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Resumo: Dualeco de funkcioj difinitaj en linie konveksaj aroj
Ni enkondukas dualecon, similan al la transformo de Fenchel, inter funkcioj difini-
taj en aroj linie konveksaj.

Abstract: We introduce a duality, similar to the Fenchel transformation, of func-
tions that are defined in lineally convex sets.

1. Introduction

Lineal convexity, a kind of complex convexity intermediate between usual convexity
and pseudoconvexity, appears naturally in the study of Fantappiè transforms of ana-
lytic functionals. A set is called lineally convex if its complement is a union of
complex hyperplanes. This property can be most conveniently defined in terms of
the notion of dual complement: the dual complement of a set in Cn is the set of
all hyperplanes that do not intersect the set. It is natural to add a hyperplane
at infinity and consider Cn as an open subset of Pn, complex projective space of
dimension n. The definition of dual complement is then the same, and somewhat
more natural: the set of all hyperplanes is again a projective space. (In this setting
the dual complement is often called the projective complement. Indeed Martineau
[1966] called it le complémentaire projectif ; the term dual complement used here was
introduced by Andersson, Passare and Sigurdsson in the 1991 version of their survey
[1995].)

We can now simply define a lineally convex set as a set which is the dual com-
plement of its dual complement (here it becomes obvious that we should identify the
hyperplanes in the space of all hyperplanes with the points in the original space). So
this duality works well for sets. What about functions?

In convexity theory, a convenient dual object of a set is its supporting function.
Now a set A can be identified with its indicator function IA (which takes the value
0 in A and +∞ outside). The supporting function HA of A is then the Fenchel
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transform of the indicator function of A, so the duality for sets is a special case of
the Fenchel transformation, which expresses the duality for functions in convexity
theory.

Is there a duality for functions which generalizes the duality for sets defined by
the dual complement? In this note we shall study such a duality. We call it the
logarithmic transformation. It has of course many properties in common with the
Fenchel transformation. However, there are some striking differences. The effective
domain of a Fenchel transform is always convex, but the effective domain of a loga-
rithmic transform need not be lineally convex (Example 3.7). This is connected with
the fact that the union of an increasing sequence of lineally convex sets is not neces-
sarily lineally convex (Example 3.8). However, the interior of the effective domain of
a logarithmic transform is always lineally convex (Theorem 3.5), and the transform
is plurisubharmonic there (Theorem 3.9).

Working with functions defined on Pn is the same as working with functions
defined on C1+n

r {0} which are constant on complex lines, i.e., homogeneous of
degree zero. For instance a plurisubharmonic function on an open subset of Pn can
be pulled back to an open cone in C1+n

r {0} and the pull-back is plurisubharmonic
for the 1+n coordinates there. However, I cannot define a duality for such functions. I
have been led to consider instead functions defined on subsets of C1+n

r{0} which are
homogeneous in another sense: they satisfy f(tz) = − log |t| + f(z). Such functions
are of course not pull-backs of functions on projective space, but the duality works
for them. In a coordinate patch like z0 = 1 we can identify them with functions on a
subset of Pn. Given any function F on Cn, we can define a function f on C1+n

r{0}
by f(z) = F (z1/z0, ..., zn/z0) + c log |z0| when z0 6= 0 and f(z) = +∞ when z0 = 0,
where c is an arbitrary real constant; this function is homogeneous in the sense that
f(tz) = c log |t| + f(z), so we can choose any type of homogeneity. In other words,
locally all kinds of homogeneity are equivalent, and there is no restriction in imposing
the homogeneity we have here (c = −1).

There are several other notions related to lineal convexity. The property called
Planarkonvexität in German (see Behnke & Peschl [1935]) or weak lineal convexity
is weaker than lineal convexity: an open connected set is called weakly lineally con-
vex if through any boundary point there passes a complex hyperplane which does
not intersect the set. Aı̆zenberg [1967] proved that these domains are precisely the
components of Ω∗∗ (for notation see (2.1) below).

Strong lineal convexity was defined by Martineau [1966, Definition 2.2] as a
topological property of the space of holomorphic functions in a domain. Martineau
[1966, Theorem 2.2] and Aı̆zenberg [1966] proved independently that convex sets are
strongly lineally convex. The property was given a geometric characterization by
Znamenskij [1979]. This geometric property is now called C-convexity. Its relation
to lineal convexity has been studied by Zelinskij [1988] and others. For these two
properties we refer also to the survey by Andersson, Passare and Sigurdsson [1995]
and the monograph by Hörmander [1994].

Another generalization is the notion of k-lineal convexity. A set is said to be
k-lineally convex if its complement is a union of affine subspaces of codimension
k (1 6 k 6 n). This concept, which makes sense also in an infinite-dimensional
space, was studied in Kiselman [1978]. Thus n-lineal convexity is no condition at all,
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wheras 1-lineal convexity is the lineal convexity studied here; the other notions are
intermediate.

I am grateful to Lê Hai Khôi for many discussions concerning the topics presented
here; thanks to him the exposition could be considerably improved. My thanks go
also to Stefan Halvarsson and Ragnar Sigurðsson for valuable help with the manu-
script.

2. Lineal convexity
Let A be a subset of C1+n

r{0}, where n > 1. We shall say that A is homogeneous if
tz ∈ A as soon as z ∈ A and t ∈ Cr{0}. To any homogeneous subset A of C1+n

r{0}
we define its dual complement A∗ as the set of all hyperplanes passing through
the origin which do not intersect A. Since any such hyperplane has an equation
ζ · z = ζ0z0 + · · ·+ ζnzn = 0 for some ζ ∈ C1+n

r {0}, we can define

(2.1) A∗ = {ζ ∈ C1+n
r {0}; ζ · z 6= 0 for every z ∈ A}.

Strictly speaking, we should have two copies of C1+n
r {0} (a Greek and a Latin

one), and consider A∗ as a subset of the dual (i. e., Greek) space. A homogeneous
set is called lineally convex if C1+n

rA is a union of complex hyperplanes passing
through the origin. A dual complement A∗ is always lineally convex, and we always
have A∗∗ ⊃ A. The set A∗∗ is called the lineally convex hull of A. A set A is
lineally convex if and only if A = A∗∗.

The operation of taking the dual complement is an example of a Galois cor-
respondence, and the operation of taking the lineally convex hull defines a closure
operator in the (partially) ordered set of all subsets of C1+n

r {0}. The general
definition of these notions is as follows (see Kuroš [1962:6:11]). Let X and Y be
any two ordered sets. A Galois correspondence is a pair of decreasing mappings
f :X → Y and g:Y → X such that g(f(x)) > x for all x ∈ X and f(g(y)) > y for all
y ∈ Y . It follows that f ◦ g ◦ f = f and g ◦ f ◦ g = g. The operator g ◦ f maps X
into itself and is a closure operator, which means that it is increasing, expanding
(larger than the identity), and idempotent. Explicitly, if we write x for g(f(x)):

x1 6 x2 implies x1 6 x2;
x 6 x; and
x = x.

The elements x such that x = x will be called closed. Every closure operator comes
from some Galois correspondence. Indeed, if a closure operator x 7→ x is given in
an ordered set X, define Y as X with the opposite order and f(x) = x, g(y) = y.
Then g ◦ f(x) = x. The sets which are closed for the closure operator A 7→ A∗∗ are
precisely the lineally convex sets.

We shall write z = (z0, z
′) = (z0, z1, ..., zn) for points in C1+n

r{0}, with z0 ∈ C1

and z′ = (z1, ..., zn) ∈ Cn. Homogeneous sets in C1+n
r {0} correspond to subsets

of projective n-space Pn, and we can transfer the notions of dual complement and
lineal convexity to Pn. In the open set where z0 6= 0 we can use z′ as coordinates in
Pn.
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We shall write

(2.2) Yζ = {z ∈ C1+n
r {0}; ζ · z = 0}

for the hyperplane defined by ζ. Then the dual complement can be conveniently
defined as

(2.3) A∗ = {ζ; Yζ ∩A = Ø},

and its set-theoretic complement in C1+n
r {0} is

(2.4) {A∗ =
(
C1+n

r {0}
)
rA∗ = {ζ; Yζ ∩A 6= Ø}.

The complement of the lineally convex hull A∗∗ can be written as

{A∗∗ =
⋃
α∈A∗

Yα.

We shall use this idea in the following lemma.

Lemma 2.1. For any subset Γ of C1+n
r {0} we define

A = {
⋃
γ∈Γ

Yγ .

Then A is lineally convex. Moreover A∗∗ = A = Γ∗ and A∗ = Γ∗∗ ⊃ Γ.

Proof. Clearly A as the complement of a union of hyperplanes is lineally convex, so
A∗∗ = A. The statement a ∈ A is equivalent to γ · a 6= 0 for all γ ∈ Γ, which by
definition means that a ∈ Γ∗; thus A = Γ∗. As a consequence, A∗ = Γ∗∗.

How does the operation of taking the dual complement intertwine with the topo-
logical operations of taking the interior and closure? The answer is the following (we
write A◦ for the interior and A for the closure of a set A).

Proposition 2.2. For any homogeneous subset A of C1+n
r {0} we have

(2.5) A∗◦ =
(
A
)∗ and

(2.6) A∗ ⊂ A◦∗.

