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Analytic continuation of fundamental solutions to
differential equations with constant coefficients

Christer O. Kiselman

Abstract. If P is a polynomial in Rn such that 1/P integrable, then the inverse
Fourier transform of 1/P is a fundamental solution EP to the differential operator
P (D). The purpose of the article is to study the dependence of this fundamental
solution on the polynomial P . For n = 1 it is shown that EP can be analytically
continued to a Riemann space over the set of all polynomials of the same degree
as P . The singularities of this extension are studied.

Résumé. Prolongement analytique des solutions fondamentales des équations aux
dérivées partielles à coefficients constants.
Si P est un polynôme dans Rn tel que 1/P soit sommable, alors la transformée
inverse de Fourier de 1/P est une solution fondamentale EP de l’opérateur P (D).
Le but de l’article est d’étudier la dépendence de cette solution fondamentale du
polynôme P . Pour n = 1 on démontre que EP peut être prolongée analytiquement
à un espace de Riemann audessus de l’ensemble de tous les polynômes du même
degré que P . Les singularités de ce prolongement sont étudiées.

1. Introduction

A fundamental solution for a partial differential operator P (D) is a distribution
E which satisfies P (D)E = δ, where δ is the Dirac measure placed at the origin.
(Here D = (D1, . . . , Dn) and Dj = −i∂/∂xj.) This implies that E ∗ (P (D)ϕ) =
P (D)(E∗ϕ) = ϕ for every test function ϕ. In other words, E is a convolution inverse
of the distribution P (D)δ, which is supported by the origin: E ∗ (P (D)δ) = δ. If
E happens to be temperate, its Fourier transform is a multiplicative inverse to the
polynomial P (ξ): Ê · P = δ̂ = 1.

If a polynomial P is such that 1/P is integrable, then this function is a multi-
plicative inverse of P , so its inverse Fourier transform E is a temperate fundamental
solution:

(1.1) E(x) = (2π)−n
∫

Rn

eix·ξ

P (ξ)dξ, x ∈ Rn.
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In particular E is a continuous function, and P (D)E = δ in the sense of distributions,
i.e., ∫

Rn
E(x)

(
P (−D)ϕ

)
(x)dx = ϕ(0), ϕ ∈ D(Rn).

The purpose of this paper is to study how the distribution E defined by (1.1)
depends on P . In particular we shall study holomorphic extensions and singulari-
ties of this function. It is sometimes possible to define a fundamental solution by
continuation from (1.1) even though the formula itself is no longer valid.

The ultimate goal is, given a polynomial P0 of degree m and a fundamental
solution EP0 , to understand the complete structure of all fundamental solutions EP
that can be reached from EP0 by analytic continuation on a Riemann domain over
the vector space of all polynomials of degree 6 m. We are far from this goal. In
fact, most of the results here are about ordinary differential operators; only in the
last section do we give some fragments of results for partial differential operators.

If P has real zeros, the now classical method of Hörmander and Treves consists
in replacing integration over Rn by integration over some suitable set in Cn (called
Hörmander’s staircase (Agranovič 1961: 34)), or by the more sophisticated integra-
tion in Hörmander (1990: 189–191). The viewpoint of this paper is different: we try
to move P instead of the contour of integration.

In section 6 we shall consider one-dimensional subspaces in the space of all poly-
nomials. Thus we consider a polynomial P (ξ, z) = P (ξ)− zQ(ξ) of n + 1 variables
ξ1, . . . , ξn, z. It may happen that for certain values of z we have an estimate

|P (ξ, z)| > c(1 + ‖ξ‖)ρ, ξ ∈ Rn, z ∈ Ω,

with c > 0 and ρ > n; this is for instance true if P (ξ, z) = P (ξ) − zQ(ξ) with
Q(ξ) = ‖ξ‖2k

2 + 1 for some large integer k (Euclidean norm). Then the integral

Fz(x) = (2π)−n
∫

Rn

eix·ξ

P (ξ, z)dξ, x ∈ Rn,

makes sense for these z. If the function z 7→ Fz(x) is holomorphic in Ω we can try
to extend it by analytic continuation. More generally, it may happen that not Fz(x)
but its action on a test function ϕ possesses an extension:∫

Rn
Fz(x)ϕ(x)dx = Φ(z).

We can then ask whether Φ(0) defines a fundamental solution for the polynomial
P (ξ, 0) = P (ξ), which may be a given polynomial not satisfying the estimate at all.

2. On fundamental solutions

A sufficient condition for 1/P to be integrable is that P satisfies

(2.1) |P (ξ)| > c(1 + ‖ξ‖)ρ, ξ ∈ Rn,
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for some constants c > 0 and ρ > n.
A little more generally, it may happen that P satisfies (2.1) for some c > 0 and

some ρ ∈ R. In fact, in view of the Tarski–Seidenberg theorem, this is true for any
polynomial which does not vanish in Rn.

Proposition 2.1. Let P be a polynomial without real zeros. Then it satisfies (2.1)
for some c > 0 and some real number ρ, and 1/P defines a temperate distribution.
Its inverse Fourier transform is a fundamental solution in S ′(Rn) for the operator
P (D). It is the only temperate fundamental solution. It belongs to the space B∞,P̃ if
and only if P−1∂αP/∂ξα is bounded for every α ∈ Nn. It belongs to the local space
Bloc
∞,P̃ if and only if (ϕ̂ ∗ P−1)∂αP/∂ξα is bounded for every α ∈ Nn and every test

function ϕ ∈ D(Rn).

Proof. The hypothesis implies that ϕ/P is integrable for every function ϕ ∈ S (Rn)
and so defines a temperate distribution E by

(2.2) E(ϕ) = (2π)−n
∫

Rn

ϕ̂(−ξ)
P (ξ) dξ, ϕ ∈ S (Rn);

clearly E(P (−D)ϕ) = ϕ(0).
The other statements follow from the definition of the spaces B∞,P̃ and Bloc

∞,P̃
(Hörmander 1983:7, 13). �

We recall that Hörmander proved that every non-zero partial differential operator
with constant coefficients admits a fundamental solution in Bloc

∞,P̃ (Hörmander 1983:
Theorem 10.2.1); in fact, a small exponential dampening at infinity is enough for the
existence of a solution even in B∞,P̃ : for every positive ε there exists a fundamental
solution Eε such that Eε/ψε ∈ B∞,P̃ , where ψε(x) = cosh ‖εx‖. Moreover, he proved
that this result is optimal: if a fundamental solution is in some space Bloc

p,k, then this
space contains Bloc

∞,P̃ (Hörmander 1983:17–18).
Lars Hörmander proved (personal communication 2010-11-08) that every opera-

tor of principal type (i.e., such that the gradient of its principal part does not vanish
in Rnr{0}; Hörmander 1983: Definition 10.4.11) possesses a temperate fundamen-
tal solution with the best possible regularity: it is in Bloc

∞,P̃ . In particular, if P is
of principal type and does not have real zeros, the unique temperate fundamental
solution defined by (2.2) has this regularity.

Even more recently, Hörmander (personal communication 2010-12-31) proved
the stronger result that for an operator to possess a temperate fundamental solution
of the best regularity, it is enough that, for some constants C and R, there is an
estimate

(2.3)
∣∣∣∣∣∂αP∂ξα (ξ)

∣∣∣∣∣ 6 C(|P (ξ)|+ ‖ gradP (ξ)‖), α ∈ Nn, ξ ∈ Rn, ‖ξ‖ > R.

