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1. Introduction

The pioneer in the study of holomorphic functions on discrete sets is Rufus Philip Isaacs,
who introduced two difference equations which are discrete counterparts of the Cauchy–
Riemann equation in one complex variable. He thus defined two classes of holomorphic
functions on the Gaussian integers Z[i] = Z + iZ, called monodiffric functions of the
first and second kind, respectively (1941:179). In a later paper (1952) he pursued the
study of the monodiffric functions of the first kind.

Jacqueline Ferrand (1944) investigated the monodiffric functions of the second kind,
which she called préholomorphes ‘preholomorphic’. See also her book Lelong-Ferrand
(1955).
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The term monodiffric function shall be understood as an analogue of monogenic
function, used to designate a function the derivatives of which do not depend on the
direction. The latter was used already by Cauchy (fonction monogène) and was later
replaced by fonction analytique. For a monodiffric function it is the difference quotient
that is independent of the direction.

For a recent survey of the theory of discrete holomorphic functions of one variable,
see Jeong (2007).

In an earlier paper, Kiselman (2005b), I studied monodiffric functions of the first
kind. See also the references mentioned there. The purpose of the present paper is to
prove similiar results for monodiffric functions of the second kind. In particular we shall
study the Cauchy–Riemann equation in one variable and the overdetermined system of
Cauchy–Riemann equations in two variables (Section 3).

There exists a fundamental solution to the Cauchy–Riemann equation with support
in a quadrant (Section 4). It can be easily defined explicitly by induction, and is closely
related to the Delannoy numbers known in combinatorics since 1895. It grows very fast
and leads therefore to bad estimates of the growth of solutions. There is another
fundamental solution which tends to zero at infinity (Section 5). We shall prove its
existence using Fourier analysis. Its explicit values are elusive.

Only very special domains are domains of holomorphy in one discrete variable (Sec-
tion 6). The Hartogs phenomenon in two complex variables has a counterpart in the
discrete setting (Section 7).

2. Definitions

If a function is defined on four distinct points a, b, c, d in the complex plane, we impose
the condition

f(a)(b− d) + f(b)(c− a) + f(c)(d− b) + f(d)(a− c) = 0,

which may be written
f(c)− f(a)

c− a
=

f(d)− f(b)
d− b

.

This is the definition studied by Ferrand (1944). It expresses the fact that the difference
quotient when going from a to c is the same as the difference quotient taken from b
to d. For a discussion concerning this and more general conditions, see Ferrand (1944)
and Kiselman (2005b).

In particular, if b = a + 1, c = a + 1 + i and d = a + i, we get

(2.1)
f(a + 1 + i)− f(a)

1 + i
=

f(a + i)− f(a + 1)
i− 1

.

Definition 2.1. A function f defined on a subset A of Z[i] shall be said to be mono-
diffric of the second kind or holomorphic in the sense of Ferrand if (2.1) holds for all
a ∈ A such that also a + 1, a + i, and a + 1 + i all belong to A. We shall write OF(A)
for this class.



Holomorphic functions on discrete sets 3

In many respects the class just defined has properties similar to those of the class of
monodiffric functions of the first kind. However, one important property is different:
The squares tessellate the plane, whereas the triangles do not. For the monodiffric
functions of the second kind we can therefore state that the integral over a closed
curve is zero. First we need to define the integral. If f is defined on a sequence Γ =
(a0, a1, . . . , am) of points, we define the function faff as the piecewise affine interpolation
of f and then ∫

Γ
f(z)dz =

∫
γ
faff(z)dz,

where γ is the polygon in the complex plane consisting of the segments [aj , aj+1]. The
definition of faff means that it is given, if aj+1 6= aj , by

faff(z) =
aj+1 − z

aj+1 − aj
f(aj) +

z − aj

aj+1 − aj
f(aj+1), z ∈ [aj , aj+1], j = 0, . . . ,m− 1,

except for the finitely many points belonging to some other segment [ak, ak+1]. If
aj+1 = aj , the formula reduces to f(z) = f(aj) = f(aj+1).

