

r = (r1, 0) =
(

2t cos(α− ϕ)
sin(α− 2ϕ) , 0

)
=
(

2t
α− 2ϕ, 0

)
+O(α2);

s = (s1, 0) =
(

sin β − 2t cos(β + ϕ)
sin(β + 2ϕ) , 0

)
=
(
β − 2t
β + 2ϕ, 0

)
+O(α2).

Twice the area of Q(p, r, s, q) is

(9.2)

2 area(Q(p, r, s, q)) = |pr|+ |rs|+ |sq|+ |qp| = p2(q1 − r1) + q2(s1 − p1)

= t sinα
sin(α− ϕ)

[
sin β cosϕ− t cos β

sin(ϕ+ β) − 2t cos(α− ϕ)
sin(α− 2ϕ)

]

+ sin β sinϕ+ t sin β
sin(ϕ+ β)

[
sin β − 2t cos(β + ϕ)

sin(β + 2ϕ) − t cosα
sin(α− ϕ)

]
.

This is a polynomial in t of order 2, the coefficients of which are rational functions
in the trigonometric functions of the angles indicated. Our task is to prove that this
expression cannot exceed 2(

√
2− 1) area(T (a, b, c)) = (

√
2− 1)c2.

In the calculation to follow it is convenient to use the constant K,

K = 1 +
√

2 ≈ 2.4142, 1/K = −1 +
√

2 ≈ 0.4142, K2 = 3 + 2
√

2 ≈ 5.8284,

and the variables

λ = ϕ

α
, 0 6 λ 6 1

2 ; τ = t

α
, 0 6 τ 6 1

2

√
2(1− λ) 6 1

2

√
2.

The points expressed in these constants and variables are:

p =
(

τ

1− λ,
ατ

1− λ

)
+O(α2);

q =
(
K − τ
K + λ

,
Kα(λ+ τ)
K + λ

)
+O(α2);

r = (r1, 0) =
(

τ
1
2 − λ

, 0
)

+O(α2);

s = (s1, 0) =
( 1

2K − τ
1
2K + λ

, 0
)

+O(α2).
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Twice the area of the quadrilateral Q(p, r, s, q) is

(9.3)
2 area(Q(p, r, s, q)) = |pr|+ |rs|+ |sq|+ |qp| = p2(q1 − r1) + q2(s1 − p1)

= ατ

1− λ

(
K − τ
K + λ

− τ
1
2 − λ

)
+ Kα(λ+ τ)

K + λ

( 1
2K − τ
1
2K + λ

− τ

1− λ

)
+O(α2),

while twice the area of the whole triangle is

2 area(T (a, b, c)) = c2 = 1
2
√

2 tanα = 1
2
√

2α +O(α3),

so that the relative area is
2 area(Q(p, r, s, q))
2 area(T (a, b, c)) = ρT (λα, τα) = M0 +M1τ −M2τ

2

D
+O(α),

where D and the Mj are given below. The zeros of D are 1, 1
2 , v1, v2, and M2 is zero

at v3, where the vj are

v1 = −K = −1−
√

2 ≈ −2.4142;

v2 = −1
2K = −1

2 −
1
2

√
2 ≈ −1.2071;

v3 = 3
2 + 3

4

√
2 ≈ 2.5607.

We have

D = (1− λ)(1
2 − λ)(λ− v1)(λ− v2);

and
M0 = 1

2K
2√2λ(1− λ)(1

2 − λ) = (2 + 3
2

√
2)λ(1− λ)(1

2 − λ);

M1 = K2√2(1− λ)(1
2 − λ) = (4 + 3

√
2)(1− λ)(1

2 − λ);

M2 = (2 +
√

2)(3
2 + 3

4

√
2− λ) = (2 +

√
2)(v3 − λ).

So D a polynomial in λ of degree 4, whereas the Mj, j = 0, 1, 2, are polynomials in
λ of degree 3−j. The signs are chosen so that D and theMj are positive for 0 < λ < 1

2 .
Taking the supremum of the relative area over all τ , we obtain

σT (ϕ) = σT (λα) =
M0 + M2

1
4M2

D
+O(α) = 4M0M2 +M2

1
4DM2

+O(α).

Here the numerator is a polynomial in λ of degree 4 and the denominator a polynomial
of degree 5.