(The estimate is of interest when ‖α‖1 > 2.)
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However, for operators that are not of principal type, there need not exist a
temperate fundamental solution in Bloc

∞,P̃ . Thus the local regularity condition and
the global condition of being temperate are sometimes irreconcilable. We mention
three examples:
Example 2.2. (Enqvist 1974:29.) The polynomial P (ξ) = ξ2

1ξ2 + ξ3 − i has no
real zeros; it satisfies (2.1) for c = 1 and ρ = 0. For ξ1 ∈ R and ξ2 = ξ3 = 0,
P−1∂P/∂ξ2 = iξ2

1 is unbounded. Hence the fundamental solution defined by (2.2),
which is the unique temperate fundamental solution, does not belong to B∞,P̃ (R3).
Enqvist shows that it does not even belong to the larger space Bloc

∞,P̃ (R3). �

Example 2.3. (Hörmander 1983: Example 10.2.15.) The operator given by the
polynomial P (ξ) = ξ2

1ξ
2
2+ξ2

3+iξ4 has no fundamental solution in S ′(R4)∩Bloc
∞,P̃ (R4),

for it does not satify the necessary condition given in Theorem 10.2.14. However, P
has real zeros. �

There is now even an example which is minimal with respect to order as well as
dimension (order three and dimension two):
Example 2.4. (Lars Hörmander, personal communication 2010-12-31.) For any
nonzero complex number c, the polynomial P (ξ) = ξ2

1ξ2 + c is such that the corre-
sponding operator does not have a temperate solution in Bloc

∞,P̃ (R2). �

We contrast this example with the following, where the operator is of order two.
Example 2.5. The polynomial P (ξ) = ξ1ξ2 + i has no real zeros, and satisfies (2.1)
for c = 1 and ρ = 0. But P−1∂P/∂ξ2 is unbounded: for ξ2 = 0 it takes the value
−iξ1. Hence the fundamental solution defined by (2.2) is not in B∞,P̃ (R2). But the
operator is of principal type, so this fundamental solution is both temperate and in
the local space Bloc

∞,P̃ (R2). �

In the first proofs that every nonzero operator with constant coefficients admits a
fundamental solution one fixed P and constructed E without any considerations as to
its dependence on P . This means that there is a function (with no special regularity)
G : Pm(Rn) r {0} → D ′(Rn) defined on the space of Pm(Rn) of all polynomials
in n variables and degree at most m with the origin removed. A more advanced
construction is to establish the existence of a C∞ smooth function G : Pm(Cn) r
{0} → D ′(Rn); this is what Hörmander does in his book (1983, Theorem 10.2.3).
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3. Polynomials of one variable with their zeros as
parameters

We shall first study properties of fundamental solutions of ordinary differential op-
erators whose corresponding polynomial has zeros τ1, . . . , τm and consider them as
functions of τ = (τ1, . . . , τm) ∈ Cm.

Theorem 3.1. For τ = (τ1, . . . , τm) ∈ Cm, m > 2, let P (ζ, τ1, ..., τm) be the monic
polynomial in ζ with zeros at the complex numbers τj, thus

(3.1) P (ζ, τ1, ..., τm) =
m∏
1

(ζ − τj), ζ ∈ C,

and define

(3.2) Fτ (x) = 1
2π

∫
R

eixξ

P (ξ, τ1, ..., τm)dξ, x ∈ R, τ ∈ Ω = (C r R)m.

Thus Fτ is defined when τ belongs to an open set Ω in Cm which has 2m components

Ωθ = {τ ∈ Cm; θjIm τj > 0}, θ ∈ {−1, 1}m.

Then Fτ (x) and 〈Fτ , ϕ〉 are holomorphic functions of τ ∈ Ω. Given θ, we define
Mθ(τ) = ∏(τj − τk), τ ∈ Cm, where the product is taken over all j and k such that
θj > θk. Then the function

Ωθ 3 τ 7→Mθ(τ)Fτ (x)

is the restriction to Ωθ of an entire function. In particular, when we take all θj
equal, Mθ(τ) = 1 and Fτ (x) is the restriction to Ω(1,...,1) or Ω(−1,...,−1) of an entire
function.

The result also holds for m = 1 if we interpret the integral (3.2) as a generalized
integral. The function x 7→ Fτ (x) is no longer continuous at x = 0, but as a
distribution-valued mapping it is holomorphic in τ , i.e., 〈Fτ , ϕ〉 is holomorphic for
every test function ϕ.

Proof. If τ ∈ Ω, we can number the τj so that Im τj > 0 for j = 1, . . . , k and
Im τj < 0 for j = k + 1, . . . ,m, for some k = 0, . . . ,m, thus τ ∈ Ωθ for θ =
(1, . . . , 1,−1, . . . ,−1). Then, if x > 0, we get using residue theory,

Fτ (x) = i
k∑
s=1

Rs(τ)eixτs ,

where the Rs are rational functions,

Rs(τ) =
s−1∏
j=1

(τs − τj)−1
m∏

j=s+1
(τs − τj)−1.
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When we multiply the Rs by the polynomial

Mθ(τ) =
m∏

b=k+1

k∏
a=1

(τa − τb),

we get new rational functions which still seem to have poles. However, when the
denominator vanishes because two of the zeros coincide, also the numerator vanishes,
so that the function τ 7→Mθ(τ)Fτ (x) is entire.

As an example we calculate Mθ(τ)Fτ (x) for m = 4 and k = 2, thus with θ =
(1, 1,−1,−1) and x > 0. So let Im τ1, Im τ2 > 0 and Im τ3, Im τ4 < 0. Then

Mθ(τ)Fτ (x) = (τ1 − τ3)(τ2 − τ3)(τ1 − τ4)(τ2 − τ4)Fτ (x)

= (τ2 − τ3)(τ2 − τ4)
τ1 − τ2

ieixτ1 + (τ1 − τ3)(τ1 − τ4)
τ2 − τ1

ieixτ2

+ (τ1 − τ4)(τ2 − τ4)
τ3 − τ4

ieixτ3 + (τ1 − τ3)(τ2 − τ3)
τ4 − τ3

ieixτ4 .

The denominators vanish in the hyperplanes τ1 = τ2 and τ3 = τ4, but nevertheless
the function is entire. �

We shall now see that the fundamental solutions Fτ found in this theorem can be
extended from Ωθ to larger regions.

Theorem 3.2. We define open sets

Ω{j} = {τ ∈ Cm; τs 6= τj, ∀s 6= j}, j = 1, . . . ,m,

and for τ ∈ Ω{j}, j = 1, . . . ,m, functions Fj,τ and Gj,τ on R by

(3.3) Fj,τ (x) = 1
2π

∫
Γj

eixζ

P (ζ, τ1, . . . , τm)dζ, x > 0; Fj,τ (x) = 0, x < 0; and

(3.4) Gj,τ (x) = 0, x > 0; Gj,τ (x) = − 1
2π

∫
Γj

eixζ

P (ζ, τ1, . . . , τm)dζ, x < 0,

where Γj is a circle around τj of radius so small that it does not surround any other
zero.

Given any subset J of {1, . . . ,m} we define

ΩJ = {τ ∈ Cm; τj 6= τs for all j ∈ J and all s /∈ J},

a connected open set in Cm, and

(3.5) EJ
τ (x) =

∑
j∈J

Fj,τ (x) +
∑
s/∈J

Gs,τ (x), x ∈ R.
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This definition has a sense when τ belongs to Ω{j} for all j ∈ {1, . . . ,m}, i.e., when
all zeros are different. However, we can extend it to τ ∈ ΩJ . Then ΩJ 3 τ 7→ EJ

τ (x)
is a holomorphic function.

Given any θ ∈ {−1, 1}m, Ωθ∪Ω−θ is contained in ΩJ if we define J = {j; θj = 1},
and we can extend the holomorphic function Ωθ 3 τ 7→ Fτ as ΩJ 3 τ 7→ EJ

τ :

(3.6) Fτ (x) = EJ
τ (x) for x ∈ R and τ ∈ Ωθ.

Conversely, given any J ⊂ {1, . . . ,m}, (3.6) holds if we define θ by θj = 1 for
j ∈ J , θj = −1 for j /∈ J .

