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Abstract. A bounded open set with boundary of class C1 which is locally weakly lineally
convex is weakly lineally convex, but, as shown by Yuri�� Zelinski��, this is not true for unbounded
domains. The purpose here is to construct explicit examples, Hartogs domains, showing this.
Their boundary can have regularity C1,1 or C∞.

Obstructions to constructing smoothly bounded domains with certain homogeneity proper-
ties will be discussed.

1. Introduction. In my paper (1998) I claimed that a di�erential condition which I

called the Behnke�Peschl condition implies that a connected open subset of Cn with

boundary of class C2 is weakly lineally convex. The proof in the case of bounded domains

relied on a result by Yuºakov and Krivokolesko (1971a, 1971b), proved also in Hörmander

(1994: Proposition 4.6.4), but in the case of unbounded domains, the proof of their result

breaks down.

Yuri�� Zelinski�� (2002a, 2002b) published a counterexample in the case of an unbounded

set. His example is not very explicit. We shall construct here an explicit example�

actually a Hartogs domain, which has the advantage of being easily visualized in three real

dimensions. We construct domains with boundary of class C1,1 and a certain homogeneity

property (Example 8.1), and show that this cannot be done with a boundary of class

C2 (Proposition 9.1). However, the boundary can be of class C∞ if the homogeneity

requirement is dropped (Example 8.2).

Notation. The boldface letters N, Z, R, C have their usual meaning from Bourbaki,

thus N = {0, 1, 2, . . . } is the set of natural numbers, etc.
We shall use the lp-norm ‖z‖p = (

∑
j |zj |p)1/p, 1 6 p < +∞, and the l∞-norm
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‖z‖∞ = supj |zj | for z ∈ Cn. When any norm can serve, we write only ‖z‖. The bilinear
inner product is written ζ · z = ζ1z1 + · · ·+ ζnzn, (ζ, z) ∈ Cn ×Cn.

We shall denote by B<(c, r) and B6(c, r) the open ball and the closed ball, respectively,

with center at c ∈ Cn and radius r ∈ R for the Euclidean norm, thus

B<(c, r) = {z ∈ Cn; ‖z − c‖2 < r} and B6(c, r) = {z ∈ Cn; ‖z − c‖2 6 r}.

If n = 1, we shall write instead D<(c, r) and D6(c, r) for the disks.
The closure and interior of a subset A of a topological space will be denoted by A

and A◦, respectively. Thus B<(c, r) = B6(c, r) if r is positive, and B6(c, r)◦ = B<(c, r)
for all real r.

For derivatives of functions, we shall use the notation

fxj =
∂f

∂xj
, fyj =

∂f

∂yj
, fzj = 1

2 (fxj − ifyj ), fz̄j = 1
2 (fxj + ifyj ), j = 1, . . . , n.

2. Lineal convexity.

Definition 2.1. A subset of Cn is said to be lineally convex if its complement is a union

of complex a�ne hyperplanes.

To every set A there exists a smallest lineally convex subset µ(A) which contains A.

Clearly the mapping µ : P(Cn) → P(Cn), where P(Cn) denotes the family of all

subsets of Cn (the power set), is increasing and idempotent, in other words an ethmo-

morphism (morphological �lter). It is also larger than the identity, so that µ is a cleisto-

morphism (closure operator) in the ordered set P(Cn).
This kind of complex convexity was introduced by Heinrich Behnke (1898�1997) and

Ernst Ferdinand Peschl (1906�1986). I learnt about it from André Martineau (1930�1972)

when I was in Nice during the academic year October 1967 through September 1968. See

Martineau (1966, 1967, 1968, 1977).

Are there lineally convex sets which are not convex? This is obvious in one complex

variable, and from there we can easily construct, by taking Cartesian products, lineally

convex sets in any dimension which are not convex. But these sets do not have smooth

boundaries. Hörmander (1994:293, Remark 3) constructs open connected sets in Cn with

boundary of class C2 as perturbations of a convex set. These sets are lineally convex

and close to a convex set in the C2 topology, and therefore starshaped with respect to

some point if the perturbation is small. Also the symmetrized bidisk {(z1 + z2, z1z2) ∈
C2; |z1|, |z2| < 1}, studied by Agler & Young (2004) and P�ug & Zwonek (2012), is not

convex�not even biholomorphic to a convex domain (Nikolov et al. (2008)�but it is

starshaped with respect to the origin (Agler & Young 2004: Theorem 2.3). So we may

ask:

Question 2.2. Does there exist a lineally convex set in Cn, n > 2, with smooth boundary

which is not starshaped with respect to any point?

We shall return to this question in Section 10.

3. Weak lineal convexity.



WEAK LINEAL CONVEXITY 161

Definition 3.1. An open subset Ω of Cn is said to be weakly lineally convex if there

passes, through every point on the boundary of Ω, a complex a�ne hyperplane which

does not cut Ω.