If A is closed, then A∗ is open. If A is open, then A∗ is closed.

Proof. To see that A∗ is open if A is closed we only have to look at (2.3). Hence(
A
)∗ is always open, which implies

(
A
)∗ ⊂ A∗◦.

Similarly, (2.4) shows that A∗ is closed if A is open. Hence A◦∗ is always closed,
and we see that A◦∗ ⊃ A∗.

The inclusion A∗◦ ⊂
(
A
)∗ remains to be proved. If ζ ∈ A∗◦, then Yθ∩A = Ø for

all θ near ζ. The union of these hyperplanes Yθ is a neighborhood of Yζ , so ζ ∈
(
A
)∗.

This proves the proposition.
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Corollary 2.3. If a subset A of C1+n
r {0} is strongly contained in a set B in the

sense that A ⊂ B◦, then B∗ is strongly contained in A∗.

Proof. Using (2.6) and (2.5) we see that A ⊂ B◦ implies B∗ ⊂ B◦∗ ⊂
(
A
)∗ = A∗◦.

Corollary 2.4. If a subset A of C1+n
r {0} is lineally convex, then its interior A◦

is also lineally convex.

Proof. If A = B∗, then A◦ = B∗◦ =
(
B
)∗ by (2.5), which shows that A◦ is lineally

convex.

By way of contrast, the closure of a lineally convex set is not necessarily lineally
convex if n > 2. It turns out that the lineal convexity of the closure is connected with
the question whether we have equality in (2.6), as shown by the following result.

Corollary 2.5. Let B be any lineally convex subset of C1+n
r {0}. Then its closure

B is lineally convex if and only if its dual complement A = B∗ satisfies (2.6) with
equality.

Proof. Using the lineal convexity of B, then (2.6) and (2.5), we get

B = A∗ ⊂ A◦∗ = B∗◦∗ =
(
B
)∗∗

.

Thus equality in (2.6) is equivalent to B being lineally convex.

The inclusion (2.6) in Proposition 2.2 can be strict simply for dimensionality
reasons. This will be clear from the following result, where we use the relative
interior instead of the interior with respect to the whole space.

Proposition 2.6. Let A be a homogeneous set in C1+n
r {0} which is contained in

a complex subspace F of C1+n. Let AF denote the relative interior of A in F . Then
A∗ ⊂ (AF )∗ ∪ F �, where F � is the set

F � = {ζ ∈ C1+n
r {0}; F r {0} ⊂ Yζ}.

If A is open in F , then A∗ ∪ F � is closed.
Note that when F = C1+n, then F � is empty and we are reduced to Proposition 2.2.
Proof. Take a point ζ /∈ (AF )∗∪F �. Then there is a point a ∈ AF ∩Yζ and a non-zero
vector b ∈ F r Yζ . If θ is close to ζ, then the hyperplane Yθ cuts the complex line
{a+ tb; t ∈ C} in a unique point a(t) close to a, and since a is in the relative interior
of A, a(t) belongs to A as soon as θ is close enough to ζ. Therefore θ /∈ A∗ for all
these θ, which means that ζ /∈ A∗.

Finally, if A is open in F , then A∗ ∪ F � = A∗ ∪ F � ⊂ (AF )∗ ∪ F � = A∗ ∪ F �,
since AF = A and F � is closed.
Example 2.7. It is now obvious that the inclusion (2.6) can be strict. Take a non-
empty relatively open set A ⊂ F 6= C1+n. Then A◦ = Ø, and A◦∗ = C1+n

r {0}.
But A∗ ⊂ (AF )∗ ∪ F � = A∗ ∪ F � 6= C1+n

r {0}.
Example 2.8. However, also the inclusion in Proposition 2.6 can be strict. There are
sets A such that A◦ = Ø,

(
A
)◦ = B 6= Ø, and B∗ = A∗. Thus A◦∗ = C1+n

r {0}
and A∗ = B∗ = B∗ 6= C1+n

r {0}. Such a set is the set A of all z ∈ C1+2 with
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|z1|2 + |z2|2 < |z0|2 and either z1 is a complex rational or z2 = 0. (Here the only
choice for F is the whole space, so that F � is empty.)
Example 2.9. A simple example of a lineally convex set whose closure is not lin-
eally convex is the following, taken from Andersson, Passare & Sigurdsson [1995:29f].
Define

A = {z ∈ C1+2
r {0}; |z1| < |z2|}; A = {z ∈ C1+2

r {0}; |z1| 6 |z2|}.

Then A is lineally convex. Any hyperplane which avoids A must pass through
(z0, z1, z2) = (1, 0, 0). But this point belongs to A. This shows that A is not lin-
eally convex. More generally, let Γ be a lineally convex subset of the Greek copy of
C1+n

r {0} and define A as in Lemma 2.1. We can easily choose Γ without interior
points but still such that ⋃

γ∈Γ

Yγ = {A

has interior points. Thus Γ◦ = Ø, {A =
(
{A
)◦ 6= Ø. Then

(
A
)∗∗ = A∗◦∗ = Γ◦∗ =

C1+n
r{0} (see Lemma 2.1 and (2.5)), but A = {

((
{A
)◦) 6= C1+n

r{0}. This shows
that A cannot be lineally convex.

3. Duality of functions
A function f : C1+n

r {0} → [−∞,+∞] with values in the extended real line will be
called homogeneous if

(3.1) f(tz) = − log |t|+ f(z), z ∈ C1+n
r {0}, t ∈ Cr {0}.

For such functions we define the dual function or logarithmic transform Lf :

(3.2) Lf(ζ) = sup
z∈dom f

(
− log |ζ · z| − f(z)

)
, ζ ∈ C1+n

r {0}.

Here dom f (the effective domain of f) denotes the set of all points z such that
f(z) < +∞, and ζ ·z = ζ0z0 + · · ·+ζnzn is the inner product. We define log 0 = −∞.
The difference − log |ζ · z| − f(z) is well-defined if f(z) < +∞; another way to
formulate the definition is to use lower addition +· :

(3.3) Lf(ζ) = sup
z

(
(− log |ζ · z|) +· (−f(z))

)
, ζ ∈ C1+n

r {0}.

Lower addition is an extension of usual addition such that (+∞) +· (−∞) = −∞; the
effect is that we disregard points outside dom f . Similarly we shall shortly use upper
addition +· (it satisfies (+∞) +· (−∞) = +∞).

Proposition 3.1. For any homogeneous function f : C1+n
r {0} → [−∞,+∞] its

logarithmic transform Lf is a homogeneous function with

(3.4) dom Lf ⊂ (dom f)∗.
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Proof. The homogeneity of Lf is obvious from its definition (3.2). To prove (3.4) we
note that ζ /∈ (dom f)∗ means by definition that the hyperplane Yζ and the effective
domain dom f have a common point z (cf. (2.4)), so that Lf(ζ) > − log |ζ ·z|−f(z) =
+∞, thus ζ /∈ dom Lf . The inclusion (3.4) may be strict as will be shown below: see
Example 3.7 and Remark 4.3.

The analogue of Fenchel’s inequality holds:

(3.5) − log |ζ · z| 6 f(z) +· Lf(ζ), ζ, z ∈ C1+n
r {0}.

Moreover the usual rules for a Galois correspondence hold: f 6 g implies Lf > Lg,
and we always have LLf 6 f . As a consequence of these two properties, LLLf = Lf .
A function f will be called L-closed if LLf = f (equivalently, if it belongs to the
range of L). Some simple examples follow.
Examples 3.2. If f assumes the value −∞, then Lf is +∞ identically. The same
is true if f never takes the value +∞ (n > 1). If f is +∞ identically, then Lf is
−∞ identically. If f(z) = − log |t| when z = ta for a fixed a ∈ C1+n

r {0} and
+∞ otherwise, then Lf(ζ) = − log |ζ · a|. If f(z) = − log |α · z| for some α, then
Lf(ζ) = − log |t| when ζ = tα and +∞ otherwise. All these functions are L-closed.

As a consequence of (3.3) we note that supi Lfi = L(infi fi) for any indexed
family (fi) of functions. Indeed this follows from the rule supi(C+· ai) = C+· supi ai,
which is valid also for an infinite constant C; cf. Kiselman [1984: Lemma 3.1]. This
implies that any supremum of L-closed functions is L-closed; in fact, we have

(3.6) sup
i
fi = sup

i
LLfi = L(inf

i
Lfi)

if the fi are L-closed.
Homogeneous functions appear rather naturally in complex analysis. Let µ be

an analytic functional in an open subset ω of Cn, µ ∈ O′(ω). Its Fantappiè transform
is

Fµ(ζ) = µ(z 7→ (ζ0 + ζ1z1 + · · ·+ ζnzn)−1),

which is a holomorphic function of ζ ∈ Ω∗, where Ω is the set of all z ∈ C1+n
r {0}

such that z0 6= 0 and (z1/z0, ..., zn/z0) ∈ ω. This implies that log |Fµ| is plurisubhar-
monic in Ω∗, and it is moreover homogeneous in the sense of (3.1). (We define it as
+∞ outside Ω∗.)