Note that ΩJ = ΩK if K is the complement of J in {1, . . . ,m}; in particular ΩØ =
Ω{1,...,m} = Cm.

Proof. Each term Fj,τ can be defined if τj is different from the τs, s 6= j. However,
when we add over all j ∈ J , the sum can easily be defined in ΩJ : we just use a curve
in the integral corresponding to (3.3) which surrounds all the τj, j ∈ J , but none of
the τs, s /∈ J . There is now no danger in letting some of the τj, j ∈ J , coincide as
long as they are different from the τs, s /∈ J . �

4. Polynomials of one variable with their coefficients as
parameters

Theorem 4.1. We consider polynomials P (ξ) = A0 + A1ξ + · · · + Amξ
m of degree

m > 2. We identify the set Pm(Rn) r Pm−1(Rn) of these polynomials with a
pseudoconvex open subset

(4.1) U = {(A0, . . . , Am) ∈ Cm+1; Am 6= 0}

of Cm+1. Those which have no real zero form a subset W which is open in U and
which has m+ 1 components Wk defined by the requirement that there are exactly k
roots with positive imaginary part, k = 0, . . . ,m.

We define

(4.2) Lk(A0, . . . , Am)(x) = A−1
m Fτ (x), x ∈ R, (A0, . . . , Am) ∈ Wk,

where Fτ is defined by (3.2), where P and τ are related by the formula

P (ξ) = Am
∏

(ξ − τj),

and where we have numbered the τj so that Im τj > 0 for j = 1, . . . , k and Im τj <
0 for j = k + 1, . . . ,m. Then Lk is a holomorphic function of the coefficients
(A0, . . . , Am) ∈ W , thus in Wk for each k. Two of these functions, viz. for k = 0
and k = m, are restrictions of meromorphic functions of (A0, . . . , Am) ∈ Cm+1 with
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singularities only on the hyperplane Am = 0; more precisely, AmLm is the restriction
of an entire function in Cm+1. For k = m, Am 6= 0, the extended solution is

Lm(x) = E{1,...,m}τ (x) =
m∑
k=1

Fj,τ (x) = 1
2π

∫
Γ

eixζ

P (ζ)dζ, x > 0; Lm(x) = 0, x 6 0,

where Γ is a circle surrounding all the zeros τ1, . . . , τm of P .

Proof. The vector of coefficients (A0, . . . , Am) determines the set of zeros but not the
numbering. The function Fτ is however symmetric under the possible numberings,
which implies that Lk is well-defined and holomorphic in the coefficients of P . There
are

(
m
k

)
different sets Ωθ of Theorem 3.1 that are mapped onto Wk, where k is the

cardinality of {j; θj = 1}. �

To study the extensions of Lk from Wk for 0 < k < m it is necessary to consider
multivalued functions, in other words Riemann domains.

Lemma 4.2. Let U be the set of all polynomials of degree m > 2 identified with the
open set U ⊂ Cm+1 defined in (4.1). Let X denote the algebraic set

X =
{

(P, τ1, . . . , τm) ∈ U ×Cm;P (ζ) = ∏m
j=1(ζ − τj)

}
.

We have two projections defined on X, viz.,

π : (P, τ1, . . . , τm) 7→ P, and
ρ : (P, τ1, . . . , τm) 7→ (τ1, . . . , τm),

which enable us to use functions defined on the coefficients of polynomials as well as
functions defined on the zeros of polynomials. Let M be the set of those polynomials
which possess a multiple zero, and define the Riemann domain Y over U rM as

Y = {(P, τ, . . . , τm) ∈ X; P /∈M},

the set of all elements (P, τ1, . . . , τm) where P ∈ U rM and the τj are the zeros of
the polynomial P . Thus Y has m! sheets over U rM . Then Y is connected.

Proof. Let two elements of Y , (P (s), τ
(s)
1 , . . . , τ (s)

m ), s = 0, 1, be given, thus with
P (s)(ξ) = ∏(ξ − τ

(s)
j ). We shall construct a curve in Y connecting them. We

construct first the straight lines between the zeros:

[0, 1] 3 t 7→ τj(t) = (1− t)τ (0)
j + tτ

(1)
j , j = 1, . . . ,m.

Most of the time this will give us what we want, i.e., a curve in Y . However, it may
happen that two roots agree for a certain value of t so that, for example, τ1(t) = τ2(t)
for some t. We can then modify as follows.
(1) If τ (0)

j = τ
(1)
j for both j = 1 and j = 2, nothing needs to be done.
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(2) If τ (0)
1 = τ

(1)
1 while τ (0)

2 6= τ
(1)
2 , we modify the segment

[
τ

(0)
2 , τ

(1)
2

]
to a curve

(4.3) τ2(t) = (1− t)τ (0)
2 + tτ

(1)
2 + ct(1− t)(τ (1)

2 − τ
(0)
2 ),

where c = iε for a small positive number ε.
(3) If both τ (0)

1 and τ (1)
1 are on the line through τ (0)

2 and τ (1)
2 with τ (1)

2 6= τ
(0)
2 , then

again we use the curve (4.3) with c = iε for a small positive ε.
(4) In the remaining cases we use the curve defined in (4.3) but now with c = ε for
a small positive ε.

With these modified curves, τ1(t) and τ2(t), t ∈ [0, 1], never meet. This shows
how to avoid the set M of multiple zeros and proves the connectedness of Y . �

As a preparation for the next theorem we shall see how to approximate any polyno-
mial by polynomials with distinct zeros:
Lemma 4.3. Let Q be any polynomial with zeros σ1, . . . , σm, let ω ∈ Rn be a real
vector such that ωj 6= ωk for j 6= k. Then

Qε(ζ) =
m∏
j=1

(ζ − σj − εωj)

has distinct zeros σj + εωj for

0 < ε < ε0 = min
j,k

(
|σj − σk|/|ωj − ωk|;σj 6= σk

)
.

The number of zeros with positive imaginary part is the same for Qε as for Q.
Proof. If σj = σk and σj + εωj = σk + εωk, then we must have ε = 0. Hence, as soon
as ε 6= 0, this cannot happen. If on the other hand σj 6= σk and σj + εωj = σk + εωk,
then

ε = |σj − σk|
|ωj − ωk|

> ε0,

where ε0 is the positive number defined in the statement of the lemma.
Finally we only need to note that Im (σj + εωj) = Im σj if ε and ωj are real, so

that the number of zeros with imaginary part of a certain sign is preserved. �

The holomorphic extensions of the fundamental solutions defined in W0 and Wm

in Theorem 4.1 are defined in all of U , so for them we do not need to define any
Riemann domain (they can of course be lifted to Y ). However, for 0 < k < m this
is not so:
Theorem 4.4. Let Y be the Riemann domain defined in Lemma 4.2 and define
Yk = π−1(WkrM). The fundamental solution Lk in Theorem 4.1, defined originally
in eachWk, can be lifted fromWkrM to Yk and then extended to all of Y . If 0 < k <
m, they explode as we approach M . More precisely, for any point (Q, σ1, . . . , σm) ∈
X r Y , thus with Q ∈ M , there exist a sheet of Y and a curve in that sheet such
that the extension along the curve of the fundamental solution originating from Wk

explodes as we move along the curve on that sheet and the base point approaches Q.
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Proof. We recall the definitions of Fj,τ , Gj,τ and EJ
τ from Theorem 3.1.

When (P, τ1, . . . , τm) ∈ Y , we have (τ1, . . . , τm) ∈ ΩJ for any J , so EJ
τ (x) is well

defined and defines an extension of Lk.
Let now Q be any given polynomial in M and let its zeros be σj, j = 1, . . . ,m,

with σ1 a zero of multiplicity s > 2. We may number the zeros so that σ1 = σ2 =
· · · = σs while σj 6= σ1 for j = s+ 1, . . . ,m.