It is clear that every lineally convex open set is weakly lineally convex. The converse does

not hold. This is not di�cult to see if we allow sets that are not connected:

Example 3.2. Given a number c with 0 < c < 1, de�ne an open set Ωc in C2 as the

union of the set

{z ∈ C2; |y1| < 1, c < |x1| < 1, |x2| < c, |y2| < c}
with the two sets obtained by permuting x1, x2 and y2. Thus Ωc consists of six boxes. It is
easy to see that it is weakly lineally convex, but there are many points in its complement

such that every complex line passing through that point hits Ωc.
Any complex line intersects the real hyperplane de�ned by y1 = 0 in the empty

set or in a real line or in a real two-dimensional plane, and the three-dimensional set

{z; y1 = 0} ∩ Ωc is easy to visualize.

It is less easy to construct a connected set with these properties, but this has been done by

Yuºakov & Krivokolesko (1971b:325, Example 2). See also an example due to Hörmander

in the book by Andersson, Passare & Sigurdsson (2004:20�21, Example 2.1.7).

However, the boundary of the constructed set is not of class C1, and this is essen-

tial. Indeed, Yuºakov & Krivokolesko (1971b:323, Theorem 1) proved that a connected

bounded open set with �smooth� boundary is locally weakly lineally convex in the sense

of De�nition 4.3 below if and only if it is lineally convex. It is then even C-convex

(1971b:324, Assertion). See also Corollary 4.6.9 in Hörmander (1994), which states that

a connected bounded open set with boundary of class C1 is locally weakly lineally convex

if and only if it is C-convex (and every C-convex open set is lineally convex).

There cannot be any cleistomorphism connected with the notion of weak lineal con-

vexity for the simple reason that the property is de�ned only for open sets. We might

therefore want to de�ne weak lineal convexity for arbitrary sets. We may ask:

Question 3.3. Is there a reasonable de�nition of weak lineal convexity for all sets which

keeps the de�nition for open sets and is such that there is a cleistomorphism associating

to any A ⊂ Cn the smallest set which contains A and is weakly lineally convex?

The operation L 7→ L∩Ω associating to a complex line L its intersection with an open set

Ω has continuity properties which seem to be highly relevant for weak lineal convexity.

Here the family of complex lines can arguably have only one topology, but for the family

of sets L ∩ Ω there is a choice of several topologies, especially if Ω is unbounded.

Question 3.4. Can an interesting theory be built starting from this remark?
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4. Local weak lineal convexity.

Definition 4.1. We shall say that an open set Ω ⊂ Cn is locally weakly lineally convex

if for every point p there exists a neighborhood V of p such that Ω∩ V is weakly lineally

convex.

Obviously, a weakly lineally convex open set has this property, but the converse does not

hold, which is obvious for sets which are not connected: Take the union of two open balls

whose closures are disjoint. Also for connected sets the converse does not hold:

Example 4.2. (Kiselman 1996, Example 3.1.)

Figure 1. An open connected Hartogs set in C2 which is locally weakly lineally convex

but not weakly lineally convex. Coordinates (z, t) ∈ C2; (x, y, |t|) ∈ R3.

De�ne �rst

Ω+ = {(z, t); |z| < 1 and |t| < |z − 2|};

Ω− = {(z, t); |z| < 1 and |t| < |z + 2|},

and then

Ω0 = Ω+ ∩ Ω−; Ωr0 = {(z, t) ∈ Ω0; |t| < r},

where r is a constant with 2 < r <
√

5. All these sets are lineally convex. The two points

(±i,
√

5) belong to the boundary of Ω0; in the three-dimensional space of the variables

(Re z, Im z, |t|), the set representing Ω0 has two peaks, which have been truncated in Ωr0.
We now de�ne Ωr by glueing together Ω0 and Ωr0: De�ne Ωr as the subset of Ω0 such

that (z, t) ∈ Ωr0 if Im z > 0; we truncate only one of the peaks of Ω0.

The point (i − ε, r) for a small positive ε belongs to the boundary of Ωr and the

tangent plane at that point has the equation t = r and so must cut Ωr at the point

(−i+ ε, r). Therefore Ωr is not lineally convex, but it agrees with the lineally convex sets

Ω0 and Ωr0 when Im z < δ and Im z > −δ, respectively, for a small positive δ. The set has

Lipschitz boundary; in particular it is equal to the interior of its closure.

In this example it is essential that the boundary is not smooth.
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Zelinski�� (1993:118, Example 13.1) constructs an open set which is locally weakly

lineally convex but not weakly lineally convex. The set is not equal to the interior of its

closure.