Given f defined in C1+n
r {0}, we can define a function F in Cn by putting

F (z′) = f(1, z1, ..., zn), z′ ∈ Cn. Conversely, if F is defined in Cn, we can define a
homogeneous function f in C1+n

r {0} by

f(z) =
{
F (z1/z0, ..., zn/z0)− log |z0|, z ∈ C1+n

r {0}, z0 6= 0;
+∞ z ∈ C1+n

r {0}, z0 = 0.

The transform (3.2) then takes the form

(3.7) LF (ζ ′) = sup
F (z′)<+∞

(
− log |1 + ζ ′ · z′| − F (z′)

)
, ζ ′ ∈ Cn.
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In particular, if F is radial (i. e., a function of |z′| = r), then the transform becomes

(3.8) LF (ρ) = sup
F (r)<+∞

(
− log(1− ρr)− F (r)

)
, ρ = |ζ ′| > 0.

Example 3.3. Take F (r) = 0 when r 6 R and F (r) = +∞ otherwise in (3.8). Then
LF (ρ) = − log(1−Rρ), ρ < 1/R, and LF (ρ) = +∞, ρ > 1/R. The second transform
is LLF = F , so that F is L-closed.
Example 3.4. The radial function F (r) = − 1

2 log(1 − r2) is selfdual, i. e., LF (ρ) =
− 1

2 log(1− ρ2). Going back to C1+n
r {0}, we see that the function

f(z) =
{− 1

2 log(|z0|2 − |z′|2), z ∈ C1+n
r {0}, |z0| > |z′|;

+∞, z ∈ C1+n
r {0}, |z0| 6 |z′|

has this property. This function therefore plays the same role as the convex function
f(x) = 1

2 |x|
2 for usual convexity.

Now let A be a homogeneous set in C1+n
r {0}. We define a function d, the

distance to the complement of A relative to C1+n
r {0}, as

(3.9) d(z) = dA(z) = inf
(
|z − w|; w ∈ (C1+n

r {0})rA
)
, z ∈ C1+n

r {0}.

The function − log d is homogeneous, and it is less than +∞ precisely in the interior
of A. Analogously we define a function δ by

(3.10) δ(ζ) = dA∗(ζ) = inf
(
|ζ − θ|; θ ∈ (C1+n

r {0})rA∗
)
, ζ ∈ C1+n

r {0},

where A∗ is the dual complement of A defined by (2.1). If A is empty, then dA = 0
identically, whereas dA∗ = +∞ identically.

Theorem 3.5. Let f : C1+n
r{0} → [−∞,+∞] be any homogeneous function. Then

(3.11) C − log |ζ| 6 Lf(ζ) 6 C − log δ(ζ), ζ ∈ C1+n
r {0},

where δ is defined by (3.10) taking A = dom f , and C = − inf |z|=1 f(z) 6 +∞. We
have C = −∞ if and only if f is +∞ identically; in this case Lf is −∞ identically.
We have C = +∞ if and only if f is unbounded from below on the unit sphere S;
then Lf is +∞ identically. If f is bounded from below on S, then C < +∞ and
(3.11) shows that Lf has at most logarithmic growth at the boundary of (dom f)∗;
moreover

(3.12)
(

dom f
)∗ = (dom f)∗◦ = (dom Lf)◦ ⊂ dom Lf ⊂ (dom f)∗,

and

(3.13) dom Lf ⊂ (dom f)∗ ⊂ (dom f)◦∗.

In particular dom Lf = (dom f)∗ if dom f is closed.
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Lemma 3.6. For any subset A of C1+n
r {0} we have

(3.14) |ζ · z| > δ(ζ)|z|, ζ ∈ C1+n
r {0}, z ∈ A,

and

(3.15) |ζ · z| > |ζ|d(z), ζ ∈ A∗, z ∈ C1+n
r {0}.

Proof. Given ζ ∈ C1+n
r{0} and z ∈ A we define α = ζ+ tz where t = −|z|−2(ζ · z).

Then α · z = 0, which, if α 6= 0, means that α ∈ {A∗ since z ∈ A. Therefore δ(ζ) 6
|ζ − α| = |ζ · z|/|z|, which proves the first inequality except when ζ = |z|−2(ζ · z)z.
Since δ is continuous, this restriction can be removed. If we now interchange the role
of ζ and z, we get |ζ · z| > |ζ|dA∗∗(z). But A∗∗ ⊃ A, so dA∗∗(z) > dA(z) = d(z). This
proves the lemma. (Interchanging z and ζ once more, we see that (3.14) holds even
for all z ∈ A∗∗.)
Proof of Theorem 3.5. By Schwartz’ inequality and (3.14) applied to A = dom f we
get

− log |ζ| 6 − log |ζ · z| 6 − log δ(ζ), ζ ∈ C1+n
r {0}, z ∈ A ∩ S.

Thus

Lf(ζ) = sup
z∈A∩S

(
− log |ζ · z| − f(z)

){6 (− log δ(ζ)) +· supA∩S(−f);

> − log |ζ|+ supA∩S(−f).

The cases where +· and +· give different results never occur, so we can replace +· by
usual addition. This proves (3.11); note that supA∩S(−f) = supS(−f) = − infS f .

We already know that dom Lf ⊂ (dom f)∗; see (3.4). If ζ ∈ (dom f)∗◦ and
C < +∞, then δ(ζ) > 0 and Lf(ζ) 6 C − log δ(ζ) < +∞, so that ζ ∈ dom Lf . This
proves that (dom f)∗◦ ⊂ dom Lf ⊂ (dom f)∗. Taking the interior of these sets we
get (3.12); taking the closure we get (3.13) (cf. Proposition 2.2).
Example 3.7. The effective domain of Lf may fail to be lineally convex, although
it is squeezed in between the two lineally convex sets (dom f)∗◦ =

(
dom f

)∗ and
(dom f)∗; see (3.12). Indeed, let wk = (k−2, k−1, 1) ∈ C1+2 and define f(wk) = log k,
k = 1, 2, 3, ..., and f(z) = +∞ when z /∈ Cwk. Then

Lf(ζ) = sup
k

(− log |ζ0/k + ζ1 + kζ2|), ζ ∈ C1+2
r {0}.

Put α = (1, 0, 0) and β = (1, 1, 0). Then

Lf(α) = sup
k

(− log |k−1|) = +∞,

so that α /∈ dom Lf , whereas

Lf(β) = sup
k

(− log |k−1 + 1|) = 0,
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showing that β ∈ dom Lf . The points wk define hyperplanes

Ywk = {ζ; ζ0k−2 + ζ1k
−1 + ζ2 = 0},

which converge to a hyperplane Yw = {ζ; ζ2 = 0} with w = limwk = (0, 0, 1). By
(3.12), (

dom f
)∗ = {

(
Yw ∪

⋃
Ywk

)
⊂ dom Lf ⊂ (dom f)∗ = {

(⋃
Ywk

)
.

Both α and β belong to Yw, but as k → +∞, the hyperplanes Ywk approach α more
rapidly than β (note that α·wk = 1/k2, while β ·wk = 1/k+1/k2). This explains why
α /∈ dom Lf while β ∈ dom Lf . A hyperplane which avoids dom Lf must be either
one of the hyperplanes Ywk , or (possibly) their limit Yw. However, the hyperplanes
Ywk do not contain α, and the hyperplane Yw intersects dom Lf in β. Therefore
there is no hyperplane which passes through α and avoids dom Lf , which shows that
dom Lf is not lineally convex. In particular we must have (dom f)∗◦ 6= dom Lf 6=
(dom f)∗; cf. (3.12).
Example 3.8. A fundamental property of convexity is that the union of an increasing
sequence of convex sets is convex. (More generally, this is true for the union of a
directed family.) This is not so with lineal convexity. Let Aj be the set of all ζ such
that Lf(ζ) 6 j. It is easy to see that this is a lineally convex set; indeed,

Aj =
⋂

z∈dom f

{ζ ∈ C1+n
r {0}; − log |ζ · z| − f(z) 6 j}.

The union of the Aj is dom Lf . If we let f be the function constructed in Example
3.7 we get an example where the Aj are lineally convex but their union is not.

Theorem 3.9. Let f be a function on C1+n
r {0} which is bounded from below on

the unit sphere and let Lf be its transform defined by (3.2). Then Lf is plurisub-
harmonic in the interior of dom Lf , which is a lineally convex set. Moreover Lf is
locally Lipschitz continuous in (dom Lf)◦; more precisely

lim sup
t→0+

Lf(ζ + tθ)− Lf(ζ)
t

6
|θ|
δ(ζ)

, ζ ∈ (dom Lf)◦, θ ∈ C1+n,

where δ the distance to the complement of dom Lf .

Proof. Consider the function g(ζ) = − log |ζ · z|. Its gradient has length |z|/|ζ · z|.
At the point α = ζ + tz, where t = −|z|−2(ζ · z), g takes the value +∞, so

ddom g(ζ) 6 |α− ζ| 6 |ζ · z|
|z|

=
1

| grad g(ζ)|
.

Now Lf is a supremum of functions of the form g plus a constant for various choices
of z. All competing functions must satisfy dom g ⊃ dom Lf , so that ddom g > δ.
Therefore they have a gradient whose length is at most 1/δ(ζ), which implies that
Lf is Lipschitz continuous as indicated. That Lf is plurisubharmonic now follows
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from standard properties of such functions: f is a continuous supremum of plurisub-
harmonic functions.