We now define a curve γ : [0, 1] → X with γ(t) ∈ Y when t ∈ [0, 1[, starting
for t = 0 from any point γ(0) = (P0, τ1(0), . . . , τm(0)) in Yk. We suppose that the
zeros are numbered so that Im τ1(0) > 0 and Im τm(0) < 0. Since k 6= 0,m, this is
possible. The curve shall end for t = 1 at the point γ(1) = (P1, τ1(1), . . . , τm(1)) =
(Q, σ1, . . . , σm) ∈ X, where Q is the given polynomial.

We have to distinguish two cases. The curve from γ
(

1
2

)
to γ(1) is the same

in both cases, whereas the curve from γ(0) to γ
(

1
2

)
depends on whether s 6 k or

s > k. So let us first describe how to go from γ
(

1
2

)
to γ(1).

We define γ
(

1
2

)
as the point (P1/2, σ1 + εω1, . . . , σm + εωm), where P1/2 = Qε, Q

being the given polynomial, and Qε as well as the vector ω and the positive number
ε < ε0 are as in Lemma 4.3. Then the curve from γ

(
1
2

)
to γ(1) is given by the

straight line

τj(t) = σj + (2− 2t)εωj, t ∈
[

1
2 , 1

]
, j = 1, . . . ,m,

which gives the approach to the multiple zero in X r Y .
We now construct the curve from γ(0) to γ

(
1
2

)
in the two cases.

Case 1: s 6 k. In this case we map τj(0) to σj+1 +εωj+1, j = 1, . . . ,m−1, and τm(0)
to σ1 + εω1. In view of Lemma 4.2 it is possible to do this by moving along a curve
in Y . This means that τ1(0) in the upper half plane is moved to σ2 + εω2 = σ1 + εω2
close to σ1, and that τm(0) in the lower half plane is moved to σ1 + εω1, also close
to σ1.

Since we start in Wk, the set J = {1, . . . , k} will give rise to a fundamental
solution

EJ
τ(t) =

k+1∑
j=2

Fj,τ(t).

The solutions ∑k+1
j=1 Fj,τ(t) and ∑k+1

j=s+2 Fj,τ(t) are holomorphic as functions of t in a
neighborhood of t ∈

[
1
2 , 1

]
, so to prove the explosion it is enough to prove that E{1}τ

explodes.
We therefore now study the behavior of the fundamental solution E{1}τ on the

curve. It is defined on Ω{1}.
We factorize Pt(ζ) as (ζ − τ1(t)) · · · (ζ − τs(t))Rt(ζ) and then obtain, if Γ1 is a
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circle surrounding τ1(t) but none of the other zeros,

E
{j}
τ(t)(x) = 1

2π

∫
Γ1

eixζ

Pt(ζ)dζ = ieixτ1(t)

(τ1(t)− τ2(t)) · · · (τ1(t)− τs(t))Rt(τ1(t))

= ieixτ1(t)

(2− 2t)s−1εs−1(ω1 − ω2) · · · (ω1 − ωs)Rt(τ1(t)) ,

which certainly explodes as t→ 1. More precisely,

(2− 2t)s−1E
{1}
τ(t)(x)→ ieixσ1

εs−1(ω1 − ω2) · · · (ω1 − ωs)R1(σ1) .

Case 2: k < s. In this case we map τj(0) to σj + εωj for all j. Now J = {1, . . . , k}
involves the points σ1 +εω1, . . . , σk +εωk, which are fewer than the s points σj +εωj
used for the convergence. We can calculate the residues as follows.

We factorize again Pt(ζ) as (ζ − τ1(t)) · · · (ζ − τs(t))Rt(ζ) and then obtain, if Γk
is a curve surrounding τ1(t), . . . , τk(t) but none of the other zeros,

EJ
τ(t)(x) = 1

2π

∫
Γk

eixζ

Pt(ζ)dζ = 1
2π

∫
Γk

ieixζ

(ζ − τ1(t)) · · · (ζ − τs(t))Rt(ζ)dζ.

This integral can be calculated using residues; it is equal to

k∑
j=1

ieixτj(t)

Rt(τj(t))
∏
l(τj(t)− τl(t))

,

where ∏
l

(τj(t)− τl(t)) =
s∏
l=1
l 6=j

(τj(t)− τl(t))

is the product over all l ∈ [1, s]Z r {j} for a fixed j ∈ [1, k]Z. This sum is equal to

k∑
j=1

ieixτj(t)

Rt(τj(t))
∏
l(2− 2t)ε(ωj − ωl)

=
k∑
j=1

ieixτj(t)

(2− 2t)s−1εs−1Rt(τj(t))
∏
l(ωj − ωl)

,

which explodes as t→ 1; more precisely

(2− 2t)s−1EJ
τ(t)(x)→

k∑
j=1

ieixσ1

εs−1R1(σ1)∏l(ωj − ωl)
= Cs,k

ieixσ1

εs−1R1(σ1) ,

where the constant

Cs,k =
k∑
j=1

∏
l

(ωj − ωl)−1
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is nonzero when k < s. When k = s we have Cs,s = 0; then there is no explosion.
As an example we may take ωj = j; then we have

∏
l

(j − l)−1 = (−1)s−j
(j − 1)!(s− j)! ,

so that the sum over 1 6 j 6 k can be written as

1
(s− 1)!

k−1∑
q=0

(
s−1
q

)
(−1)s−1−q.

When k = s this is equal to

1
(s− 1)!(1− 1)s−1 = 0,

while the partial sums over j ∈ [1, k]Z, 1 6 k 6 s− 1, are easily seen to be nonzero.
In fact, because of the alternating signs we can estimate∣∣∣∣∣∣

k−1∑
q=0

(
s−1
q

)
(−1)s−1−q

∣∣∣∣∣∣ >
(
s−1
k−1

)
−

∣∣∣∣∣∣
k−2∑
q=0

(
s−1
q

)
(−1)s−1−q

∣∣∣∣∣∣ >
(
s−1
k−1

)
−
(
s−1
k−2

)
> 0

as soon as 2 6 k 6 1
2(s− 2). For k = 1 the result is obvious, and for 1

2(s− 2) < k 6
m− 1 the result follows by symmetry. We are done. �

5. Zeros converging to real zeros

We have studied polynomials with non-real zeros and now want to investigate what
happens if some of the zeros converge to the reals. First some examples.
Example 5.1. We define P (ξ, τ1, τ2) = (ξ − τ1)(ξ − τ2) and study the convergence of

Fτ (x) = 1
2π

∫ eixξ

(ξ − τ1)(ξ − τ2)dξ, Im τj 6= 0,

as τj → αj, where α1 and α2 are two given complex numbers. If x Im τj < 0, then
Fτ (x) = 0. Next suppose that x > 0 and that Im τj > 0, τ1 6= τ2. Then

Fτ (x) = i
eiτ1x

τ1 − τ2
+ i

eiτ2x

τ2 − τ1
= i

eiτ1x − eiτ2x

τ1 − τ2
,

which is the restriction of an entire function to the set of (τ1, τ2) satisfying Im τj >
0. When for instance τj → 0 under this condition, Fτ (x) → −xH, which is a
fundamental solution for P (D, 0, 0) = D2 = −d2/dx2 (here H is the Heaviside
function).
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However, if x > 0, Im τ1 > 0 and Im τ2 < 0, then

Fτ (x) = i
eiτ1x

τ1 − τ2

which does not converge when τj → 0. Thus the lesson is that if we dissolve the
double zero at the origin of the polynomial ξ2 as (ξ − τ1)(ξ − τ2) with Im τj of the
same sign, then we get very good convergence, but not when the imaginary parts
have different signs. The same phenomenon can of course appear even if we use only
one parameter: (ξ − τ)(ξ − 2τ) compared with (ξ − τ)(ξ + τ). �

Let P be a polynomial with zeros α1, . . . , αm, possibly real. We want to investigate
what happens as non-real zeros converge to the αj.