Definition 4.3. Let us say that an open set Ω is locally weakly lineally convex in the

sense of Yuºakov and Krivokolesko (1971b:323) if for every boundary point p there exists

a complex hyperplane Y passing through p and a neighborhood V of p such that Y does

not meet V ∩ Ω.

Zelinski�� (1993:118, De�nition 13.1) uses this de�nition and calls the property lokal~na�
line�na� vypuklost~. As we shall see, this property is strictly weaker than the local

weak lineal convexity de�ned above in De�nition 4.1.

Hörmander (1994: Proposition 4.6.4) and Andersson et al. (2004: Proposition 2.5.8)

use this property only for open sets with boundary of class C1. Then the hyperplane Y

is unique.

For all open sets, local weak lineal convexity obviously implies local weak lineal con-

vexity in the sense of Yuºakov and Krivokolesko. In the other direction, Hörmander's

Proposition 4.6.4 shows that for bounded open sets with boundary of class C1, local

weak lineal convexity in the sense of Yuºakov and Krivokolesko implies local weak lineal

convexity (even weak lineal convexity if the set is connected).

Nikolov (2012: Proposition 3.7.1) and Nikolov et al. (2013: Proposition 3.3) have a

local result in the same direction: If Ω has a boundary of class Ck, 2 6 k 6 ∞, and

Ω ∩ B<(p, r), where p is a given point, is locally weakly lineally convex in the sense of

Yuºakov and Krivokolesko at all points near p, then there exists a C-convex open set ω

(hence lineally convex) with boundary of class Ck such that ω∩B<(p, r′) = Ω∩B<(p, r′)
for some positive r′.

However, in general the two properties are not equivalent:

Example 4.4. There exists a bounded connected open set in C2 with Lipschitz boundary

which is locally weakly lineally convex in the sense of Yuºakov and Krivokolesko but not

locally weakly lineally convex. While Ωr is locally weakly lineally convex for 2 < r <
√

5,
the set Ω2 for r = 2 is not locally weakly lineally convex: The point (0, 2) does not have
a neighborhood with the desired property. But it does satisfy the property of Yuºakov

and Krivokolesko.

5. Approximation by smooth sets. Let Aj ⊂ Cnj be two lineally convex sets in Cnj ,

j = 1, 2. Then it is easy to see that their Cartesian product A1×A2 ⊂ Cn1+n2 is lineally

convex. In particular, if n1 = n2 = 1, then every Cartesian product in C2 is lineally

convex. However, these sets cannot always be approximated by lineally convex sets with

smooth boundaries.

If Ωj , j = 1, 2, are convex open sets, then Ω = Ω1 × Ω2 is convex and can be

approximated from within by convex open set Ωε with C∞ boundaries, Ωε ↗ Ω as

ε↘ 0.
But if we let Ω1 be an annulus and Ω2 a disk, e.g.,

Ω = Ω1 × Ω2 = {z ∈ C2; 1 < |z1| < 3, |z2| < 1},
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then it cannot be approximated by smooth weakly convex sets from the inside as we shall

see in the next proposition and its corollary.

Proposition 5.1. Let ω be a nonempty bounded open subset of R2 with boundary of

class C1. Suppose that infx∈ω |x1| > 0. De�ne a Reinhardt domain Ω as

Ω = {z ∈ C2; (|z1|, |z2|) ∈ ω}.

Then Ω is not locally weakly lineally convex.

Proof. Take a point q = (q1, q2) ∈ Ω with q1 < 0, q2 > 0. Denote by Ω+ the set of all x ∈ Ω
such that x1 > 0 and x2 > 0, and by Lα the complex line of equation z2−q2 = α(z1−q1),
α > 0. For α = 0, the line cuts Ω+ in (−q1, q2); for large α it does not cut Ω+. Now

choose the smallest α such that Lα does not cut Ω+. Then Lα contains at least one point

p ∈ ∂Ω+, and Lα is the tangent plane of ∂Ω at p. Since this line meets Ω in q, Ω is not

weakly lineally convex. But we can say more: It is not even locally weakly lineally convex.

To see this, �rst note that α = (p2 − q2)/(p1 − q1) > 0. Then there are points z ∈ Ω
belonging to the tangent at p arbitrarily close to p. Indeed, since α is positive, a point z

satisfying

|z1| > p1 and |z2| < p2

belongs to Ω if it is close enough to p. In terms of z1 this means that

|z1| > p1 and |q2 + α(z1 − q1)| < p2;

in other words that z1 /∈ D6(0, p1) and that z1 ∈ D<(c1, r1), the open disk with center

at c1 = q1 − q2/α and radius r1 = p2/α = p1 − c1. Since r1 = p1 − c1, there are points

z1 ∈ D<(c1, r1) rD6(0, p1) which are arbitrarily close to p1.