Finally (3.12) shows that (dom Lf)◦ is lineally convex: it is equal to the dual
complement of the closure of dom f .

4. Examples of functions in duality

In this section we shall make a detailed study of the functions

(4.1) fc(z) =
{−(1− c) log |z| − c log d(z), z ∈ A;

+∞, z ∈ (C1+n
r {0})rA,

and

(4.2) ϕc(ζ) =
{−(1− c) log |ζ| − c log δ(ζ), ζ ∈ A∗;

+∞, ζ ∈ (C1+n
r {0})rA∗,

where 0 6 c 6 1, A is any homogeneous subset of C1+n
r{0}, A∗ its dual complement,

and d and δ are defined by (3.9) and (3.10), respectively.
We shall call f0 = IA the indicator function of the set A. Its restriction to the

unit sphere is the indicator function in the usual sense. And Lf0 = LIA is analogous
to the supporting function of A, thus preserving the situation from convex analysis
where the supporting function is the Fenchel transform of the indicator function. We
shall determine this function explicitly: it is ϕ1 = − log δ = − log dA∗ .

More generally, it turns out that the function ϕ1−c is essentially dual to fc. It
might seem strange to consider functions like f0 which are not plurisubharmonic. We
must have LLf0 < f0 in the interior of A. From this point of view it is more natural
to consider

(4.3) gc(z) =
{−(1− c) log |z0| − c log d(z), z ∈ A;

+∞, z ∈ (C1+n
r {0})rA,

and

(4.4) ψc(ζ) =
{−(1− c) log |ζ0| − c log δ(ζ), ζ ∈ A∗;

+∞, ζ ∈ (C1+n
r {0})rA∗.

If A is contained in a coordinate patch z0 6= 0 and if moreover |z|/|z0| is bounded when
z ∈ A, then fc and gc are finite in the same set and differ there by a bounded function.
If moreover (1, 0, ..., 0) is an interior point of A, then ζ0 6= 0 when ζ ∈ A∗ and |ζ|/|ζ0|
is bounded there, so ϕc and ψc are finite in the same set and their difference is
bounded there. Therefore our results on fc and ϕc can easily be translated into
inequalities for gc and ψc.

The first result is a simple inequality.

Proposition 4.1. With fc and ϕc defined by (4.1) and (4.2) we have Lfc 6 ϕ1−c
for 0 6 c 6 1.
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Proof. If ζ /∈ A∗, then ϕ1−c(ζ) = +∞, so the inequality certainly holds. If on the
other hand ζ ∈ A∗, we can estimate Lfc(ζ) using Lemma 3.6:

Lfc(ζ) = sup
z∈A(c)

(
− log |ζ · z|+ (1− c) log |z|+ c log d(z)

)
= sup
z∈A(c)

(
− (1− c) log |ζ · z|+ (1− c) log |z| − c log |ζ · z|+ c log d(z)

)
6 sup
z∈A(c)

(
− (1− c) log(δ(ζ)|z|) + (1− c) log |z| − c log(|ζ|d(z)) + c log d(z)

)
6 −(1− c) log δ(ζ)− c log |ζ| = ϕ1−c(ζ).

The supremum is over the set A(c) of all z such that fc(z) < +∞, that is

(4.5) A(c) =
{
A for c = 0;
A◦ for 0 < c 6 1.

(A(c) can of course be empty; in that case Lfc is −∞ identically.)

We now study inequalities in the other direction. The cases c = 0 and c = 1 are
easy and will be considered first.

Proposition 4.2. For any homogeneous subset A of C1+n
r {0} we have LIA =

Lf0 = ϕ1 = − log dA∗ . (The analogue of the supporting function of A.)

Remark 4.3. Note that here dom Lf0 = A∗◦ =
(
A
)∗ = (dom f0)∗◦ is open and

lineally convex, whereas (dom f0)∗ = A∗; again we see that the inclusion dom Lf ⊂
(dom f)∗ may be strict (cf. (3.4)).

Lemma 4.4. Assume that A is homogeneous and not empty. For every ζ ∈ A∗ there
is a point z ∈ ∂A, z 6= 0, such that |ζ · z| 6 δ(ζ)|z|.
Proof. For every ζ ∈ A∗ there is a point α ∈ ∂A∗, α 6= 0, such that |α − ζ| = δ(ζ).
Thus α /∈ A∗◦ =

(
A
)∗ (cf. (2.5)). Now α /∈

(
A
)∗ means that Yα ∩ A 6= Ø (see (2.2)

and (2.4)). On the other hand α ∈ ∂A∗ ⊂ A∗ ⊂ A◦∗ (cf. (2.6)), so that Yα ∩A◦ = Ø.
Therefore Yα meets the boundary of A, and we can choose z ∈ S ∩ ∂A such that
α · z = 0. Then

|ζ · z| = |(ζ − α) · z| 6 |ζ − α||z| = δ(ζ)|z|.

Proof of Proposition 4.2. If A = Ø, we have LIA = − log dA∗ = −∞. Otherwise the
lemma provides us, given any ζ ∈ A∗, with a point z ∈ ∂A ∩ S such that

Lf0(ζ) = sup
w∈A

(
− log |ζ · w|+ log |w|

)
> − log |ζ · z|+ log |z| > − log δ(ζ) = ϕ1(ζ).

For ζ ∈ (C1+n
r {0}) r A∗ both Lf0 and ϕ1 take the value +∞. Thus Lf0 > ϕ1

everywhere. The inequality Lf0 6 ϕ1 was proved already in Proposition 4.1.

Proposition 4.5. Assume A is open and not empty. Then there is a constant M ,
which depends on the geometry of A, such that

ϕ0 = IA∗ > Lf1 = L(− log dA) > IA∗ −M.

In fact M can be taken as infS f1 = infS(− log dA).
Here dom Lf1 = A∗ = (dom f1)∗ is closed and lineally convex; cf. (3.12).
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Lemma 4.6. Assume A has a nonempty interior and take any point z ∈ A◦. Then
there is a constant C such that |ζ · z| 6 C|ζ|d(z) for all ζ.

Proof. Given z ∈ A◦ define C = |z|/d(z). We have

|ζ · z| 6 |ζ||z| = C|ζ|d(z).

The best choice is of course a point z ∈ S such that d(z) = supS d, so that C =
1/ supS d.
Proof of Proposition 4.5. Using the lemma we get for any ζ ∈ A∗,

Lf1(ζ) = sup
w∈A

(
− log |ζ · w|+ log d(w)

)
> − log |ζ · z|+ log d(z) > − logC − log |ζ|

= ϕ0(ζ)−M.

When ζ /∈ A∗, there is a point z ∈ A such that ζ · z = 0, and since A is open,
f1(z) < +∞, so that Lf1(ζ) = +∞. Thus we have Lf1 > ϕ0 −M everywhere. The
inequality IA∗ > Lf1 was already proved in Proposition 4.1.

Theorem 4.7. Let A be an open homogeneous set. Then A is lineally convex if and
only if − log dA is L-closed.

Proof. If A = B∗, then LIB = − log dB∗ = − log dA by Proposition 4.2, so − log dA
is L-closed. Conversely, Proposition 4.5 shows that L(− log dA) > IA∗ −M , which
implies LL(− log dA) 6 − log dA∗∗ +M . Therefore, if z belongs to the open set A∗∗

(cf. Proposition 2.2), then LL(− log dA(z)) is finite. If − log dA is L-closed, this is
equivalent to − log dA(z) being finite, which implies z ∈ A. Thus A∗∗ ⊂ A; this
inclusion means that A is lineally convex.

Theorem 4.8. A closed lineally convex set A can be recovered from LIA. Indeed, if
A is a set with these properties different from C1+n

r{0}, then IA > LLIA > IA−M ,
so that A is the set where LLIA is finite. If A is equal to C1+n

r {0}, then LLIA is
−∞ identically. If A is a closed and lineally convex set such that |z′| 6 R|z0| for all
z ∈ A, then LLIA > IA − log

√
1 +R2.

This theorem is thus analogous to the result in convexity theory which states that a
closed convex set can be recovered from its supporting function. By way of contrast,
an open set A can be recovered from LIA only under special conditions, since LIA =
LIA. If A is open and equal to the interior of its closure, and if its closure is lineally
convex, then A is the interior of the set where LLIA is finite. But an open lineally
convex set can of course always be recovered from L(− log dA); see Proposition 4.5.
Proof. If A is closed, lineally convex and not equal to all of C1+n

r {0}, then A∗ is
open and non-empty, so we can apply Proposition 4.5 to A∗ and obtain

IA∗∗ > L(− log dA∗) > IA∗∗ −M.

From Proposition 4.2 we have LIA = − log dA∗ . Combining this information we
deduce

IA∗∗ > L(− log dA∗) = LLIA > IA∗∗ −M.
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Since A is lineally convex, A = A∗∗, and we see that LLIA and IA are finite in the
same set (and differ there at most by a bounded function).