If Imαk 6= 0 we can let τk → αk arbitrarily, but if we have a multiple real zero,
say α1 = α2 = · · · = αk ∈ R, then, as we have seen in Example 5.1, we must require
either Im τj > 0 or Im τj < 0 for all j = 1, . . . , k to obtain convergence.

We can also use only one parameter τ , as follows. Let P be any polynomial in
one variable of degree at least 2. Then it grows sufficiently fast at infinity, but it
may of course have real zeros. Let its zeros be α1, . . . , αm. We define

P (ξ, τ) =
∏

(ξ − αj − τ).

Then P (ξ, 0) = P (ξ) and there is a positive ε such that P (ξ, τ) has no real zeros
for 0 < Im τ < ε and −ε < Im τ < 0. If P has a double zero, say α1 = α2, then we
consider instead

P (ξ, τ) = (ξ − α1 − τ)(ξ − α2 − 2τ)
m∏
3

(ξ − αj + τ);

if P has a triple zero α1 = α2 = α3, we instead replace the first three factors by
(ξ−α1−τ)(ξ−α2−2τ)(ξ−α3−3τ) for example. It is therefore clear how to define a
polynomial P (ξ, τ) which has only simple and non-real zeros αk(τ) for 0 < Im τ < ε
and −ε < Im τ < 0. The residues are easy to calculate, and we get for x > 0,

Fτ (x) = 1
2π

∫
R

eixξ

P (ξ, τ)dξ = i
∑
k

eixαk(τ)∏
j(αk(τ)− αj(τ)) ,

where the product is over all j 6= k for a fixed k, and the sum is over all k such that
Imαk(τ) > 0. If all zeros are simple, we can take αk(τ) = αk + τ which makes the
differences αk(τ)− αj(τ) independent of τ and the convergence as τ → 0 is easy. If
we choose Im τ > 0 we get

Fτ (x) = ieiτx
∑
k

ei(αk+τ)x∏
j(αk − αj)

−→ i
∑
k

eiαkx∏
j(αk − αj)

, x > 0,

where the sum is over all k with Imαk > 0, while Fτ (x) = 0 for x < 0. When
Im τ < 0 we get instead

Fτ (x) −→ −i
∑
k

eiαkx∏
j(αk − αj)

, x < 0,
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where the sum is now over all k such that Imαk 6 0, while Fτ (x) = 0 for x > 0.
Therefore the limit of Fτ from above or from below is the usual combination of
exponential functions to the left and right of the origin. When the zeros are not
simple the whole thing is not really more difficult. We note that the convergence
here is very good: all functions are restrictions of entire functions of τ to strips like
0 < Im τ < ε.

6. One-dimensional slices of fundamental solutions

The ultimate goal is to understand the dependence of EP on P globally, but it is
easier first to see what happens on a straight line in the space of polynomials. Let
us first look at two examples.
Example 6.1. Take n = 1 and define, with P (ξ, z) = P (ξ)− zQ(ξ) = ξ2 + z,

Fz(x) = 1
2π

∫ eixξ

ξ2 + z
dξ = i

e−|x|
√
z

2i
√
z
, z ∈ C r ]−∞, 0] ,

where we have written Fz for EP−zQ. This explodes when z → 0, but if we subtract
(ex
√
z+e−x

√
z)/4
√
z (which solves the homogeneous equation (P (D)−zQ(D))u = 0)

we get

e−|x|
√
z

2
√
z
− ex

√
z + e−x

√
z

4
√
z

→ −1
2 |x|, z → 0, z ∈ C r ]−∞, 0] ,

which is a fundamental solution for P (D, 0) = P (D) = D2 = −d2/dx2. �

Example 6.2. A slight variation of the last example gives a function which is holo-
morphic outside a compact set. Define P (ξ, z) = P (ξ) − zQ(ξ) = ξ2 − z(ξ2 + 1).
Then

Fz(x) = 1
2π

∫ eixξ

ξ2 − z(ξ2 + 1)dξ = 1
2π(1− z)

∫ eixξ

ξ2 − z/(1− z)dξ = −e
−|x|
√
z/(z−1)

2
√
z(z − 1)

,

defined first for |z| > 1, and then by analytic continuation to the complement of
[0, 1], or to the complement of any curve connecting 0 and 1. The solution explodes at
z = 0. To get convergence we can subtract the value at x = 0, i.e., −1/2

√
z(z − 1).

When z → 1 the solution does not explode but converges to −δ, which is a
fundamental solution to P (D, 1) = −1. The point z∗ = 1 is the point where the
degree of P (ξ, z) drops. �

We shall thus look at one-dimensional slices of the function P 7→ EP . This means
that we consider a complex line z 7→ P − zQ passing through P and P − Q, and
study the singularities of Fz = EP−zQ. The situation is particularly simple if Q is
chosen with all its zeros in the upper or lower half plane:



Analytic continuation of fundamental solutions 15

Theorem 6.3. Let P and Q be polynomials in one variable of the same degree
m > 2 and assume that all zeros of Q have positive (resp. negative) imaginary part.
Then there is a constant R such that |P (ξ)| 6 R|Q(ξ)| for all real ξ. The function

Fz(x) = EP−zQ(x) = 1
2π

∫
R

eixξ

P (ξ)− zQ(ξ)dξ, x ∈ R, z ∈ C, |z| > R,

is holomorphic for |z| > R. It has a holomorphic extension to S2 r {z∗}, where S2

is the Riemann sphere C∪{∞} and z∗ = limξ→∞ P (ξ)/Q(ξ) 6= 0. Its value at z = 0
is a fundamental solution for P (D).

Proof. With a z satisfying |z| > R we have

|P − zQ| > |z||Q| − |P | > (|z| −R)|Q| > 0

on the real axis. The integral defining Fz(x) is convergent for |z| > R. For very
large |z|, the zeros of P − zQ are close to those of Q; hence the zeros of P − zQ
have positive imaginary part also for all z with |z| > R, since they cannot pass the
real line. By Theorem 4.1 the function z 7→ Fz(x) has only one singularity, viz. the
point where the degree drops, which is the point z∗ 6= 0. The extension to z = ∞
follows because Fz is bounded for |z| > R + 1. �

If we choose a Q with zeros in both the upper and lower half-planes, then the
function Fz(x) in Theorem 6.3 will in general have more than one singular point,
and its analytic extension cannot be defined in the complex plane. Therefore we
shall now discuss extensions defined on a Riemann surface.

7. Meromorphic functions over the Riemann sphere

Let f and g be meromorphic in C. If α and β are two points and γ a curve connecting
them, we study the function

h(z) =
∫
γ

f(ζ)
g(ζ)− zdζ.

It is holomorphic on S2 rg(γ) if γ avoids the poles of f . Indeed, for any given point
z0 ∈ C r g(γ) we can write

h(z) =
∫
γ

1

1− z − z0

g(ζ)− z0

· f(ζ)
g(ζ)− z0

dζ =
∞∑
0

(z − z0)k
∫
γ

f(ζ)
(g(ζ)− z0)k+1dζ,

which converges nicely when |z− z0| is less than the distance from z0 to g(γ) and γ
avoids the poles of f .