However, the numerator here is divisible by D, so that the expression is equal to a
constant divided by M2, more precisely

σT (λα) =
1
2 + 1

4

√
2

v3 − λ
+O(α) =

1
2 + 1

4

√
2

3
2 + 3

4

√
2− λ

+O(α).
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We write
σT (λα) = S(λ) +O(α),

where
S(λ) =

1
2 + 1

4

√
2

3
2 + 3

4

√
2− λ

, λ ∈ [0, 1
2 ],

clearly an increasing function on [0, 1
2 ], which implies that on this interval, the supre-

mum of S is equal to the value S(1
2) =

√
2− 1.

Since σT (λα) and S(λ) differ at most by a constant times α, this result implies
that, for any given positive number ε, the largest relative area of TY is smaller than√

2− 1 + ε when α is sufficiently small. �

A similar study can be made for 1
2α 6 ϕ 6 α.

9.3. Folding with an angle near π/2

We shall now study an angle ϕ ∈ W (c2) close to 1
2π.

Proposition 9.3. Let us, in a triangle with standard coordinates (4.2), fold along a
line L(ϕ,−t) with angle ϕ satisfying |ϕ − 1

2π| 6 α, and let ε be any positive number.
Then, for α small enough, the relative area of the doubly covered set TY is never larger
than

√
2− 1 + ε.

Proof. It turns out that we can make a direct comparison of the folding along a line
L(ϕ,−t) with the folding along the line L(1

2π,−q1) = L(−1
2π, q1), where q = (q1, q2)

is the point where L(ϕ, t) intersects [a, c]. We already know that the relative area
ρT (−1

2π, q1) is at most equal to ρT (−1
2π, 2−

√
2) =

√
2− 1. The only values of q1 that

are of interest are those that satisfy 1
2 6 q1 6 1

2

√
2.

We introduce ψ = ϕ − 1
2π, a small angle to which q1 and t are related by the

equation
−q1 sinϕ+ q2 cosϕ = −q1 cosψ − q2 sinψ = −t.

We reflect the line L(0, 0), which contains the side [a, b], in the line L(ϕ,−t) to
obtain the line L(2ϕ,−2t cosϕ) = L(2ψ,−2t sinψ).

We also reflect the line L(α, 0) ⊃ [c, a] in the line L(ϕ,−t) and obtain the line

L(2ϕ− α,−2t cos(ϕ− α)) = L(2ψ − α, 2t sin(α− ψ)).

We then define four points p, q, r, s by intersecting these lines:

L(ϕ,−t) ∩ [a, b] ⊂ L(ϕ,−t) ∩ L(0, 0) = {p};
L(ϕ,−t) ∩ [c, a] ⊂ L(ϕ,−t) ∩ L(α, 0) = {q};
L(2ψ,−2t sinψ) ∩ [b, c] ⊂ L(2ψ,−2t sinψ) ∩ L(−β, sin β) = {r};
L(2ψ − α, 2t sin(α− ψ)) ∩ [b, c] ⊂ L(2ψ − α, 2t sin(α− ψ)) ∩ L(−β, sin β) = {s}.

If ψ < 0, then r1 < 0 and r is replaced by b; see Figure 3 on page 21 and Figure 4 on
page 23.
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The coordinates for these points are

p =
(

t

cosψ, 0
)

;

q =
(

t cosα
cos(α− ψ) ,

t sinα
cos(α− ψ)

)
;

r =
(

sin β cos 2ψ + 2t sinψ cos β
sin(β + 2ψ) ,

sin β sin 2ψ − 2t sinψ sin β
sin(β + 2ψ)

)
;

s = (s1, s2), where

s1 = sin β cos(2ψ − α)− 2t sin(α− ψ) cos β
sin(β − α + 2ψ) , and

s2 = sin β sin(2ψ − α) + 2t sin(α− ψ) sin β
sin(β − α + 2ψ) .

With K = 1 +
√

2 and λ = ψ/α the coordinates can be approximated as follows.

p = (t, 0) +O(α2);

q = (t, tα) +O(α2);

r =
( 1

2K + tλ
1
2K + λ

,Kλα
1− t

1
2K + λ

)
+O(α2);

s =
( 1

2K − t+ tλ
1
2

√
2 + λ

,Kα
−1

2 + t+ λ− tλ)
1
2

√
2 + λ

)
+O(α2).

9.3.1. Angles less than π/2

For angles θ satisfying 0 < θ 6 π/4 we have

0 < 2
√

2
π

θ 6 sin θ < θ < tan θ 6 4
π
θ.