The last statement follows if we keep track of the constant in Lemma 4.6. Al-
ternatively we can compare IA with the function F (z) = − log |z0|, |z′| 6 R|z0|,
F (z) = +∞ otherwise. This gives F (z) > IA(z) > F + log |z0| − log |z| for z ∈ A, so
that IA > F − log

√
1 +R2 everywhere, implying that LLIA > LLF − log

√
1 +R2.

Since LLF = F (cf. Example 3.3), we can conclude that LLIA > F − log
√

1 +R2 >
IA − log

√
1 +R2 in A.

Finally we shall deduce an estimate from below for Lfc when 0 < c < 1.

Proposition 4.9. Assume that A is open, non-empty, and satisfies an interior cone
condition in the sense that there exist positive numbers γ and R such that for every
a ∈ ∂A and every r 6 R

sup
z

(
d(z); |z − a| 6 r|a|

)
> γr|a|.

Then there is a constant M such that ϕ1−c > Lfc > ϕ1−c −M for every c ∈ [0, 1].
Here dom Lfc = (dom fc)∗◦ for 0 6 c < 1, whereas it is closed for c = 1 as already
noted.

In particular a set with Lipschitz boundary satisfies the interior cone condition.
To prove this proposition we shall need a lemma which combines Lemmas 4.4 and 4.6.
The requirements concerning the point z are somewhat contradictory, since z ∈ ∂A
in the first and z ∈ A◦ in the second. Nevertheless, we can find a compromise:

Lemma 4.10. With A as in the proposition there exists a constant C such that for
every ζ ∈ A∗ there is a point z = zζ ∈ A such that

|ζ · z| 6 C|ζ|d(z) and |ζ · z| 6 Cδ(ζ)|z|.

Proof. First pick any point w ∈ A. It will serve as the point zζ for all ζ such that
δ(ζ) > R|ζ|:

|ζ · w| 6 |ζ||w| = |w|
d(w)

|ζ|d(w) 6 C|ζ|d(w)

and

|ζ · w| 6 |ζ||w| = |ζ|
δ(ζ)

δ(ζ)|w| 6 1
R
δ(ζ)|w| 6 Cδ(ζ)|w|

for a constant C > max(R−1, |w|/d(w)).
The case δ(ζ) 6 R|ζ| remains to be considered. To a given ζ ∈ A∗ we choose

α ∈ ∂A∗, α 6= 0, such that |α − ζ| = δ(ζ) = r|ζ|, r 6 R. Since Yα meets ∂A (cf.
the proof of Lemma 4.4), we can choose a ∈ ∂A, a 6= 0, such that α · a = 0. The
interior cone condition now implies the existence of a point z = zζ ∈ A such that
d(z) > γr|a| and |z−a| 6 r|a| 6 R|a|. Then |ζ ·a| = |(ζ−α) ·a| 6 |ζ−α||a| = δ(ζ)|a|
and |z − a| 6 r|a| = |a|δ(ζ)/|ζ|, so that

|ζ · z| = |ζ · a+ ζ(z − a)| 6 |ζ · a|+ |ζ||z − a| 6 2δ(ζ)|a| 6 2
1−R

δ(ζ)|z|.
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Here the last inequality follows from |z−a| 6 R|a|; it is no restriction to assume that
R < 1. On the other hand d(z) > γr|a| = γ|a|δ(ζ)/|ζ| so that

|ζ · z| 6 2δ(ζ)|a| 6 2
γ
d(z)|ζ|.

This proves the lemma with the constant

C = max
[

1
R
,
|w|
d(w)

,
2

1−R
,

2
γ

]
.

Proof of Proposition 4.9. Since A is open, dom fc = A for all c; cf. (4.5). Using the
lemma we get for any ζ ∈ A∗, taking z ∈ A from Lemma 4.10,

Lfc(ζ) = sup
w∈A

(
− log |ζ · w|+ (1− c) log |w|+ c log d(w)

)
> − log |ζ · z|+ (1− c) log |z|+ c log d(z)
= (1− c)(log |z| − log |ζ · z|) + c(log d(z)− log |ζ · z|)
> (1− c)(log |z| − log(Cδ(ζ)|z|) + c(log d(z)− log(C|ζ|d(z))
= −(1− c) log δ(ζ)− c log |ζ| − logC = ϕ1−c(ζ)−M.

If ζ /∈ A∗, then Lfc(ζ) = ϕ1−c(ζ) = +∞.

5. The supporting function of a convex set

Let A0 be a subset of Cn. Its supporting function is

(5.1) HA0(ζ ′) = sup
z′∈A0

Re(ζ ′ · z′), ζ ′ = (ζ1, ..., ζn) ∈ Cn.

If A0 is closed and convex, then HA0 determines A0; in fact, A0 is the set of all z′ =
(z1, ..., zn) such that Re(ζ ′ · z′) 6 HA0(ζ ′) for all ζ ′. Now let A be the homogeneous
set of all z ∈ C1+n

r {0} such that z0 6= 0 and z′/z0 ∈ A0. With the set A we
associate the function

(5.2) LIA(ζ) = − log δ(ζ) = sup
z∈A

(− log |ζ · z|+ log |z|), ζ ∈ C1+n
r {0},

the projective analogue of the supporting function. What is the relation between
these two supporting functions? To answer this question we first modify IA a little
and define

(5.3) hA(ζ) = sup
z∈A

(− log |ζ · z|+ log |z0|), ζ ∈ C1+n
r {0}.

If A0 is bounded, then hA and LIA are finite in the same set and differ there by a
bounded function.
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We shall express hA in terms of HA0 . We first formulate an auxiliary result,
which we shall need for convex sets in the complex plane only, but which is valid in
general in Rn. We shall therefore use the real supporting function

(5.4) HA(ξ) = sup
x∈A

ξ · x, ξ ∈ Rn.

Lemma 5.1. Let A be a convex set in Rn. Then

(5.5) − inf
x∈A
|x| 6 inf

|ξ|=1
HA(ξ) 6 inf

x/∈A
|x|

(Euclidean norms) with equality on the left if 0 /∈ A◦, and on the right if 0 ∈ A.

Proof. For any set A we have, writing S for the unit sphere,

inf
S
HA = inf

ξ∈S
sup
x∈A

ξ · x > sup
x∈A

inf
ξ∈S

ξ · x = sup
x∈A

(−|x|) = − inf
x∈A
|x|.

If A is convex and x /∈ A, then there is a ξ ∈ S such that ξ · x > HA(ξ); thus
|x| > ξ · x > HA(ξ), so that |x| > infS HA. This shows that inf{A |x| > infS HA and
proves (5.5) for all convex sets.

Now assume that 0 /∈ A◦. Then A must be contained in a half-space {x; ξ ·x > c}
for some ξ ∈ S and c > 0, which shows that HA(−ξ) 6 −c 6 0. If A is empty, (5.5)
has the form −∞ 6 −∞ 6 0, so the result is true. If A is not empty, then we can
choose c = infx∈A |x|, so that infS HA 6 −c = − infx∈A |x|; we have proved equality
on the left in (5.5).

On the other hand, if 0 ∈ A and HA(ξ) < c for some ξ ∈ S and some c, then
necessarily c > 0 and the vector cξ cannot belong to A, so that infx/∈A |x| 6 |cξ| = c.
Thus infx/∈A |x| 6 infS HA; we have proved equality on the right in (5.5).

Lemma 5.2. For any convex set A in Rn we have

(5.6) inf
x∈A
|x| = sup

|ξ|=1

HA(ξ)−;

(5.7) inf
x/∈A
|x| = inf

|ξ|=1
HA(ξ)+,

where t+ = max(t, 0), t− = max(−t, 0).

Proof. If 0 /∈ A, then (5.6) is just the first part of (5.5) with equality, and (5.7)
reduces to 0 = 0. If 0 ∈ A, then (5.6) reduces to 0 = 0 while (5.7) is the second part
of (5.5) with equality.

Proposition 5.3. Let A0 be any convex set in Cn, and A the homogeneous set of
all z ∈ C1+n

r {0} such that z0 6= 0 and z′/z0 ∈ A0. Define HA0 and hA by (5.1)
and (5.3) respectively. Then

(5.8) hA(ζ) = inf
|t|=1

log
(
HA0(tζ ′) + Re(tζ0)

)−
, ζ ∈ C1+n

r {0}.
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Proof. If A is empty, (5.8) certainly holds, because both sides are equal to −∞. Fix
ζ ∈ C1+n

r {0} and denote by L the linear mapping z′ 7→ ζ ′ · z′. If A is not empty,
then

(5.9) e−hA(ζ) = inf
z′∈A0

|ζ0 + ζ ′ · z′| = inf
s∈L(A0)

|ζ0 + s| = |ζ0 + a(ζ0)|,

where a(ζ0) denotes the point in the closure of L(A0) which is closest to −ζ0. Here
the first equality holds because, in view of the homogeneity, it is enough to let z vary
with z0 = 1 in the definition of hA.

We now note that

HA0(tζ ′) = sup
z′∈A0

Re(tζ ′ · z′) = sup
z′∈A0

Re tL(z′) = sup
s∈L(A0)

Re ts = HL(A0)(t),

which shows that the supporting function of the set M = L(A0) + ζ0 is

HM (t) = HA0(tζ ′) + Re(tζ0), t ∈ C.