Corollary 5.2. A Reinhardt domain

Ω = {z ∈ C2; r1 < |z1| < R1, |z2| < R2}

with r1 > 0 is lineally convex but cannot be approximated by lineally convex domains with

boundary of class C1.

Proof. If a domain Ωε approximates Ω from the inside in the sense that

Ωε ⊂ Ω ⊂ Ωε +B<(0, ε),

then there is also a Reinhardt domain with this property: We may construct such a set

by averaging over all rotations.

We can now apply the proposition to Ωε.

6. The Behnke�Peschl and Levi conditions.

Definition 6.1. The real Hessian of a C2 function f is

HR
f (p; s) =

∑
fxjxk

(p)sjsk, p ∈ Rm, s ∈ Rm.

The complex Hessian is

HC
f (p; t) =

∑
fzjzk

(p)tjtk, p ∈ Cn, t ∈ Cn.
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The Levi form is

Lf (p; t) =
∑

fzj z̄k
(p)tj t̄k, p ∈ Cn, t ∈ Cn.

If we let the relation between the real s and the complex t be the usual one:

tj = s2j−1 + is2j , j = 1, . . . , n, s ∈ Rn, t ∈ Cn,

we get

1
2H

R
f (p; s) = ReHC

f (p; t) + Lf (p; t), p ∈ Cn, s ∈ R2n, t ∈ Cn.

Let now Ωf be the set of all points where a function f ∈ C2(Cn) is negative. We

should assume that ‖ grad f‖+ |f | > 0 everywhere, so that the boundary of Ωf is of class

C2.

The complex tangent space TC(p) at a point p ∈ ∂Ωf is de�ned by
∑
fzj

(p)tj = 0;
the real tangent space TR(p) by Re

∑
fzj (p)tj = 0.

We recall the following classical de�nition.

Definition 6.2. An open set Ω with boundary of class C2 is said to satisfy the Levi

condition if, for every point p ∈ ∂Ωf , we have

Lf (p; t) > 0 when t ∈ TC(p),

i.e., when
∑
fzj

(p)tj = 0. We say that it satis�es the strong Levi condition if, for t ∈
TC(p) r {0}, we have strict inequality.

Definition 6.3. An open set Ω with boundary of class C2 is said to satisfy the Behnke�

Peschl condition if, for every point p ∈ ∂Ωf , we have
1
2H

R
f (p; s) = ReHC

f (p; t) + Lf (p; t) > 0 when t ∈ TC(p),

i.e., when
∑
fzj (p)tj = 0. We say that it satis�es the strong Behnke�Peschl condition if,

for t ∈ TC(p) r {0}, we have strict inequality.

The condition says that the restriction of the real Hessian to the complex tangent space

at any boundary point shall be positive semide�nite; in the strong case, positive de�nite.

Because of the di�erent homogeneity of HC and L, the inequality is equivalent to

L > |HC|. The inequality L > |HC| > 0 shows that the Behnke�Peschl condition implies

the Levi condition.

In my paper (1998) I proved that a bounded connected open set with boundary of

class C2 is weakly lineally convex if it satis�es the Behnke�Peschl condition.

That this condition is necessary for weak lineal convexity was known since Behnke

and Peschl (1935); the su�ciency was unknown.

I stated the result also for unbounded connected open sets with C2 boundary. The

proof relied on Proposition 4.6.4 in Hörmander (1994), which is stated there for bounded

connected open sets with boundary of class C1.

7. Yuºakov and Krivokolesko: Passage from local to global. Let us quote the

part of Proposition 4.6.4 in Hörmander (1994) which is important for us:
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Proposition 7.1. Let Ω ⊂ Cn be a bounded connected open set with boundary of class

C1 and assume that Ω is locally weakly lineally convex in the sense of Yuºakov and

Krivokolesko. Then Ω is weakly lineally convex.

The result was proved by Yuºakov & Krivokolelsko (1971a, 1971b) under the condition

that the boundary is �smooth.� In my paper (1998) I needed this result for boundaries of

class C2, and carelessly claimed (1998:4) that it is true also if the set is unbounded.

8. A new example. We shall construct explicit Hartogs domains here with the prop-

erties mentioned in Zelinski��'s example. We start with the simplest.

Example 8.1. De�ne a function ϕ� : C→ R by

ϕ�(z1) =


−x2

1 − y2
1 , x1 6 0 or y1 6 0;

−x2
1 + y2

1 , 0 6 y1 6 x1;

x2
1 − y2

1 , 0 6 x1 6 y1.

Then

Ωϕ� = {z ∈ C2; 1 + ϕ�(z1) + |z2|2 < 0}

has boundary of class C1,1 and is locally weakly lineally convex but not weakly lineally

convex.

x1

y1

3 + i

3 — i

3 — i
10

_______

9 + 17 i__________
10

Figure 2. The set Ωϕ� ∩ {z ∈ C2; z2 = 0}.