We shall apply these inequalities in some simple estimates. In particular we note that,
with c1 = 1

2

√
2, we must have 0 < α 6 1

4π.
We first consider angles ϕ < 1

2π and compare the two quadrilaterals Q(p, b, s, q)
and Q(p⊥, b, s⊥, q). Here p⊥ = (q1, 0), and s⊥ is defined as the intersection of the side
[b, c] with the line obtained by reflecting the line L(0, 0) in the line L(1

2π,−q1).
The differences are (see Figure 3 on page 21):

T (p, p⊥, q)◦ ⊂ Q(p, b, s, q) rQ(p⊥, b, s⊥, q) ⊂ T (p, p⊥, q)

and
T (q, s, s⊥)◦ ⊂ Q(p⊥, b, s⊥, q) rQ(p, b, s, q) ⊂ T (q, s, s⊥).
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a b

c

L(ϕ, t)

|ψ| →

|2ψ|↗

L(π/2,−q1)

p⊥p

q

s⊥

s

Figure 3. Folding along a line L(ϕ, t) with angle ϕ = 1
2π + ψ slightly smaller than a

right angle and comparing it with folding along the line L(π/2,−q1) with angle equal
to π/2 and intersecting the side [c, a] in the same point q as L(ϕ, t). We compare
Q(p, b, s, q) with Q(p⊥, b, s⊥, q).

Since the interior of a triangle has the same area as the triangle itself, we see that

(9.4) area(Q(p, b, s, q)) = area(Q(p⊥, b, s⊥, q))+area(T (p, p⊥, q))−area(T (q, s, s⊥)).

Here the second term is small: it is equal to

area(T (p, q⊥, q)) = 1
2(p⊥1 − p1)q2 = 1

2 | tanψ|q2
2 6

2
π
|ψ|q2

2,

the angle at the vertex q being |ψ|. Here

q2 = q1 tanα 6 1
2

√
2 tanα 6 2

√
2

π
α.

This implies that the area is at most

area(T (p, p⊥, q)) 6 16
π3 |ψ|α

2.

The area of the whole triangle satisfies
√

2
4 α 6 area(T (a, b, c)) = 1

2c2 = 1
2c1 tanα 6

√
2
π
α,

implying that the relative area can be estimated from above as

(9.5) area(T (p, p⊥, q))
area(T (a, b, c)) 6

32
√

2
π3 |ψ|α 6

3
2 |ψ|α = 3

2 |λ|α
2.

The other triangle, T (q, s, s⊥), has the area

area(T (q, s, s⊥)) = 1
2‖s− q‖2 · ‖s⊥ − q‖2 · sin 2|ψ| > 2

√
2

π

(
1
2

√
2− q1

)2
|ψ|,
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since

‖s− q‖2 > s1 − q1 > 1
2

√
2− q1 and also ‖s⊥ − q‖2 > s⊥1 − q1 > 1

2

√
2− q1.

This implies that the relative area is at least

(9.6) area(T (q, s, s⊥))
area(T (a, b, c)) > 2(1

2

√
2− q1)2)|λ|.

We shall simplify equation (9.4) in two ways, depending on whether q1 is closer to
2−
√

2 or closer to 1
2

√
2.

If q1 > 1− 1
4

√
2 (the midpoint between of 2−

√
2 and 1

2

√
2), then q1 − (2−

√
2) >

3
4

√
2− 1, and the relative area of Q(p, b, s, q) is, in view of (7.1), at most

√
2−1− (4+3

√
2)
[
q1 −

(
2−
√

2
)]2

+ 3
2 |λ|α

2 6
√

2−1−
(

3
8

√
2− 1

2

)
+ 3

2 |λ|α
2 6
√

2−1

if
α2 6

1
4
√

2− 1
3 ≈ 0.02022.

If on the other hand, q1 6 1 − 1
4

√
2, then 1

2

√
2 − q1 > 3

4

√
2 − 1, and the relative

area of Q(p, b, s, q) is, in view of (9.5) and (9.6), at most

√
2− 1 + |λ|

[
3
2α

2 − 2
(

3
4

√
2− 1

)2
]
6
√

2− 1 + |λ|
(

3
2α

2 − 17
4 + 3

√
2
)
6
√

2− 1,

if
α2 6

17
6 − 2

√
2 ≈ 0.0049.