We can apply (5.6) to the convex set M . This yields

e−hA(ζ) = |ζ0 + a(ζ0)| = sup
|t|=1

HM (t)− = sup
|t|=1

(
HA0(tζ ′) + Re(tζ0)

)−
,

where the first equality is that of (5.9), and thus proves (5.8).
Conversely, we can express HA0 in terms of hA.

Proposition 5.4. Let A0 be a bounded but not necessarily convex set in Cn, and A
the set of all z ∈ C1+n

r {0} such that z0 6= 0 and z′/z0 ∈ A0. Define HA0 and hA
by (5.1) and (5.3) respectively. Then

(5.10) HA0(ζ ′) = lim
ζ0∈R
ζ0→−∞

(
− ζ0 − e−hA(ζ)

)
, ζ ′ ∈ Cn.

Proof. We can still use (5.9) even though A0 now is perhaps not convex, if we let
a(ζ0) denote one of the closest points to −ζ0 in the closure of L(A0). Let ζ0 be real
and tend to −∞. Then

e−hA(ζ) + ζ0 = |ζ0 + a(ζ0)|+ ζ0 → −Re a(−∞),

where a(−∞) is an accumulation point of a(ζ0) as ζ0 ∈ R and ζ0 → −∞. It is a
point in the closure of L(A0) which satisfies

HA0(ζ ′) = sup
z′∈A0

Re(ζ ′ · z′) = sup
s∈L(A0)

Re s = Re a(−∞).

This implies (5.10).
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6. The dual function expressed as a dual complement
In convexity theory, the Fenchel transform generalizes the supporting function: the
supporting function (5.4) is just the Fenchel transform of the indicator function.
Conversely, we can express the Fenchel transform f̃ of a function f in terms of
the supporting function if we add one dimension: by definition we have f̃(ξ) =
supx(ξ ·x−f(x)), and we see that f̃(ξ) = Hepi f (ξ,−1), where Hepi f is the supporting
function of the epigraph of f , i.e.,

Hepi f (ξ, η) = sup
(x,y)∈Rn×R

(ξ · x+ ηy; f(x) 6 y), (ξ, η) ∈ Rn ×R.

We already know that the dual complement A∗ of a closed set A can be expressed
in terms of the dual function (indeed, A∗ is the set where LIA is finite; see Proposition
4.2). Conversely, we shall see here that we can express the dual function in terms of a
dual complement if we go up one step in dimension (cf. (6.13) below). The functions
will then give rise to Hartogs sets, which we proceed to define.

A Hartogs domain in Cn ×C is a domain which contains, along with a point
(z, t) ∈ Cn ×C, also every point (z, t′) with |t′| = |t|. It is said to be a complete
Hartogs domain if it contains, with (z, t), also (z, t′) for all t′ with |t′| 6 |t|. We
shall generalize this in two ways: first we shall need to study sets which are not
necessarily open; second, it is natural to add a hyperplane at infinity and look at
subsets of projective space. Thus we consider sets A ⊂ (C1+n

r {0})×C which are
homogeneous in the sense of section 2, i.e., such that (sz, st) ∈ A if (z, t) ∈ A and
s ∈ Cr {0}. We shall say that A is a complete Hartogs set if (z, t′) belongs to A
as soon as (z, t) ∈ A and |t′| 6 |t|. Such a set is therefore defined by an inequality
|t| < R(z) or |t| 6 R(z) for some function R with 0 6 R 6 +∞. We shall however
use f = − logR to indicate the radius of the disks.

Definition 6.1. Let f : C1+n
r {0} → [−∞,+∞] be a homogeneous function and

X a homogeneous subset of C1+n
r {0}. We associate to f and X a homogeneous

complete Hartogs set E(X; f) in C1+n+1: it is the set of all (z, t) ∈ (C1+n
r{0})×C

such that |t| 6 e−f(z) when z ∈ X and |t| < e−f(z) when z /∈ X.
The fiber of E(X; f) over z is thus the whole t-plane if f(z) = −∞; it is a closed disk
of finite positive radius if z ∈ (dom f)∩X and f(z) > −∞; it is an open disk of finite
positive radius if z ∈ (dom f)rX and f(z) > −∞; it is the origin if z ∈ X r dom f ;
finally, the fiber is empty if z /∈ X ∪ dom f . If X1 ⊂ X2 and f1 > f2, we have an
obvious inclusion E(X1; f1) ⊂ E(X2; f2).

Every complete Hartogs set A is of the form E(X; f) for some X and some f :
we can take X as the set of all z such that the fiber is not open and define f(z) as the
infimum of all real numbers c such that (z, e−c) belongs to A. A complete Hartogs
set defines the set X ∩ {z; f(z) > −∞} uniquely: if f(z) > −∞, then z ∈ X if and
only if the fiber over z is closed and non-empty. On the other hand the choice of
X ∩ {z; f(z) = −∞} is immaterial in the definition of E(X; f).1

1To get uniqueness, one could for example require that X always contain {z; f(z) =
−∞} or that these two sets be disjoint, or else take the Riemann sphere as the fiber
over points in X such that f(z) = −∞, but we shall refrain from doing so.
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Theorem 6.2. Consider the dual complement of E(X; f),

(6.1) E(X; f)∗ = {(ζ, τ) ∈ C1+n+1
r {0}; ζ · z + τt 6= 0 for all (z, t) ∈ E(X; f)}.

If both X and dom f are empty, then also E(X; f) is empty and E(X; f)∗ is equal
to C1+n+1

r {0}. If on the other hand X ∪ dom f 6= Ø, then E(X; f) is non-empty
and its dual complement E(X; f)∗ is a subset of (C1+n

r {0}) ×C and a complete
Hartogs set, thus

E(X; f)∗ = E(Ξ;ϕ)

for some set Ξ and some function ϕ. The function ϕ is uniquely determined:

(6.2) ϕ(ζ) =
{

Lf(ζ) when ζ ∈ (X ∪ dom f)∗, and
+∞ when ζ ∈ (C1+n

r {0})r (X ∪ dom f)∗;

thus ϕ = Lf as soon as dom Lf ⊂ (X ∪ dom f)∗, in particular if X ⊂ dom f . We
define the set Ξ as follows. We let ζ ∈ Ξ if and only if ζ ∈ (X ∪ dom f)∗ and either
f takes the value −∞ or

(6.3) inf
z∈dom f∩X

|ζ · z|ef(z) > inf
w∈dom frX

|ζ · w|ef(w)

or else

(6.4) for all z0 ∈ X ∩ dom f we have |ζ · z0|ef(z0) > inf
z∈dom f∩X

|ζ · z|ef(z).

If f is not +∞ identically, then Ξ is uniquely determined, so that this is the only set
which satisfies E(X; f)∗ = E(Ξ;ϕ). Moreover, we always have

(6.5) E(X; f)∗ ∩ ((C1+n
r {0})× {0}) = (X ∪ dom f)∗ × {0},

which proves that Ξ∪ domϕ = (X ∪ dom f)∗. The particular cases when X is empty
or equal to dom f are of interest. If dom f 6= Ø we have

(6.6) E(Ø; f)∗ = E((dom f)∗; Lf) ⊃ E(dom Lf ; Lf).

If dom f is closed and non-empty and f is lower semicontinuous and never takes the
value −∞, then

(6.7) E(dom f ; f)∗ = E(Ø; Lf).

Remark 6.3. If X ∪ dom f 6= Ø, then E(X; f)∗ contains

[E(Ø; Lf) ∩ ((X r dom f)∗ × (Cr {0}))] ∪ ((X ∪ dom f)∗ × {0})

and is contained in
E((dom Lf) ∪ (X ∪ dom f)∗; Lf).
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If X is a subset of dom f , then ϕ = Lf and these inclusions simplify to:

(6.8) E(Ø; Lf) ∪ ((dom f)∗ × {0}) ⊂ E(X; f)∗ ⊂ E((dom f)∗; Lf).

We also note the following two special cases. If f = +∞ identically, then

E(X; f)∗ = X∗ × E = E(Ξ;ϕ)

for any Ξ ⊂ X∗. In this case the definition of Ξ in the theorem yields Ξ = X∗. If f
assumes the value −∞, then

(6.9) E(X; f)∗ = (X ∪ dom f)∗ × {0} = E((X ∪ dom f)∗; Lf).

Proof of Theorem 6.2. If X ∪ dom f is empty, then E(X; f) is empty, and its dual
complement is the whole space except the origin. If X ∪ dom f is not empty, then
the hyperplane (C1+n

r {0})× {0} cuts E(X; f), so that no point (0, τ) belongs to
E(X; f)∗, which therefore is contained in (C1+n

r {0})×C.
We need to find the conditions for (ζ, τ) to belong to E(X; f)∗. This happens

precisely when ζ · z + τt is non-zero for all (z, t) ∈ E(X; f). The case τ = 0 is easy:
we find that (ζ, 0) ∈ E(X; f)∗ if and only if ζ · z 6= 0 for all z ∈ X ∪ dom f , thus if
and only if ζ ∈ (X ∪ dom f)∗. This proves (6.5). Now let τ 6= 0. Then we see that
(ζ, τ) ∈ E(X; f)∗ precisely when the following three conditions hold:

(6.10) |τ | < |ζ · z|ef(z) for all z ∈ (dom f) ∩X;

(6.11) |τ | 6 |ζ · w|ef(w) for all w ∈ (dom f)rX;

(6.12) |ζ · z| 6= 0 for all z ∈ X r dom f.