The properties of the set in this example will be discussed now and the properties will

be seen to hold from Proposition 8.3.

The tangent plane at a boundary point p = (p1, p2) with Re p1 > 0, Im p1 > 0,
and (Re p1)2 > (Im p1)2 + 1, has the equation −p1(z1 − p1) + p̄2(z2 − p2) = 0 and

it passes through the point q = (p1 − |p2|2/p1, 0). Choosing p = (3 + i,
√

7) we get

q = ( 9
10 + i 17

10 , 0) ∈ Ωϕ� , proving that Ωϕ� is not lineally convex.

We note that the tangent plane at a boundary point p with Re p1 6 0 or Im p1 6 0
is contained in the complement of Ωϕ� ; in particular, it hits the plane z2 = 0 at the

point q = (p1/|p1|2, 0) /∈ Ωϕ� . We also note that the part of Ωϕ� where 0 < x1 < y1 is
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convex, so any tangent plane of this part does not intersect it. Similarly, the part where

0 < y1 < x1 is convex. Therefore Ω�ϕ is the union of two lineally convex sets, taking the

subsets where x1 < max(y1, 0), and y1 < max(x1, 0), respectively.
When x1 < 0 or y1 < 0 we get ϕ�z1(z1) = −z̄1, ϕ

�
z1z1(z1) = 0, ϕ�z1z̄1(z1) = −1;

when 0 < y1 6 x1 we have ϕ�z1(z1) = −z1, ϕ
�
z1z1(z1) = −1 and ϕ�z1z̄1(z1) = 0; when

0 < x1 6 y1 we have ϕ�z1(z1) = z1, ϕ
�
z1z1(z1) = 1 and ϕ�z1z̄1(z1) = 0. In all three cases

|ϕz1z1 | − ϕz1z̄1 = 1. An application of Proposition 8.3 below now gives the result, except

that it does not give anything at the exceptional points, where the function is not of class

C∞, i.e., those with y1 = 0, x1 > 0 or x1 = 0, y1 > 0. However, we have already seen

that at these points, the tangent plane does not cut Ωϕ� .
The boundary of Ωϕ� is not of class C2 at the points where y1 = 0, x1 > 0 or x1 = 0,

y1 > 0. The passage from −x2
1 − y2

1 for y1 6 0 to −x2
1 + y2

1 for 0 6 y1 6 x1 cannot be

made analytically.

The function ϕ� is not of class C1,1 at the points where x1 = y1, x1 > 0, but this is
of no consequence, since these points do not belong to the closure of the set it de�nes.

We note that the function ϕ� in the example is homogeneous of degree two:

ϕ�(z1) = ϕ�(|z1|eit) = |z1|2ψ(t), z1 ∈ C, t ∈ R.

It is therefore natural to ask if there is a C∞ homogeneous function ϕ with the same

properties. More precisely, we may ask for functions ϕ : C → R which yield a locally

weakly lineally convex domain which is not weakly lineally convex in four di�erent cases.

1.1. Is there a C∞ function ϕ with these properties?

1.2. Is there a homogeneous C∞ function ϕ with these properties?

2.1. Is there an analytic function ϕ with these properties?

2.2. Is there a homogeneous analytic function ϕ with these properties?

As we shall see, the answer to the �rst question is in the a�rmative (Example 8.2). But

the answer to Question 1.2 is in the negative (Proposition 9.1).

Example 8.2. Now de�ne ϕ? : C→ R by

ϕ?(z1) =

{
−x2

1 + χ(y1), x1 > y1;

−y2
1 + χ(x1), x1 6 y1,

where χ ∈ C∞(R) is a function of one real variable such that χ′ is convex and which

satis�es

χ(y1) =

{
−y2

1 + ρ, y1 6 − 1
2 ;

y2
1 + σ, y1 > 1

2 .

The convexity of χ′ implies that 2|y1| 6 |χ′(y1)| 6 max(2|y1|, 1) with equality to the left

for |y1| > 1
2 . This implies that we must have 1

2 < χ( 1
2 )−χ(− 1

2 ) < 1, and we can actually

choose χ so that χ( 1
2 )− χ(− 1

2 ) is any given number in that interval.

For de�niteness we now choose ρ = − 1
4 , σ = 0, χ( 1

2 ) − χ(− 1
2 ) = 3

4 , which implies

that ϕ� − 1
4 6 ϕ? 6 ϕ�, that Ωϕ? contains Ωϕ� , and that the set of points z ∈ Ωϕ? with
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Re z1 > 1
2 and Im z1 > 1

2 is unchanged compared to Ωϕ� . We choose χ as a suitable third

primitive of

χ′′′(y1) = C exp(1/(y1 − c)− 1/(y1 + c)), −c < y1 < c,

for a number c, 0 < c 6 1
2 , and a positive constant C, taking χ′′′(y1) equal to zero when

|y1| > c. This implies that χ′ is even and that χ(0) = 1
2ρ+ 1

2σ = − 1
8 . Then

Ωϕ? = {z ∈ C2; 1 + ϕ?(z1) + |z2|2 < 0}

has boundary of class C∞ and is locally weakly lineally convex but not lineally convex,

since, just as for Ωϕ� , the tangent plane at the boundary point p = (3 + i,
√

7) passes

through q = ( 9
10 + i 17

10 , 0) ∈ Ωϕ? .