We can extend h to a Riemann surface Y as follows. Let σj be the zeros of g′,
the critical points of g. For simplicity we suppose that there are only finitely many
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of those; g(σj) are then the finitely many critical values of g. Denote by Z the finite
set {g(α), g(β), g(σj)}. Then Y shall be the universal covering surface of S2 r Z,
where again we write S2 = C ∪ {∞} for the Riemann sphere. In other words, Y
consists of ∞ and the space obtained from the universal covering surface of C r Z
by identifying all points over a point in C of sufficiently large modulus—if we go
around all the points we do not come to a new sheet. The elements of Y can be
described as pairs (z, C), where C is a curve avoiding Z, starting at infinity, ending
at z, and considered modulo homotopic curves in S2rZ. We shall refer to Y simply
as the Riemann surface over S2 r Z.
Proposition 7.1. Let f and g be meromorphic functions in C. We assume that f
has finitely many poles and g′ finitely many zeros. Let γ0 be a curve connecting a
point α with a point β and avoiding the poles of f . Then

(7.1) h(z) =
∫
γ0

f(ζ)
g(ζ)− zdζ,

defined originally for z ∈ S2 r g(γ0), has a meromorphic extension to the Riemann
surface Y over S2 r Z, where Z is the image under g of the finite set consisting of
α, β and the zeros of g′. The poles of h are at points g(τ), where τ is a pole of f
which is not a pole of g.

Example 7.2. Let f(ζ) = 1, g(ζ) = ζ2. Zero is a critical value of g. We get

h(z) =
∫ β

α

1
ζ2 − z

dζ = 1
2
√
z

(
log β −

√
z

α−
√
z
− log β +

√
z

α +
√
z

)

when z ∈ S2 r [0,max(α2, β2)], which can be extended to the Riemann surface over
S2 r {0, α2, β2}. Here the choice of square root does not influence the value of h(z),
but we have to be careful with the logarithm.

If α < 0 < β, there is a singularity at the origin, and we have |h(z)| → +∞ as
Re z < 0, z → 0. More precisely h(z) ≈ iπ/

√
z as Re z < 0, z → 0, if we define√

z in C r i [0,−∞[. This shows that there can actually appear singularities at the
critical values of g.
Example 7.3. Let f(ζ) = 1/ζ, g(ζ) = ζ. Here g has no critical values, but f has a
pole at the origin. Define

h(z) =
∫
γ

1
ζ(ζ − z)dζ = 1

z

(
log β − z

α− z
− log β

α

)
, z ∈ S2 r T,

where γ is a curve from α < 0 to β > 0 passing under the origin and under z if
α < Re z < β, and where

T = {z = α + it; t 6 0} ∪ {z = β + it; t 6 0}.

Then there is no singularity of h at the origin. But if we let z make one revolution
around β, there appears a pole. So poles of h can appear at points g(τ), τ a pole of
f , although they do not necessarily appear on every sheet. �
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Proof of Proposition 7.1. We shall define the extensions of h using the formula

(7.2) h(z) =
∫
γ

f(ζ)
g(ζ)− zdζ,

where γ is the sum of a curve connecting α and β, and finitely many circles around
g(τk), τk being the poles of f that are not poles of g. We shall always use curves
of class C1 avoiding the poles of f . When γ is moved across a point g(τ), with τ a
pole of f , we have to add or subtract a term

(7.3)
∫

Γ

f(ζ)
g(ζ)− zdζ,

where Γ is a small circle around g(τ) ∈ C; small here means so small that it does
not contain other images of poles of f under g, and that z is outside g(Γ). The
contribution of (7.3) is

2πi res
ζ=τ

(
f(ζ)

g(ζ)− z

)
.

If τ is a simple pole of f and g(τ) is the only image of a pole of f , then the residue
is

res
ζ=τ

(
f(ζ)

g(ζ)− z

)
= resζ=τ f(ζ)

g(τ)− z ,

giving rise to a simple pole of h at the point g(τ). More generally, if τ is a pole of
f of order s,

f(ζ) =
s∑
1

Aj
(ζ − τ)j +O(1), ζ → τ,

where the Aj are some constants with As 6= 0, then, assuming that τ = 0 and
g(τ) = g(0) = 0 to simplify the formulas,

f(ζ)
g(ζ)− z = −f(ζ)

∞∑
1

g(ζ)k−1

zk
when |ζ/z| is small.

The residue is

res
ζ=0

f(ζ)
g(ζ)− z = − res

ζ=0

s∑
j=1

∞∑
k=1

Ajg(ζ)k−1

ζjzk
= − res

ζ=0

s∑
j=1

s∑
k=1

Ajg(ζ)k−1

ζjzk
=

s∑
1

Bk

zk
,

where
Bk = − res

ζ=0

s∑
j=1

Ajg(ζ)k−1

ζj
.

This shows that the order of the pole is at most s. In fact, since τ = 0 is a simple
zero of g by assumption, it is precisely s, since

Bs = − res
ζ=0

s∑
1

Ajg(ζ)s−1

ζj
= −Asg′(0)s−1 6= 0.
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In spite of this, as Example 7.3 shows, there need not appear a pole of h at g(τ)
on every sheet. This is because (7.3) expresses the difference between h on different
sheets over the point g(τ).

If τ is, say, a quadruple pole of f , we get the residue

res
ζ=τ

f(ζ)
g(ζ)− z = − A4g

′(τ)3

(g(τ)− z)4 + A4g
′(τ)g′′(τ) + A3g

′(τ)2

(g(τ)− z)3

− A4g
′′′(τ) + 3A3g

′′(τ) + 6A2g
′(τ)

6(g(τ)− z)2 + A1

g(τ)− z ,

which gives rise to a quadruple pole of h at g(τ). From the formula we can of course
also see what happens if the pole of f is of order two or three.

In general it can happen that g(τ1) = g(τ2) = · · · = g(τr) for a finite number of
poles of f , thus giving rise to a finite sums of this form.

The poles of f which are also poles of g cause no trouble. Indeed, if τ is such a
pole, then g(τ) =∞, and h is originally defined and equal to 0 at ∞.

Suppose we have a curve γ which defines a function h by (7.2), and let (z, C)
represent a point of the Riemann surface Y . If C does not intersect γ, we already
have a definition of h for all points of C, in particular at z; if not, we follow the
curve C from ∞ towards g(γ). There is a point w which is the first point where we
hit g(γ). This means that g−1(w) ∩ γ is nonempty; by compactness it must consist
of finitely many points αj. By construction w is not in Z, so g′(αj) 6= 0 and g
defines a holomorphism of a neighborhood of αj onto a neighborhood of w. Let C
be parametrized by t ∈ [0, 1] so that C(0) =∞ and C(1) = w. We now deform the
curve γ near every αj so that the image under g of the new curve γ′ does not meet
the curve C for parameter values t 6 1. Therefore the integral with γ replaced by
γ′ defines an extension of h defined in a neighborhood of w. When we let the curve
pass over a pole of f , we get a pole of h as described above. This procedure can go
on à la Weierstraß until we cover all of Y . There is never any pole of f on the curves
we use, and g is a local holomorphism on all points of all curves except possibly the
endpoints α and β. �

8. Fundamental solutions defined on a Riemann surface over
the Riemann sphere

Theorem 8.1. Let P and Q be polynomials of one variable of degree at least two
satisfying |P | 6 |Q| and Q 6= 0 on the real axis. Define, for any test function ϕ on
R, a holomorphic function h for |z| > 1 by

h(z) = 1
2π

∫
R

ϕ̂(−ξ)
P (ξ)− zQ(ξ)dξ.

Denote by g the rational function P/Q. Then h has a meromorphic extension to the
Riemann surface over S2 r Z with Z = {g(∞), g(σj)}, where the σj are the zeros
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of g′. The extension is holomorphic except for possible poles at points over g(τk),
where τk is a common zero of P and Q such that its order as a zero of P is at least
as high as its order as a zero of Q. Assume now that g(σj), g(τk) 6= 0.

(A). If degQ = degP , then z∗ = g(∞) 6= 0 and there is no problem with the
convergence as z → 0. The value h(0), for any admissible choice of the curve
C in the proof of Proposition 7.1, defines a fundamental solution of P (D).