Fix ζ ∈ (X ∪ dom f)∗. We see that (6.10–12) imply that |τ | 6 exp (−Lf(ζ)), and
that they are implied by |τ | < exp (−Lf(ζ)). This shows that ϕ is as described in
(6.2), and it only remains to be seen when the inequality |τ | 6 exp (−Lf(ζ)) is strict.
The condition on τ means that it shall belong to all open disks of radius |ζ · z|ef(z)

for z ∈ (dom f) ∩X, and all closed disks of radius |ζ · w|ef(w) for w ∈ (dom f)rX.
Now an intersection of a family of closed disks is always closed, and an intersection
of non-empty open disks with finite radii is closed exactly when it contains, along
with any disk, also a disk of smaller radius. This is what is expressed by conditions
(6.3–4). Finally (6.6) and (6.7) follow from an analysis of (6.3–4) in the special cases
X = Ø,dom f .

Corollary 6.4. The logarithmic transform Lf of any function f can be obtained
from the dual complement of E(Ø; f): it is minus the logarithm of a certain distance,
viz. the distance from (ζ, 0) to the complement of E(Ø; f)∗ in the direction (0, ..., 0, 1):

(6.13) Lf(ζ) = − log
(

inf
τ

(|τ |; (ζ, τ) ∈ C1+n+1
r E(Ø; f)∗)

)
.



Lineal convexity 21

Proof. This follows from (6.6). The result also explains why we cannot expect these
functions to be pull-backs of functions on projective space.

7. Lineally convex Hartogs sets
Intuitively, it seems that E(Ø; f) and E(dom f ; f) ought to be lineally convex simul-
taneously. This is not quite true. We shall note three results in the positive direction,
Propositions 7.1–3, and one result in the negative direction, Example 7.4. Then we
shall establish conditions under which it is true that f is L-closed if and only if
E(dom f ; f) is lineally convex (Corollary 7.6), as well as conditions which guarantee
that f is L-closed if and only if E(Ø; f) is lineally convex (Theorem 7.11).

Proposition 7.1. If E(X; f) is lineally convex, then also X ∪ dom f and
E(X ∪ dom f ; f) are lineally convex. In particular, if E(Ø; f) is lineally convex,
then so are dom f and E(dom f ; f).

Proof. Suppose that E(X; f) is lineally convex. That X ∪ dom f is lineally convex
then follows from the easily proved result that the intersection of a lineally convex
set and a complex subspace is lineally convex as a subset of the latter. If E(X; f) is
lineally convex, then also E(X; f + a) is lineally convex for any real number a. Any
intersection of lineally convex sets has the same property, so we only need to note
that E(X ∪ dom f ; f) is equal the intersection of all E(X; f + a), a < 0.

Proposition 7.2. If f is upper semicontinuous and there exists a set X such that
E(X; f) is lineally convex, then E(Ø; f) is lineally convex.

Proof. We know from Corollary 2.4 that E(X; f)◦ is lineally convex if E(X; f) is
lineally convex. Now E(X; f)◦ = E(Ø; f) if f is upper semicontinuous, hence the
result.

However, the semicontinuity of f is not important—it is the fact that the effective
domain is open which is relevant as the following result shows.

Proposition 7.3. If X ∪ dom f is open and E(X; f) is lineally convex, then
E(Xrdom f ; f) is lineally convex. In particular, E(Ø; f) is lineally convex if dom f
is open and E(X; f) is lineally convex for some subset X of dom f .

Proof. Assume that E(X; f) is lineally convex. Then also E(X; f + a) is lineally
convex for any real a, and we shall prove that the union of all E(X; f + 1/k), k =
1, 2, ..., which equals E(X r dom f ; f), is lineally convex.

The hyperplanes in C1+n+1 will be denoted by Y(ζ,τ) in analogy with (2.2), thus

(7.1) Y(ζ,τ) = {(z, t) ∈ (C1+n ×C)r {0}; ζ · z + τt = 0}.

Let (z, t) /∈ E(X r dom f ; f) be given with z ∈ X ∪ dom f . For any k there is a
hyperplane Y(ζk,τk) which contains the point (z, t) and which does not meet E(X; f+
1/k). We may assume that |ζk|2 + |τk|2 = 1. Take an accumulation point (ζ, τ) of
the sequence (ζk, τk). Since X ∪ dom f is open, we can be sure that τ 6= 0. The
hyperplane Y(ζ,τ) passes through (z, t) and does not meet E(X r dom f ; f) since
τ 6= 0. If on the other hand z /∈ X ∪ dom f , there is a hyperplane Y(ζ,0) which passes
through (z, t) and does not cut E(X; f).
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The openness in Proposition 7.3 cannot be dispensed with as we shall see now.
Example 7.4. There is a function f such that E(dom f ; f) is lineally convex while
E(Ø; f) is not. Define

R(z) = inf
k=1,2,...

|(k + 1)z1 − z0 − z0/k| , z = (z0, z1) ∈ C1+1
r {0},

and let f = − logR. Then dom f consists of the complement of the hyperplanes Yζ ,
ζ = (1,−k), and

E(dom f ; f) =
∞⋂
k=1

{(z, t); z /∈ Y(1,−k) and |t| 6 |(k + 1)z1 − z0 − z0/k|}

is lineally convex. (Note however, that E(X; f) is not lineally convex if X contains
dom f strictly; cf. Example 2.9.) The function f is L-closed; cf. (3.6) and Theorem
7.5 below. To prove that E(Ø; f) is not lineally convex, let us note that (1, 0, 1) /∈
E(Ø; f), for R(1, 0) = 1. Suppose there exists a hyperplane Y(ζ,τ) which passes
through the point (1, 0, 1) but does not cut E(Ø; f). Then ζ0 + τ = 0. We must
also have τ 6= 0 since (1, 0, 0) ∈ E(Ø; f) as well as ζ1 6= 0 since (1, 2, 1) ∈ E(Ø; f).
Moreover

|ζ · z|
|τ |

=
|ζ · z|
|ζ0|

> inf
k
|(k + 1)z1 − z0 − z0/k| for all z.

Taking z = (ζ1,−ζ0) we see that there is a number m such that ζ1 = −mζ0, and we
can conclude that, taking z0 = 1,

|ζ · z|
|ζ0|

= m|z1 − 1/m| > inf
k
|(k + 1)z1 − 1− 1/k|.

However, for z1 close to 1/m we must have

inf
k
|(k + 1)z1 − 1− 1/k| = |(m+ 1)z1 − 1− 1/m|,

so that
m|z1 − 1/m| > (m+ 1)|z1 − 1/m|

for all z1 close to 1/m. This is impossible, which shows that there is no such hyper-
plane.

Theorem 7.5. If f = LLf in (X ∪ dom f)∗∗, then E((X ∪ dom f)∗∗; f) is lineally
convex. In particular, if we assume dom f to be lineally convex and X ⊂ dom f ,
then LLf = f in dom f implies that E(dom f ; f) is lineally convex. Conversely, if
E(X; f) is lineally convex, then f = LLf in X ∪ dom f , which is a lineally convex
set. If f is bounded from below on the unit sphere, then f = LLf = +∞ outside(

dom f
)∗∗. Thus in this case LLf = f everywhere if X ⊃

(
dom f

)∗∗
r dom f .

Proof. Suppose that f = LLf in (X ∪ dom f)∗∗. Let (z0, t0) /∈ E((X ∪ dom f)∗∗; f).
We shall then prove that there is a hyperplane Y(ζ,τ) (see (7.1)) which contains (z0, t0)
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and does not cut E((X ∪ dom f)∗∗; f). Consider first the case z0 ∈ (X ∪ dom f)∗∗.
We know that |t0| > e−f(z0). By the definition of LLf and since LLf(z0) = f(z0) >
− log |t0|, we can choose ζ such that

− log |ζ · z0| − Lf(ζ) > − log |t0|.

Then we take τ = −ζ ·z0/t0, so that (z0, t0) ∈ Y(ζ,τ) and −Lf(ζ) > log |τ |. Moreover,
for any (z, t) ∈ Y(ζ,τ) we have

f(z) > LLf(z) > − log |ζ · z| − Lf(ζ) = − log |τt| − Lf(ζ) > − log |t|,

which shows that (z, t) /∈ E((X ∪dom f)∗∗; f). The case z0 /∈ (X ∪dom f)∗∗ remains
to be considered. In this case there is a hyperplane Yζ which contains z0 and does
not meet (X ∪ dom f)∗∗, so the hyperplane Y(ζ,0) does not cut E((X ∪ dom f)∗∗; f).