We see that, in both cases, the relative area of Q(p, b, s, q) is at most
√

2 − 1 for
small values of α.

9.3.2. Angles larger than π/2

When ψ = ϕ − 1
2π > 0, we compare two quadrilaterals, the given one Q(p, r, s, q)

and the one obtained by decreasing the angle to 1
2π, Q(p⊥, b, s⊥, q), where as before

p⊥ = (q1, 0), and s⊥ is the intersection between the side [b, c] and the line obtained as
the reflection of the line L(0, 0) in the line L(1

2π,−q1).
The differences are

T (q, s⊥, s)◦ ⊂ Q(p, r, s, q) rQ(p⊥, b, s⊥, q) ⊂ T (q, s⊥, s)

and

(T (p⊥, p, q) ∪ T (p, b, r))◦ ⊂ Q(p⊥, b, s⊥, q) rQ(p, r, s, q) ⊂ T (p⊥, p, q) ∪ T (p, b, r);

see Figure 4 on page 23. We see that
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a b

c

q

p

←ψ

↙ 2ψ

2ψ
↓

p⊥

L(ϕ, t)
L(π/2,−q1)

s⊥

s

r

Figure 4. Folding along a line L(ϕ, t) with angle ϕ = 1
2π + ψ slightly larger than a

right angle and comparing it with folding along the line L(π/2,−q1) with angle equal
to π/2 and intersecting the side [c, a] in the same point q as L(ϕ, t). We compare
Q(p, r, s, q) with Q(p⊥, b, s⊥, q).

area(Q(p, r, s, q))
6 area(Q(p⊥, b, s⊥, q)) + area(T (q, s⊥, s))− area(T (p, b, r)− area(T (p⊥, p, q))
6 area(Q(p⊥, b, s⊥, q)) + area(T (q, s⊥, s))− area(T (p, b, r)).

We compare the second and the third terms. The second term is

area(T (q, s⊥, s)) = 1
2‖s

⊥ − q‖2 · ‖s− q‖2 · sin 2ψ,

the angle at q being 2ψ, and the third term is

area(T (p, b, r)) = 1
2(1− p1)‖r − p‖2 · sin 2ψ,

the angle at p also being 2ψ. We define

V (α, ψ, t) = (1− p1)‖r − p‖2 − ‖s⊥ − q‖2 · ‖s− q‖2.

Then the area of the quadrilateral Q(p, r, s, q) can be estimated from above as

(9.7)
area(Q(p, r, s, q)) 6 area(Q(p⊥, b, s⊥, q))− 1

2V (α, ψ, t) sin 2ψ
= area(Q(p⊥, b, s⊥, q))− ψV (α, ψ, t) +O(α3).

We note that s⊥1 is an affine function of q1 which takes the value 1 when q1 = 1
2 and

the value 1
2

√
2 when q1 = 1

2

√
2. It follows that

s⊥1 − q1 = 1 + 1
2

√
2− (1 +

√
2)q1,

1
2 6 q1 6 1

2

√
2.
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We compare the four quantities constituting V with their limits as α tends to zero and
indicate the deviation, which is at most a constant times some power of α.

1− p1 = 1− q1 +O(α2) = 1− t+O(α2);
‖r − p‖2 = 1− t+O(α);

‖s⊥ − q‖2 = s⊥1 − q1 +O(α2) = 1 + 1
2

√
2− (1 +

√
2)q1 +O(α2);

‖s− q‖2 = s⊥1 − q1 +O(α) = 1 + 1
2

√
2− (1 +

√
2)q1 +O(α).

The limit of V as α tends to zero is

lim
α↘0

V (α, ψ, t) = V (0, 0, t) = (1− t)2 −
[
1 + 1

2

√
2−

(
1 +
√

2
)
t
]2
,

since also ψ must tend to zero with α, and in the limit p1 and q1 tend to t. The quantity
V (0, 0, t) is nonnegative since we only consider q1 in the interval 1

2 6 q1 6 1
2

√
2. With

the estimates of the errors we have

V (α, ψ, t) = V (0, 0, t) +O(α) > O(α).

In view of (9.7) we can conclude that the area of Q(p, r, s, q) is at most

area(Q(p⊥, b, s⊥, q))− ψV (0, 0, t) +O(α2) 6 area(Q(p⊥, b, s⊥, q)) +O(α2),

implying that the relative area is at most
√

2 − 1 + O(α) 6
√

2 − 1 + ε if α is small
enough. �
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