We can now state the result that the integral of a monodiffric function of the
second kind over a closed curve vanishes. We shall only use 4-curves, meaning that
aj+1 − aj = ±1,±i. The curve is closed if am = a0.

Proposition 2.2. (Isaacs 1941:183, Lelong-Ferrand 1955:147–148.) If f ∈ OF(Z[i]),
then ∫

Γ
f(z)dz = 0

for every closed 4-curve Γ.

3. Cauchy–Riemann operators

A Cauchy–Riemann operator that corresponds to the definition of Ferrand is

(3.1) CR(f)(z) = f(z + 1 + i)− f(z) + if(z + i)− if(z + 1), z ∈ Z[i].

Ferrand (1944:154) calls this quantity the écart of f on the mesh formed by a = z,
b = z + 1, c = z + 1 + i, d = z + i.

Remark 3.1. Actually the quantity CR(f) defined here should be associated not with
a point but with the square z + [0, 1] + [0, i]. And for reasons of symmetry it would be
desirable to label this square with its center z + 1

2 + 1
2 i, i.e., to let CR(f) be defined

on the grid
(
Z + 1

2

)
[i] rather than on Z[i]. However, in order to avoid introducing a

second grid, we shall stick to this asymmetric definition. We should think of z just as
an address of the square z + [0, 1] + [0, i].

A function f : A → C, where A is any subset of Z[i], is holomorphic in A in the
sense of Ferrand (Definition 2.1) if and only if CR(f)(z) = 0 at all points z such that z,
z + 1 + i, z + i, z + 1 ∈ A. This means that f solves a convolution equation µ ∗ f = 0
in (A− 1− i) ∩A ∩ (A− i) ∩ (A− 1), where µ = δ−1−i − δ0 + iδ−i − iδ−1.
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Convolution is defined by

(3.2) (f ∗ g)(z) =
∑

w∈Z[i]

f(w)g(z − w), z ∈ Z[i],

whenever the sum has a sense.
Example 3.2. To every function f we may associate its dual (Duffin 1956:338),

fd(z) = (−1)x+yf(z),

defined in the same set. A function is selfdual (fd = f) if and only if it is real at
the pure points (those with real and imaginary parts of the same parity), and purely
imaginary at the mixed points (those with real and imaginary parts of opposite parity).
The operators f 7→ fd and CR commute, i.e., CR(f)d = CR

(
fd

)
for all functions. In

particular, fd is monodiffric if and only if f is. We always have |fd| = |f |. Every
function f can be uniquely written f = f1 + f2 with f1 selfdual and f2 antiselfdual
(fd

2 = −f2).
Example 3.3. A polynomial in z of degree at most two is holomorphic in the sense of
Ferrand. A polynomial of degree three is not monodiffric; indeed CR(z3) = −1 + i. In
general CR(P ) is of degree m− 3 if P is a polynomial in z of degree m > 3.
Example 3.4. An exponential function

Fa,b(z) = axby = eαx+βy = exp
(

1
2(α− iβ)z + 1

2(α + iβ)z̄
)
, z = x + iy ∈ C,

is holomorphic (in the classical sense) if and only if α + iβ = 0. Its restriction Ga,b =
Fa,b

∣∣
Z[i]

to the Gaussian integers is monodiffric if and only if (a + i)(b− i) = 2. Indeed,
we find that

CR(Ga,b) =
(
(a + i)(b− i)− 2

)
Ga,b.

We get a one-parameter family of exponential functions Ga,b by taking

b =
1 + ia

i + a
, a ∈ C r {−i}.

With this choice of b, Ga,b is real-valued on the real axis, i.e., a is real, if and only if
|b| = 1. When Ga,b is bounded on the real axis, i.e., when |a| = 1, then and only then
b is real.