Now assume that E(X; f) is lineally convex. We already know that X ∪ dom f
is lineally convex (cf. Proposition 7.1). If f assumes the value −∞, then E(X; f) =
(X ∪ dom f) × C, and f = LLf = −∞ in X ∪ dom f . If f > −∞, let z0 be any
point in X ∪ dom f and take t0 such that |t0| > e−f(z0), thus (z0, t0) /∈ E(X; f).
By hypothesis there is a hyperplane Y(ζ,τ) which passes through (z0, t0) and does
not meet E(X; f). Since (z0, 0) ∈ E(X, f), we must have τ 6= 0, so we obtain a
minorant of f of the form − log |ζ · z|+ log |τ | 6 f(z), where the left-hand side takes
the value − log |t0| < f(z0) at the point z0 and moreover can be chosen larger than
any number less than f(z0). Thus LLf(z0) > f(z0) and we conclude that LLf = f
in all of X ∪ dom f .

Finally, assume that f > −C on the unit sphere without any further assumption.
Thus, putting A = dom f , we have f > g = IA − C, so that Lf 6 Lg = C − log dA∗
by Proposition 4.2. We now note that dA∗ = dA∗◦ and take the transformation once
again, this time using Proposition 4.5. We get LLf > LLg > IA∗◦∗ −M − C. In
particular LLf(z) = +∞ if z /∈ A∗◦∗ =

(
A
)∗∗ =

(
dom f

)∗∗ (cf. (2.5)). This finishes
the proof.

Corollary 7.6. Assume that f is bounded from below on the unit sphere and that
dom f is closed and lineally convex. Then f is L-closed if and only if E(dom f ; f) is
lineally convex.
We now proceed to study the case when dom f is open and f tends to +∞ at the
boundary. Propositions 7.7 and 7.10 below are applicable when f tends rather fast
to +∞, and Theorem 7.11 in a more general situation.

Proposition 7.7. Let f be a homogeneous function on C1+n
r {0} which tends to

+∞ at the boundary of dom f = A in the strong sense that f > −C− log dA for some
constant C, where dA is defined by (3.9). Then f is L-closed if and only if E(Ø; f)
is lineally convex.

Proof. If f is L-closed, then its effective domain A = A◦ must be lineally convex
by Theorem 3.5, for A = (dom LLf)◦ =

(
dom Lf

)∗ in view of (3.12) applied to Lf
(this function is bounded from below on the unit sphere unless f is +∞ identically, a
trivial case). Theorem 7.5 now shows that E(A; f) is lineally convex and Proposition
7.3 implies that E(Ø; f) is lineally convex.
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Conversely, assume that E(Ø; f) is lineally convex. In view of Theorem 7.5
it only remains to be proved that LLf = f = +∞ outside A = dom f . Now if
f > −C − log dA, then Lf 6 C + L(− log dA) 6 C + IA∗ by Proposition 4.5. We
take the transformation again and obtain LLf > −C+ LIA∗ = −C− log dA∗∗ , using
Proposition 4.2. But dom f is lineally convex, so A∗∗ = A. Hence LLf = +∞ in the
complement of A.

Functions with bounded logarithmic transforms exhibit the behavior studied in
Proposition 7.7:

Proposition 7.8. Let f be a homogeneous function on C1+n
r{0} such that dom f =

A equals the interior of its closure and such that dom f is lineally convex. Assume
that f is bounded from below on the unit sphere and that Lf is bounded from above
in S ∩ dom Lf . Then f > −C − log dA, where C is a constant.

Proof. We have Lf 6 C+IB , where B = dom Lf . Therefore f > LLf > −C+LIB =
−C − log dB∗ = −C − log dB∗◦ . The next lemma shows that B∗◦ = A.

Lemma 7.9. Let f be a homogeneous function on C1+n
r{0} such that

(
dom f

)◦ =
dom f . Assume that f is bounded from below on the unit sphere and that dom f is
lineally convex. Then (dom Lf)∗◦ = dom f .

Proof. From (3.12) we deduce, recalling that f is bounded from below on S, that(
dom f

)∗∗ ⊃ (dom Lf)∗ ⊃ (dom f)∗∗.

Now, since dom f is lineally convex, so is its interior
(

dom f
)◦ = dom f (Corollary

2.4). Therefore dom f ⊃ (dom Lf)∗ ⊃ dom f . Taking the interior of these sets we
get (dom Lf)∗◦ = dom f .

Under a regularity assumption we can let f tend to infinity at a slower pace:

Proposition 7.10. Let f be a homogeneous function on C1+n
r {0} which tends

to +∞ at the boundary of dom f = A in the sense that f > −C − c log dA on the
unit sphere for some constants C and c with 0 < c 6 1. Assume that A∗ satisfies the
interior cone condition of Proposition 4.9. Then f is L-closed if and only if E(Ø; f)
is lineally convex.

Remark. It can be easily proved that if A is lineally convex and its dual complement
A∗ satisfies the interior cone condition, then so does its set-theoretic complement {A.
Proof. In view of Theorem 7.5 and the proof of Proposition 7.7, it only remains to
be proved that LLf = f = +∞ outside dom f if E(Ø; f) is lineally convex. Now if
f > −C − c log dA on the unit sphere S, then we obtain f > −C + fc everywhere,
introducing the function fc of (4.1). We take the logarithmic transformation once
to obtain Lf 6 C + Lfc 6 C + ϕ1−c (Proposition 4.1), and then again to get
LLf > −C + Lϕ1−c > −C − M + fc, this time applying Proposition 4.9 to the
function ϕ1−c and using the interior cone condition on A∗. This shows that LLf
equals +∞ in the complement of A.

We finally come to the general case of a function which tends to infinity at the
boundary.
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Theorem 7.11. Let f be a homogeneous function on C1+n
r {0}. Assume that

f is bounded from below on the unit sphere and tends to +∞ at the boundary of
A = dom f in the sense that As = {z ∈ S; f(z) < s} is strongly contained in dom f
for all numbers s, i.e., the closure of As is contained in the interior of A. (This
of course implies that A is open.) Assume moreover that A∗ satisfies the interior
cone condition of Proposition 4.9. Then E(Ø; f) is lineally convex if and only if f is
L-closed.

Proof. For the proof we shall need the functions fA,r, where A is a homogeneous set
and r is a positive number, defined as fA,r = − log r+IA, thus fA,r = − log r− log |z|
when z ∈ A and fA,r = +∞ otherwise. We note that LfA,r = log r − log dA∗
(Proposition 4.2), so that (ζ, τ) belongs to E(A∗; LfA,r) if and only if ζ ∈ A∗ and
r|τ | 6 dA∗(ζ).

What remains to be done, considering Theorem 7.5 and the proof of Proposition
7.7, is the following, assuming E(Ø; f) to be lineally convex. Given any z0 /∈ dom f =
A it is required to find a hyperplane Y(ζ,τ) with τ 6= 0 which does not cut E(Ø; f) and
passes through (z0, t0) with |t0| arbitrarily small; the problem is to avoid the vertical
hyperplanes, those with τ = 0. Since f is bounded from below on S, there is a
number R such that E(Ø; f) is contained in E(Ø; fA,R). On the other hand, given any
ε > 0, there is a homogeneous set K which is strongly contained in A and such that
f > − log ε on SrK; this means that E(Ø; f) is contained in E(Ø; fA,ε)∪E(Ø; fK,R).
We shall find a hyperplane which does not cut the latter set for a suitable choice
of ε. This amounts to finding (ζ, τ) in E(Ø; fA,ε)∗ ∩ E(Ø; fK,R)∗, equivalently in
E(A∗; LfA,ε) ∩ E(K∗; LfK,R); cf. (6.6). The hyperplane shall also contain a point
(z0, t0) with |t0| = δ positive but arbitrarily small.

We shall thus find ζ and τ such that

0 6= |τ | 6 1
ε
dA∗(ζ) and |τ | 6 1

R
dK∗(ζ).

We take of course 0 6= τ = −(ζ · z0)/t0 to ensure that (z0, t0) belongs to Y(ζ,τ), and
then the problem is reduced to finding ζ such that

(7.2) 0 6= |ζ · z0| 6 δ

ε
dA∗(ζ) and |ζ · z0| 6 δ

R
dK∗(ζ).

Since by hypothesis z0 /∈ A = A∗∗, there is a point ζ0 ∈ A∗ such that ζ0 · z0 = 0.
If ζ0 is in the interior of A∗, then finding ζ is easy: we have dK∗(ζ0) > dA∗(ζ0) >
0 = |ζ0 · z0| and can take ζ close to ζ0. If on the other hand ζ0 ∈ ∂A∗, we argue as
follows. By the interior cone condition,

sup
|ζ−ζ0|6s|ζ0|

dA∗(ζ) > γs|ζ0|

for some positive constant γ. On the other hand

sup
|ζ−ζ0|6s|ζ0|

|ζ · z0| = s|ζ0||z0|.
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Given any positive δ, it is thus enough to choose ε such that ε|z0| 6 δγ to satisfy the
first inequality in (7.2) for some ζ close to ζ0, more precisely satisfying |ζ−ζ0| 6 s|ζ0|
for any given sufficiently small positive s. The second is then satisfied strictly when
ζ = ζ0, because A∗ is strongly contained in K∗ by Corollary 2.3 so that dK∗(ζ0) >
dA∗(ζ0) = 0, and it must therefore also be satisfied for all ζ satisfying |ζ− ζ0| 6 s|ζ0|
for all sufficiently small positive s. This completes the proof.
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