(B). If degQ = degP + 1, then g has a simple zero at infinity, and we see that
g([−∞,+∞]r[−α, α]) divides a typical neighborhood of 0 into two components
V + and V −. We have convergence of h(z) as z ∈ V +, z → 0, and also as
z ∈ V −, z → 0. Moreover h is of class C∞ on the closures of V + and V −.

(C). If degQ > degP +2, then g has a multiple zero at ∞, and the function h may
explode as z → 0.

If g(σj) = 0 for some j we see that σj is a multiple zero of g and we do not necessarily
have convergence as z → 0. Similarly if g(τk) = 0 for some k.

If P has no multiple zeros, then g(σj) 6= 0 (for if g(σj) = 0, then g has a multiple
root, and therefore also P = gQ). Also g(τk) 6= 0 (for if this is not the case, then
again P = gQ has a multiple zero). Therefore, for polynomials P without multiple
zeros, we can take any Q of the same degree as P and with the property |Q| > |P |,
Q 6= 0 on the real axis, and conclude that we have the simple case (A). More
generally, if P has no real double roots, then we can take Q of the same degree as P ,
without real zeros, and with a zero of the same multiplicity as that of P wherever
P has a zero of multiplicity at least two. This also gives case (A). If P is without
double roots we can also take Q of degree degP + 1, and get case (B).

When Q has all its roots in the upper or lower half plane, Theorem 6.3 says that
EP−zQ has only one singular point z∗. So it is not always necessary to avoid the
points g(σj) or g(τk).

In case (B) g has a simple zero at infinity, and as noted every sufficiently small
neighborhood of the origin is divided by g([−∞,+∞] r [−α, α]). If g has a double
zero (case (C)) this can also be so, but not necessarily. Indeed, if g(1/η) ≈ η2 + iη3,
then every sufficiently small neighborhood of the origin is divided by the image
under g of [−∞,+∞]r [−α, α], but, on the other hand, if g is an even function and
near infinity satisfies g(1/η) ≈ η2 + iη4, then g([−∞,+∞]r [−α, α]) does not divide
a connected neighborhood. That both cases can occur is shown by the following
simple examples, both belonging to case (C).
Example 8.2. If P = ξ + i, Q = ξ3 + 2i, then

g(1/η) = η2 + iη3

1 + 2iη3 ≈ η2 + iη3.

If P = ξ2 + i, Q = ξ4 + 2, then g is even and

g(1/η) = η2 + iη4

1 + 2η4 ≈ η2 + iη4.
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Proof of Theorem 8.1. To prove the theorem we shall apply Proposition 7.1 to
f(ζ) = ϕ̂(−ζ)/Q(ζ) and g = P/Q. Certainly g′ has finitely many zeros σj, and f
has finitely many poles τk. If τk is a pole of f which is not a zero of P , then τk
is a zero of Q and a pole of g, so it will cause no trouble according to Proposition
7.1. But if τk is a common zero of Q and P , then it need not be a pole of g, and
so must be considered. More precisely, there can be poles of h only at points over
those points g(τk) where τk is a zero of Q of order less than or equal to its order as
a zero of P , for otherwise g(τk) =∞, which is harmless.

We divide the integral defining h into three pieces:∫
R

=
∫ −α
−∞

+
∫ α

−α
+
∫ +∞

α
,

where α has to be determined. Here the middle term is holomorphic on the Riemann
surface Y over S2 r Z, where Z is {g(−α), g(α), g(σj)}. In order to define its
extension we have to move z on a curve C from infinity to a neighborhood of the
origin and then choose, for each such z, curves γz connecting −α to α and such that
g(ξ) 6= z when ξ is on γz.

(A). If g(∞), g(σj), g(τk) 6= 0 we just choose a large α to keep g(±α) away
from the origin. It is easy to see that the integral over [α,+∞[ tends to zero at
a point z 6= z∗ = g(∞) as α → +∞, uniformly for ε 6 |z − z∗| 6 1/ε. In fact,
|P (ξ)− zQ(ξ)| > 1 when ξ is large, |ξ| > Rz, z 6= z∗, and uniformly when z is in a
compact set. Thus in this case h is holomorphic in Y and the behavior at the origin
is no problem, except of course that there may be several sheets.

(B). If on the other hand g(∞) = 0, we have to consider a little more carefully
the integral

hα(z) = 1
2π

∫ +∞

α

ϕ̂(−ξ)
P (ξ)− zQ(ξ)dξ.

In fact, the theorem of dominated convergence is not applicable, because z can be
very close to g([α,+∞[), so that P (ξ)− zQ(ξ) becomes very small. We shall prove
that

|hα(z)− hα(0)| 6 R|z|
for some constant R. Consider

ϕ̂(−ξ)
P (ξ)− zQ(ξ) −

ϕ̂(−ξ)
P (ξ) = z

ϕ̂(−ξ)
P (ξ)(g(ξ)− z) .

Clearly it suffices to show that∫ +∞

α

ϕ̂(−ξ)
P (ξ)(g(ξ)− z)dξ

is bounded when z ∈ V +. Since in this case ∞ is a simple zero of g, we can use
t = g(ξ) as the variable of integration and write the integral as∫ β

0

ψ(t)
t− z

dt,
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where integration is along a curve defined by g. That this integral is bounded when
z ∈ V + follows from the next proposition.

Proposition 8.3. Let γ be a C∞ smooth curve starting at the origin and ending at
β 6= 0. Let ψ be holomorphic in a punctured neighborhood of the origin and assume
that its restriction to γ has a zero of high order at 0. Then

Ψ(z) =
∫ β

0

ψ(t)
t− z

dt,

defined for z not on γ, is bounded near the origin. Moreover, if ψ|γ has a zero of
infinite order at 0, then Ψ is C∞ up to the boundary in the complement of γ.

Proof. We integrate by parts twice:

Ψ(z) =
∫ β

0

ψ(t)
t− z

dt =
[
ψ(t) log(t− z)

]
γ
−
[
ψ′(t)(t− z)(log(t− z)− 1)

]
γ

+
∫
γ
ψ′′(t)(t− z)(log(t− z)− 1)dt

= ψ(β) log(β − z)− ψ′(β)(β − z)(log(β − z )− 1)

+
∫
γ
ψ′′(t)(t− z)(log(t− z)− 1)dt.

Now (t− z) log(t− z) is bounded for all t ∈ γ, for both t− z and its argument are
bounded (t− z does not wind around a lot as t→ 0 along γ).

If ψ has a zero of infinite order on γ we see that Ψ is of class C∞ up to γ. In
fact,

Ψ(k)(z) = ck

∫ β

0

ψ(t)
(t− z)k+1dt,

and we can decrease the order of the singularity using integration by parts:∫ β

0

ψ(t)
(t− z)k+1dt = − ψ(β)

k(β − z)k + 1
k

∫ β

0

ψ′(t)
(t− z)k dt, k = 1, 2, 3, . . . .

This formula shows that all derivatives of Ψ are bounded in the complement of γ.
This concludes the proof of Proposition 8.3 and consequently that of Theorem 8.1.
�

Maybe the following example exhibits the phenomena in case (B) more clearly.
Example 8.4. Let P (ξ) = ξ and Q(ξ) = ξ2 + 1; thus P (D) = D = −id/dx. Then we
study

1
2π

∫ eixξ

ξ + z(ξ2 + 1)dξ = 1
2πz

∫ eixξ

ξ2 + ξ/z + 1dξ, z ∈ C r R

There are poles at

ξ = −1±
√

1− 4z2

2z .
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It converges to i(H − 1) for Im z > 0 and to iH for Im z < 0, both of which are
fundamental solutions for −id/dx. Calculations become a bit easier if we use instead

P (ξ, z) = ξ + z(ξ2 − zξ − 1) = z(ξ − z)(ξ + 1/z).