The properties mentioned in these examples will follow from the next proposition and its

corollary.

Proposition 8.3. Let ϕ : C → R be a function of class Ck, k = 2, 3, . . . ,∞, ω, and
de�ne an open set in C2 as

Ωϕ = {z ∈ C2; 1 + ϕ(z1) + |z2|2 < 0}.

We assume that

ϕz1 6= 0 wherever ϕ = −1, (1)

and that

(−ϕ− 1) (|ϕz1z1 | − ϕz1z̄1) 6 |ϕz1 |2 in the set where − ϕ− 1 > 0. (2)

Then Ωϕ has boundary of class Ck and satis�es the Behnke�Peschl condition at every

boundary point. If the inequality is strict at a certain point, we get the strong Behnke�

Peschl condition at that point.

Proof. This result was proved in my paper (1996: Lemma 6.1). There I described the

domain by an inequality of the form |z2|2 < h(z1) and found that the Behnke�Peschl

condition takes the form h(hz1z̄1 + |hz1z1 |) 6 |hz1 |2, which, with h(z1) = −ϕ(z1) − 1
yields (2).

Corollary 8.4. Let ϕ have the form ϕ(z1) = −x2
1 + χ(y1) for x1 > y1 and ϕ(z1) =

−y2
1 + χ(x1) for y1 > x1. We assume that χ ∈ Ck(R), k > 2, with −2 6 χ′′ and such

that χ(y1) > −1 when χ′(y1) = 0. Then the conclusion of Proposition 8.3 holds under

the assumption
1
4χ
′(y1)2 + χ(y1) + 1 > 0, y1 ∈ R. (3)

Proof. The condition (1) is satis�ed, since the gradient of ϕ in this case vanishes only

when x1 = 0 and χ′(y1) = 0. Then 1+ϕ(z1)+ |z2|2 = 1+χ(y1)+ |z2|2 > 0, so z = (iy1, z2)
cannot be a boundary point of Ω.

Condition (2) reduces to

(x2
1 − χ(y1)− 1)

( ∣∣− 1
2 −

1
4χ
′′(y1)

∣∣+ 1
2 −

1
4χ
′′(y1)

)
6 | − x1 − 1

2 iχ
′(y1)|2 = x2

1 + 1
4χ
′(y1)2,

provided x2
1 − χ(y1)− 1 > 0. If −2 6 χ′′, we have∣∣− 1

2 −
1
4χ
′′(y1)

∣∣+ 1
2 −

1
4χ
′′(y1) = 1

2 + 1
4χ
′′(y1) + 1

2 −
1
4χ
′′(y1) = 1,



WEAK LINEAL CONVEXITY 169

which gives (3). We then see that in this case the inequality holds also if x2
1−χ(y1)−1 < 0.

In Example 8.2, the de�ning function 1 − x2
1 + χ(y1) + |z2|2 has nonvanishing gradient

everywhere since χ′ > 0 everywhere. Smoothness follows.

The function ϕ? is not of class C∞ in the set where x1 = y1, x1 > 0, but again this

is unimportant since these points do not belong to the closure of Ωϕ? . An application of

Corollary 8.4 now gives the result. In fact, with the choice of ρ = − 1
4 , σ = 0, we need

only note that χ(y1) > −y2
1 − 1

4 everywhere, and that χ′(y1) > 2|y1|, so that

1
4χ
′(y1)2 + χ(y1) + 1 > 3

4 > 0, x1 > y1,

thus with strict inequality in (3) and (2); similarly for x1 6 y1.

Remark 8.5. It might be of interest to understand where the proof of Hörmander's

Proposition 4.6.4 quoted above breaks down in the unbounded case. An important step

in the proof is to see that, if we have a continuous family (Lt)t∈[0,1] of complex lines, the

set T of parameter values t such that Lt ∩Ω is connected is both open and closed. Thus,

if 0 ∈ T , then also 1 ∈ T . We shall see that closedness is no longer true for the sets in

Examples 8.1 and 8.2.

De�ne complex lines

Lt = {z ∈ C2; z2 = t(z1 − 1− i)}, t ∈ [0, 1],

which all pass through (1 + i, 0) /∈ Ωϕ? . Then Lt ∩ Ωϕ? is connected for 0 6 t < 1 while

L1 ∩ Ωϕ? is not.