Among the functions Fa,b there is only one which is bounded and holomorphic:
the constant F1,1. By way of contrast, there are two bounded monodiffric functions
Ga,b, viz., G1,1(z) = 1 and its dual G−1,−1(z) = (−1)x+y. In particular, we note that
Liouville’s theorem does not hold in this setting. More generally, the dual to Ga,b is
G−a,−b with absolute values |G−a,−b| = |Ga,b| = G|a|,|b|.
Example 3.5. Let f(z) = 1/z, z ∈ Z[i] r {0}. Then

CR(f)(z) =
1− i

(z2 + z + iz)(z2 + z + iz + i)

where defined. Thus f is not monodiffric but nearly so for large |z|:
z4CR(f)(z) → 1− i as |z| → +∞.
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We can now generalize Proposition 2.2 to the following.

Proposition 3.6. (Duffin 1956:340.) For all functions defined on Z[i] and all closed
4-curves Γ we have ∫

Γ
f(z)dz =

i− 1
2

∑
z∈Int Γ

CR(f)(z),

where Int Γ denotes the set of all lower lefthand corners in the squares surrounded by
Γ.

Cf. the corresponding formula in complex analysis,∫
∂Ω

fdz =
∫

Ω
d(fdz) =

∫
Ω

∂f ∧ dz =
∫

Ω

(
i
∂f

∂x
+

∂f

∂y

)
dx ∧ dy.

Primitive functions

Let us define the primitive function F to a given monodiffric function f by the formula

F (z) =
∫ z

0
f(t)dt =

∫ z

0
faff(t)dt, z ∈ Z[i].

We have

F (z + 1 + i)− F (z)
1 + i

=
F (z + i)− F (z + 1)

i− 1
= 1

2f(z) + 1
4(1 + i)f(z + 1) + 1

4(1− i)f(z + i).

Starting with 1, we get the following sequence of primitive functions:

F0(z) = 1, F1(z) = z, F2(z) =
z2

2
, F3(z) =

z3

6
+

z̄

12
, F4(z) =

z4

24
+ · · · , . . .

In general, Fm is a monodiffric polynomial of the form

Fm(z) =
zm

m!
+ a polynomial in z and z̄ of degree m− 2.

We ask whether it is possible to expand an entire function in a series
∑

amFm(z).
Isaacs (1941:187) proved this for polynomials, thus when the sum is finite.

Richness of the class of monodiffric functions

The class of monodiffric functions is rich, perhaps surprisingly so. As an example, we
note that there are non-constant entire functions with support in a half plane (cf. Duffin
1956:337).

Theorem 3.7. Let g : N → C and ϕ : N → Z be arbitrary functions. Then there
exists a unique entire function h ∈ OF(Z[i]) such that h(z) = 0 when Im z 6 −1 and
h(ϕ(y) + iy) = g(y) for all y ∈ N.
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Proof. We define h(x + iy) = 0 for y 6 −1 and h(ϕ(y) + iy) = g(y) for y > 0. Suppose
that we have already defined h(x + iy) for all x + iy with y < q. This we have done
for q = 0. Then we go to the right by induction to successively define h(x + iq),
x = ϕ(y)+1, ϕ(y)+2, . . . and to the left to define it for x = ϕ(y)− 1, ϕ(y)− 2, . . . At
every step, the function is defined at three points, and the Cauchy–Riemann equation
is used to define it uniquely at the fourth point. (The argument works of course for
any convolution operator with support equal to the four points 1 + i, 0, i, 1.) �

A variant of the operator CR is

cr(f)(z) = f(z + 1)− f(z − 1) + if(z + i)− if(z − i).

Also this operator was introduced by Isaacs (1941:179 (ii)). The companion operator
to cr is

cr∗(f)(z) = f(z + 1)− f(z − 1)− if(z + i) + if(z − i).