(This is the image of a straight line under a certain local biholomorphism in the
space of polynomials.) Then

Fz(x) = EP−zQ = 1
2π

∫ eixξ

P (ξ, z)dξ = 1
2πz

∫ eixξ

(ξ − z)(ξ + 1/z)dξ = 0

when x Im z < 0. When x > 0 and Im z > 0 we get instead

Fz(x) = 1
2πz

∫ eixξ

(ξ − z)(ξ + 1/z)dξ = i

1 + z2 e
ixz − i

1 + z2 e
−ix/z.

We now apply this to a test function ϕ ∈ D :

(8.1)
∫
Fz(x)ϕ(x)dx = i

1 + z2 (ϕ̂0(−z)− ϕ̂0(1/z)),

denoting by ϕ0 = Hϕ the function which is zero for x < 0 and ϕ(x) for x > 0.
When z → 0, the last expression tends to iϕ̂0(0), which means that Fz tends to iH
weakly. �

The phenomenon in case (B) of Theorem 8.1 can now be expressed as a certain
regularity of ϕ0(1/z) in the upper half plane:

Proposition 8.5. Let ϕ ∈ S (R) and define

G(z) =
∫ +∞

0
e−it/zϕ(t)dt, z ∈ U = {z ∈ C; Im z > 0}.

Then G is holomorphic in U and has a C∞ extension to all of C.

Proof. We have a formula for the derivatives of G:

G(k)(z) = −iQk−1(t, d/dt)ϕ
∣∣∣∣∣
t=0

+
∫ +∞

0
e−it/zQk(t, d/dt)ϕ(t)dt, Im z > 0,

where Qk is a differential operator of order 2k with polynomial coefficients:

Q−1 = 0, Q0 = 1, Qk = −i(2d/dt+ td2/dt2)Qk−1(t, d/dt), k > 1.

This formula is proved by induction, integrating by parts twice for each step and
using the formula

∂

∂z
e−it/z = −it ∂

2

∂t2
e−it/z.
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Because |e−it/z| is bounded by 1 for Im z > 0, t > 0, we see that all derivatives
of G in the open upper half plane are bounded, which implies that G has a C∞
extension to the closed upper half plane as well as to C.

This implies that Fz, defined by (8.1) and considered as a distribution-valued
function for Im z > 0, has a smooth extension to Im z > 0. But it is not a holomor-
phic extension. The value for z = 0 is a fundamental solution for the operator we
started with, P (D) = −id/dx. �

Example 8.6. A two-parameter variant of this is

P (ξ, z) = P (ξ, z1, z2) = z2(ξ − z1)(ξ + 1/z2) = (ξ − z1)(z2ξ + 1).

Then for x > 0, Im zj > 0,

Fz(x) = 1
2πz2

∫ eixξ

(ξ − z1)(ξ + 1/z2)dξ = i

1 + z1z2
(eixz1 − e−ix/z2);

〈Fz, ϕ〉 = i

1 + z1z2
(ϕ̂0(−z1)− ϕ̂0(1/z2)).

This function, defined for |zj| < 1/2 and Im zj > 0, has a C∞ extension to |zj| < 1/2,
Im zj > 0, j = 1, 2. �

9. What about two variables?

Example 9.1. Let R denote a rectangle in R2. The function∫
R

1
ξ1 + iξ2 − z

dξ

is defined for all z, is holomorphic for z /∈ R, and its restriction to the complement
of R has a holomorphic extension to the Riemann surface defined by the corners of
R. (This is true for all polygons R.) �

Therefore I guess that an integral of the form

(9.1) h(z) =
∫

R2

ϕ̂(−ξ)
P (ξ)− zQ(ξ)dξ, |z| > 1,

has a holomorphic extension to Cr{0}, provided |P | < |Q| in R2 and P/Q tends to
zero at infinity. Maybe the proof is not so different: we consider first integrals over
large squares and prove that they define functions on the universal covering surface
over the plane minus the corners of the square, and then prove some estimate for
the integral over the complement of a large square. The first result proves that the
integral (9.1) admits a holomorphic extension to C r {0}, but its limit as z → 0 is
now more difficult to study.
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The part of the integral (9.1) where g = P/Q has maximal rank should cause no
problem. The critical values form a set of Lebesgue measure zero in view of Sard’s
theorem. Such a set could be a curve, which would be very bad. But I believe the
set where the rank is one is not dangerous.

Let us look at a couple of examples.
Example 9.2. The function∫ β

α

1
ξ1 − z

dξ1 = log z − β
z − α

, z ∈ S2 r [α, β],

has no singularity at the origin; it can be extended to the Riemann surface over
S2 r {α, β}. Similarly∫ β

α

1
ξ2

1 − z
dξ1 = 1

2
√
z

(
log β −

√
z

a−
√
z
− log β +

√
z

a+
√
z

)
, z ∈ S2 r [0,max(α2, β2)],

can be extended to the Riemann surface over S2r{0, α2, β2}. If 0 < α < β, however,
there is actually no singularity at the origin. But if α < 0 < β, then the function
does have a singularity at the origin: it equals iπ/

√
z for z < 0 if we choose

√
z

with positive imaginary part. This shows that the critical values of g in Proposition
7.1 can very well be singularities. But when we integrate such a singularity, it can
disappear! �

Example 9.3. In two variables we study∫
R

1
ξ2

1 + iξ2 − z
dξ = −i

∫ b1

a1
log

(
ξ2

1 + ib2 − z
ξ2

1 + ia2 − z

)
dξ1

where R is the rectangle {ξ ∈ R2; aj 6 ξj 6 bj, j = 1, 2}. Here there is no
singularity at the points with Re z = 0, a2 < Im z < b2, so that the fact that g has
lower rank at these points causes no difficulty. We regard g here as a mapping from
R2 into R2: g(ξ1, ξ2) = (ξ2

1 , ξ2). As such it can have rank 0, 1 or 2. When ξ1 6= 0 the
rank is 2 and we have no problem; when ξ1 = 0 the rank is 1 and we might have a
problem, but this example shows that there is none! The remaining case, with rank
zero, must be taken into account, but then again the images of such points form a
finite set. �

The discussion around the three examples leads to two conjectures.

Conjecture 9.4. Let P be a polynomial in n variables, not identically zero, and let
Q be a polynomial without real zeros. Assume that |P | 6 |Q| in Rn and consider,
writing g = P/Q,

h(z) =
∫

Rn

ϕ̂(−ξ)
P (ξ)− zQ(ξ)dξ =

∫
Rn

ϕ̂(−ξ)
Q(ξ)(g(ξ)− z)dξ, |z| > 1.

Then h is holomorphic for |z| > 1. The equation g′(ζ) = 0 defines a variety M
in Cn, and g(M) is its image in C, the critical values of g. Now g(M) consists
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of finitely many points. Then h(z) can be extended to the Riemann surface over
S2 r (g(M) ∪ g(∞)).

Here g(∞) denotes the set of all limits of g(ζ) as |ζ| → +∞. We can of course
choose Q so that g(∞) is {0}.

Since we want to study the limit of h as z tends to zero, we will have some trouble
if 0 ∈ g(M) or if g(∞) = 0 is a double point. There may be an explosion at such
a point. If n = 1, one can avoid this as we have seen, but I do not know if this is
possible for n > 2.

Conjecture 9.5. Define

EP (x) = (2π)−n
∫ eix·ξ

P (ξ)dξ, x ∈ Rn,

and
〈EP , ϕ〉 = (2π)−n

∫ ϕ̂(−ξ)
P (ξ) dξ, ϕ ∈ S (Rn),

for any polynomial P of degree m such that

inf
ξ∈Rn

|P (ξ)|(1 + ‖ξ‖)−ρ > 0.

In the first case we require that ρ > n, in the second this is not necessary. This
defines a holomorphic function of P in an open subset of CN . It has a holomorphic
extension to the Riemann domain spread over the set of all polynomials of degree m
without multiple zeros.
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