We shall �rst see that L1∩Ωϕ? is disconnected. If z ∈ L1∩Ωϕ? and x1 6 0 or y1 6 0,
then

f(z) = 1 + ϕ?(z1) + |z2|2 > 1− |z1|2 + ρ+ |z1 − 1− i|2 = 3 + ρ− 2(x1 + y1).

Since we have chosen ρ = − 1
4 , the quantity f(z) can be negative only if x1 + y1 > 0,

which implies that z1 satis�es either x1 > |y1| or y1 > |x1|. Therefore the real hyperplane
of equation x1 = y1 divides L1 ∩ Ωϕ? into two sets, which are nonempty since (2, 1 − i)
and (2i, i − 1) both belong to L1, the �rst with y1 < x1, the second with y1 > x1, and

that both belong to Ωϕ? in view of the fact that χ(0) 6 0.
Next we shall see that Lt ∩ Ωϕ? is connected when 0 6 t < 1. Given t such that

0 6 t < 1, we obtain for z ∈ Lt ∩ Ωϕ? with x1, y1 6 0,

1 + ϕ?(z1) + |z2|2 6 1− (1− t2)|z1|2 − 2t2(x1 + y1) + 2t2.

This yields the estimate

1 + ϕ?(z1) + |z2|2 6 3 + 4|z1| − (1− t2)|z1|2,

which is negative for |z1| = Rt, if Rt large enough. (Obviously Rt tends to +∞ as t→ 1,
which explains that L1∩Ωϕ? is disconnected.) Let Γt be the arc in Lt with |z1| = Rt and

x1 6 0 or y1 6 0, thus contained in Ωϕ? .

An arbitrary point a ∈ Lt ∩ Ωϕ? can be joined to a point in Γt by a straight line

segment contained in Ωϕ? and therefore also contained in Lt ∩ Ωϕ? . If Re a1 6 0 or

Im a1 6 0 this follows from the fact that the set of points in Ωϕ? with argument of
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z1 equal to that of a1 is convex; otherwise from the fact that the points in Ωϕ? with

0 6 Im z1 < Re z1 is convex, as is the set of points with 0 6 Re z1 < Im z1.

9. An impossibility result.

Proposition 9.1. Let Ωϕ = {z ∈ C2; 1 + ϕ(z1) + |z2|2 < 0}, where ϕ is positively

homogeneous of degree two and of class C2 where it is negative. Then either ϕ is constant

and Ωϕ is lineally convex; or ϕ is not constant and Ωϕ is not connected.

The set Ωϕ� in Example 8.1 has the properties mentioned here except that its boundary

is not of class C2: We have a striking contrast between the regularity classes C1,1 and

C2.

Proof. For functions ϕ : C → R which are positively homogeneous of degree two, i.e., of

the form ϕ(z1) = |z1|2ψ(t), z1 = |z1|eit ∈ C, t ∈ R, condition (2) on ϕ takes the form

(−r2ψ − 1)
[
−ψ +

√
( 1

4ψ
′′)2 + ( 1

2ψ
′)2 − 1

4ψ
′′
]

6 r2(ψ2 + 1
4ψ
′2),

to hold in the set where −r2ψ − 1 > 0; equivalently

4ψ + (−r2ψ − 1)
[√

ψ′′2 + 4ψ′2 − ψ′′
]

6 r2ψ′2.

From this we obtain, if we divide by r2 and let r tend to +∞,

(−ψ)
[√

ψ′′2 + 4ψ′2 − ψ′′
]

6 ψ′2. (4)

But this condition is also su�cient, which follows on multiplication by r2 and adding the

trivial inequality 4ψ −
[√

ψ′′2 + 4ψ′2 − ψ′′
]

6 0.

To get rid of the square root in (4) we rewrite it as

ψ′2
(
ψ′2 + 2(−ψ)ψ′′ − 4ψ2

)
> 0,

where the left-hand side is of degree four.

We now introduce a function g by de�ning g(t) as the positive square root of −ψ(t)
if ψ(t) is negative and as 0 at all other points. Thus g is of class C2 where it is positive,

and ψ = −g2 there. The points where g = 0, equivalently ψ > 0, are not of interest, since
for them 1 + |z1|2ψ(t) + |z2|2 > 1 > 0, implying that z does not belong to the closure of

Ωϕ.
We get an inequality of degree eight but which is easy to analyze:

g5g′2 (g + g′′) 6 0. (5)

Thus, for each t such that g(t) > 0, either g′(t) = 0 or g(t) + g′′(t) 6 0. If g′ is zero

everywhere, i.e., if g is constant, it is known that Ωϕ is lineally convex, in particular

weakly lineally convex. Wherever g is positive and g′ is nonzero we get g + g′′ 6 0.
This implies that any local maximum of g is isolated and that there can only be one

point where the maximum is attained.1 Hence, unless g′ vanishes everywhere, g+ g′′ 6 0

1De�ning a function g : R → R of period 2π by g(t) = | cos 2t| when 0 6 t 6 π and g(t) = 1
when π < t < 2π, we get a function which satis�es inequality (5) in R r πZ, but not the
conclusions we have drawn from it. This function is not of class C2 (but of class C1,1).
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everywhere. We de�ne h = g + g′′ 6 0 and obtain for any a ∈ R

g(t) = g(a) cos(t− a) + g(a)
∫ t

a

sin(t− s)h(s)ds, t ∈ R.