We note that cr ◦ cr∗ = ∆(2), the two-step Laplacian, defined as

(∆(2)f)(z) = f(z + 2) + f(z − 2) + f(z + 2i) + f(z − 2i)− 4f(z), z ∈ Z[i].

We refer to Kiselman (2005a) and the references mentioned there for more on the
discrete Laplacian.

If G is a fundamental solution for the two-step Laplacian, then the formula
cr(cr∗G) = ∆(2)G = δ shows that cr∗G is a fundamental solution for cr. The values of a
fundamental solution for the Laplacian have been determined by Stöhr (1950:357); see
also van der Pol (1959:251). In principle, these values can be used for finding values of
a fundamental solution for the Cauchy–Riemann operator.

4. A fundamental solution with support in the first quad-
rant

Theorem 4.1. There exists a solution E to the equation CR(E) = δ−1−i with support
in the first quadrant. We have E(x + iy) = iy−xdx,y, x, y ∈ Z, where dx,y are the
Delannoy numbers. It is selfdual, Ed = E.

Proof. We have chosen to solve CR(E) = δ−1−i rather than CR(E) = δ0 just to get
notation in accordance with the Delannoy numbers. The latter are defined by the
relations dx,y = 0 if x or y is negative, d0,0 = 1, and

dx,y = dx−1,y + dx,y−1 + dx−1,y−1, x, y ∈ N, (x, y) 6= (0, 0).

Let us define a function µ̃ = δ−1−i−δ0−δ−i−δ−1, giving rise to a convolution operator
f 7→ µ̃ ∗ f related to the Cauchy–Riemann operator CR(f) = µ ∗ f . It is easy to verify
that µ̃ ∗ f̃ = µ̃ ∗ f , where in general we define f̃(z) = f(z)iIm z−Re z. It is clear that E
can be inductively defined for x + iy, and that the relation between E and dx,y is as
indicated. �
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The Delannoy numbers

The Delannoy numbers are named for Henri-Auguste Delannoy, 1833–1915. For a
biography, see Schwer & Autebert (2006). He investigated the possible moves on a
chessboard. The numbers under consideration here appear when one studies “la marche
de la Reine.” They are explicitly given by

dx,y =
x∑

j=0

(
x

j

)(
y

j

)
2j =

x∑
j=0

(
y

j

)(
x + y − j

y

)
, (x, y) ∈ N2,

(Delannoy 1895:77; Comtet 1974:81). They have a generating function∑
x,y∈N

dx,yz
xwy =

1
1− z − w − zw

,

Comtet (1974:81).
The Delannoy numbers appear in many problems in mathematics; see Sulanke

(2003), who lists 29 different examples. To mention just one, dn,r = dr,n is the car-
dinality of the ball of radius r in Zn equipped with the l1 metric (also known as the
hyperoctahedron), {

t ∈ Zn; ‖t‖1 = |t1|+ · · ·+ |tn| 6 r
}
;

Vassilev & Atanasov (1994), quoted here from Sulanke (2003, note 18).
To Sulanke’s 29 examples I can now add a 30th: the number of Khalimsky-contin-

uous functions Z → Z satisfying f(0) = 0 and f(x + y) = x− y, |y| 6 x. This number
is equal to dx,y. (The number of Khalimsky-continuous functions satisfying f(0) = 0
and f(x + y + 1) = x− y is the same as that of those satisfying f(x + y) = x− y.)

A lot is known about the central Delannoy numbers dx,x; see Comtet (1974:81),
Stanley (2001:185) and Sulanke (2003). Actually dx,x = Px(3), where Px(t) is the
Legendre polynomial (Comtet 1974:81). The sequence (dx,x) has a generating function∑

x∈N

dx,xtx =
1√

1− 6t + t2

(Comtet 1974:81, Stanley 2001:185). We have

dx,x = 3
(
2− 1

x

)
dx−1,x−1 −

(
1− 1

x

)
dx−2,x−2 ∼

(√
2 + 1

)2x
=

(
3 + 2

√
2
)x

.

The number
√

2+1 is known as the Silver Ratio for its appearance in various contexts.
We note that this asymptotic behavior shows that the fundamental solution is not
temperate: it grows faster than any power of |z|.

Not so much is known about the general numbers dx,y. I conjecture that

dx,y ∼
(

r + y

x

)x (
r + x

y

)y

, r =
√

x2 + y2,
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more precisely that

lim
t∈N∗

t→+∞

1
t

log dtx,ty = x log
(
(r + y)/x

)
+ y log

(
(r + x)/y

)
, x, y ∈ N∗.

The right-hand side is a concave function of (x, y) ∈ R2, x, y > 0, and is positively
homogeneous of degree one.

For a fixed y this implies that we have polynomial growth of degree y,

dx,y ∼ Cy(2x)y, x → +∞.

The Delannoy numbers with 0 6 x, y 6 6 are:

6 1 13 85 377 1289 3653 8989
5 1 11 61 231 681 1683 3653
4 1 9 41 129 321 681 1289
3 1 7 25 63 129 231 377
2 1 5 13 25 41 61 85
1 1 3 5 7 9 11 13
0 1 1 1 1 1 1 1

0 1 2 3 4 5 6

The values of E(x, y) for −1 6 x, y 6 6 are:

0 − 1 13i 85 −377i −1289 3653i 8989
0 i 11 −61i −231 681i 1683 −3653i
0 1 −9i −41 129i 321 −681i −1289
0 −i −7 25i 63 −129i −231 377i
0 −1 5i 13 −25i −41 61i 85
0 i 3 −5i −7 9i 11 −13i
0 1 −i −1 i 1 −i −1
0 0 0 0 0 0 0 0

Hyperbolicity

The existence of a fundamental solution with support in a strict cone implies that one
can solve the Cauchy–Riemann equation with an arbitrary right-hand side, just as for
differential operators with constant coefficients, where the existence of a fundamental
solution with support in a strict cone is equivalent to hyperbolicity. However, the
estimates that can be obtained from this method are very bad because of the fast
growth of E.

Theorem 4.2. (Isaacs 1941:197.) Given any function f on Z[i], the equation CR(u) =
f can be solved.
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Proof. Let E1 be the fundamental solution with support in

{x + iy ∈ Z[i]; x > 1, y > 1},

and E2 the fundamental solution with support in

{x + iy; x 6 0, y 6 0},

the existence of which is proved similarly. We denote by χ the characteristic function
of the half plane {z; Re z + Im z > 0}. Then we can form the convolution products in
the formula

(4.1) u = E1 ∗ (χf) + E2 ∗ (1− χ)f

and apply the Cauchy–Riemann operator and then use the associative law as follows:

(4.2)
CR(u) = µ ∗ u = µ ∗ (E1 ∗ (χf)) + µ ∗ (E2 ∗ (1− χ)f)
= (µ ∗ E1) ∗ (χf) + (µ ∗ E2) ∗ ((1− χ)f) = χf + (1− χ)f = f.

�

Remark 4.3. We remark that convolution, defined by (3.2), is in general not an asso-
ciative binary operation. A simple example can be found even in Z: let h = χN be the
characteristic function of N, let g = δ0− δ1, and let f = ah + b for some constants a, b.
Then (f ∗ g) ∗ h = aδ0 ∗ h = ah, while f ∗ (g ∗ h) = f ∗ δ0 = ah + b. Associativity holds
if and only if b = 0. Here f ∗ g and g ∗ h are well defined, but f ∗ h is not, except when
b = 0. (Note that f ∗ h does not appear in the law of associativity and therefore does
not seem to be needed.) However, in (4.1), the support of each fundamental solution
is contained in a strict cone, and not only µ ∗ E1 and E1 ∗ (χf) but also µ ∗ (χf) are
well defined: the sum defining each convolution is finite, and the associative law holds.