The function g attains its maximum at some point which we may call a, and the

formula then shows that g(t) 6 g(a) cos(t − a) for all t with a 6 t 6 a + π/2. In
particular, g must have a zero t0 in the interval ]a, a+ π/2]. By symmetry, g has a zero

t1 also in the interval [a− π/2, a[, hence at least two zeros in a period. This means that

Ω is not connected, since the union of the rays arg z1 = t0 and arg z1 = t1 divides the

z1-plane.

10. A set which is not starshaped. In answer to Question 2.2 we mention a modi�-

cation of the set Ωϕ� which is not starhaped.

x1

y1

2       2
5       5——i—

5       5
4       4——i—

Figure 3. The set Ωϕ] ∩ {z ∈ C2; z2 = 0}.

Example 10.1. De�ne ϕ] : C→ R by

ϕ](z1) =

{
−x2

1 − y2
1 , x1 + y1 6 0;

− 1
2 (x1 − y1)2, x1 + y1 > 0.

Then

Ωϕ] = {z ∈ C2; 1 + ϕ](z1) + |z2|2 < 0}

has boundary of class C1,1 and is lineally convex, but it is not starshaped with respect

to any point.

This set can conceivably be modi�ed to have a boundary of class C∞ like in Example

8.2. However, it is unbounded.

Question 10.2. Does there exist a bounded set with boundary of class C2 which is lineally

convex but not starshaped?

Question 10.3. What about a Hartogs domain with these properties?
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The set Ω de�ned in Corollary 5.2 is bounded, lineally convex and not starshaped, but it

has only a Lipschitz boundary. It cannot be approximated by a lineally convex set with

smooth boundary.

11. A note on terminology. Heinrich Behnke and Ernst Peschl (1935) introduced the

notion which is now known as weak lineal convexity. They called it Planarkonvexität.

André Martineau used the terms convexité linéelle and linéellement convexe�see

Martineau (1966:73) and (1968:427), reprinted in (1977:228) and (1977:323), respectively.

In French there are two adjectives, linéaire, corresponding to the English linear ; and

linéel, which I rendered as lineal. (There is also an adjective linéal.) Martineau obviously

wanted a distinctive term in order to signal the special meaning of his convexity, not to

be misunderstood as ordinary convexity. Diederich & Fornæss (2003) and Diederich &

Fischer (2006) write �lineally convex.�

In Russian, the adjective line�ny� is most often used for both French terms linéel

and linéaire, and this is the term used by A��zenberg, Krivokolesko, Yuºakov, and others

who write in Russian. In the translations into English of these Russian texts, there appears

most often linear convexity and linearly convex.

Also Znamenski�� (1979:83; 1990:1037) used line�ny�, as did Znamenski�� & Znamen-

skaya (1996:359).

Later Znamenski�� (2001) used line�qaty� (usually translated as `ruled'; a common

term is line�qata� poverhnost~ `ruled surface'). He thus established the distinction

between lineal, linéel and linear, linéaire in Russian (Yuri�� Zelinski��, personal communi-

cation 2013 March 26).

Hörmander (1994:290, De�nition 4.6.1), Andersson et al. (2004:16, De�nition 2.1.2)

and Jacquet (2008:8, De�nition 2.1.2) used linear and linearly and thus did not keep the

distinction introduced by Martineau. In my opinion, these authors unnecessarily copied

the usage in the translations from Russian and did not pay attention to the pioneering

work of Martineau. It should also be noted that the English lineal is actually the older of

the two words, being attested since the fourteenth century, while linear is attested from

1706 (Webster 1983).2

Another term is hypoconvex. The �rst appearance in this context3 that I have found

is in Helton & Marshall (1990:182), where it is used for sets with a boundary of class C2

and has the meaning of `strongly lineally convex' (satisfying the strong Behnke�Peschl

condition as I called it in my paper (1998:3); see De�nition 6.3 here); later it was weakened

to a synonym of lineally convex by Whittelsey (2000:678), and used in this sense by Agler

& Young (2004:379). The term helpfully reminds us that it signi�es a property weaker

than convexity.
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