Systems of equations

Theorem 4.4. A system of equations CR1(u) = f1, CR2(u) = f2, where the fj are
given in Z[i]2, can be solved if and only if CR2(f1) = CR1(f2).

It seems that a convenient way to prove this theorem is to pass via a special case:

Proposition 4.5. An equation CR2(v) = g, where g is given in Z[i]2, can be solved
with v monodiffric in z1 if and only if g is monodiffric in z1.

Proof. We construct for each fixed z1 the solution in the variable z2 as in (4.1): v =
E1 ∗ (χg)+E2 ∗ ((1−χ)g), where E1, E2 and χ are independent of z1. We observe that
v is monodiffric in z1 if g is. Indeed, using (4.1),

CR1(v) = µ1 ∗ v = E1 ∗
(
χ(µ1 ∗ g)

)
+ E2 ∗

(
(1− χ)(µ1 ∗ g)

)
= 0.

The calculation is justified by the fact that µ1 has its support in the plane z2 = 0 and
χ is a function of z2, so that µ1 ∗ (χg) = χ(µ1 ∗ g). �
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Proof of Theorem 4.4. We first solve CR1(w) = f1 for each z2. Now a new unknown
function v = u − w satisfies CR1(v) = 0 if and only if CR1(u) = f1. And CR2(v) =
CR2(u) − CR2(w) = f2 − CR2(w) if and only if CR2(u) = f2. So we need to solve
CR1(v) = 0 and CR2(v) = f2 − CR2(w) = g. This we can do using the proposition, for
g is monodiffric in z1: CR1(g) = CR1(f2) − CR1(CR2(w)) = CR2(f1 − CR1(w)) = 0 in
view of the condition CR1(f2) = CR2(f1) and the choice of w. �

5. A bounded fundamental solution

We have seen that a fundamental solution with support in a quadrant grows too fast to
be temperate. According to the general existence theorem of de Boor et al. (1989), there
exists a temperate fundamental solution. We shall now study one such fundamental
solution. It corresponds to the fundamental solution (πz)−1 for the classical Cauchy–
Riemann operator. Its Fourier transform is easy to find; however, it is difficult to find
its values at individual points. Gürlebeck (1994:T 626) has calculated its values on the
real and imaginary axes (to be precise, he used another indexing) using the values of
the fundamental solution of the discrete Laplacian found by Stöhr (1950:357) and van
der Pol (1959:251).

Our study will proceed in three steps. First we show that there exists a fundamental
solution F tending to zero at infinity. Next we show that zF (z) is bounded. Finally
we study the asymptotic behavior of F (z) as z tends to infinity.

Let us agree to define the Fourier transform F (U) of a function U : Z[i] → C as

(5.1) F (U)(ζ) =
∑

z∈Z[i]

U(z)e−iRe ζz̄, ζ ∈ C.

It is defined on C and periodic in both the real and imaginary parts, thus actually
defined on (R mod 2π)[i]. The inverse Fourier transform of a complex-valued function
V defined on (R mod 2π)[i] is

(5.2) F−1(V )(z) =
1

4π2

∫ 2π

0

∫ 2π

0
V (ζ)eiRe ζz̄dξdη, z ∈ Z[i].

We have

F (CR(U))(ζ) =
[
eiξ+iη − 1 + ieiη − ieiξ

]
F (U)(ζ) = P (ζ)F (U)(ζ);

the Cauchy–Riemann operator on the Latin side corresponds on the Greek side to
multiplication by the trigonometric polynomial P .

Let us collect a few properties of P .

Lemma 5.1. The trigonometric polynomial

(5.3) P (ζ) = eiξ+iη − 1 + ieiη − ieiξ, (ξ, η) ∈ R2, ζ = ξ + iη ∈ C,
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has zeros at the points ζ = 2πj + 2πik and ζ = π + iπ + 2πj + 2πik, j, k ∈ Z, and only
there. It possesses the following symmetry properties.

(5.4) P (iζ) = ie−iηP (ζ);

(5.5) P (−ζ) = −e−iξ−iηP (ζ);

(5.6) P (π + iπ + ζ) = P (iζ̄) = P (−ζ).

Proof. A simple calculation gives |P (ζ)|2 = 4− 2 cos(ξ + η)− 2 cos(ξ− η), which shows
that the zeros must satisfy cos(ξ + η) = cos(ξ − η) = 1, hence that ξ, η ∈ πZ and
ξ ≡ η mod 2π. This proves the assertion about the zeros.

The symmetry rules (5.4) and (5.6) follow immediately from the definition of P ;
then (5.5) follows from using (5.4) twice. �

A detailed study of the behavior of P near the origin reveals that it is close to the
holomorphic function (1 + i)ζ:

Lemma 5.2. We have |P (ζ) − (1 + i)ζ| 6 3
2 |ζ|

2 for all ζ ∈ C, which implies that
|ζ| 6 |P (ζ)| 6 2|ζ| for |ζ| 6 2

3

(√
2− 1

)
. Similarly, |P (π + iπ + ζ)− (i− 1)ζ| 6 3

2 |ζ|
2.

Proof. We may write

P (ζ)− (1 + i)ζ = (eiξ+iη − 1− iξ − iη)− i(eiξ − 1− iξ) + i(eiη − 1− iη).

We now apply the inequality |eiξ − 1 − iξ| 6 1
2ξ2, ξ ∈ R, to each of the three terms

in this expression to obtain |P (ζ) − (1 + i)ζ| 6 3
2 |ζ|

2, from which the other estimate
follows easily. The statement about the behavior near the point π + iπ follows from
(5.6). �

Theorem 5.3. The inverse Fourier transform of 1/P ,

(5.7) F−1(1/P )(z) = F (z) =
1

4π2

∫ 2π

0

∫ 2π

0

eiRe ζz̄

P (ζ)
dξdη, z ∈ Z[i],

where P is the trigonometric polynomial (5.3), is a fundamental solution for CR and
tends to zero at infinity. Under rotation by 90◦ it possesses the same symmetry as(
z − 1

2 −
1
2 i

)−1, viz.,

F (1 + iz) = −iF (z), F (1 + i− z) = −F (z), z ∈ Z[i].

We have F (0) = −1
4 , F (1) = 1

4 i, F (1 + i) = 1
4 , F (i) = −1

4 i. Moreover,

F (iz̄) = F (z), z ∈ Z[i].

Finally, F is selfdual, Fd = F .
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Proof. That CR(F ) = δ0 follows from the inversion formula. We have seen that |ζ| 6
|P (ζ)| 6 2|ζ| in a neighborhood of the origin. This implies that 1/P is integrable near
the origin. The same is true in a neighborhood of the point π + iπ in view of (5.6). It
is well known that the inverse Fourier transform of an L1 function is bounded and that
it tends to zero at infinity.

The first symmetry formula follows the definition of F if we use the property (5.4)
of P . The second follows from a double use of the first.

The symmetry properties mean that F is symmetric not around the origin but
around the point 1

2 + 1
2 i, just as can be understood from Remark 3.1. In particular,

F (1) = −iF (0), F (1 + i) = −F (0), F (i) = iF (0). Together with the requirement that
CR(F )(0) shall be equal to 1, this implies that F (0) = −1

4 .
That F (iz) = F (z) follows from a change of variables in the integral using the fact

that P (η+iξ) = P (−ζ); cf. (5.6). In particular F has real values on the diagonal x = y.
Finally, the selfduality is a consequence of the formula P (π + iπ − ζ) = P (ζ); cf.

(5.6).
(The symmetry properties imply that F is determined by its values for 0 6 y 6 x,

thus in an eighth of the plane.)
�

We would like to sharpen this result to say that zF (z) is bounded. In general the
Fourier transform of an L1 function does not have this property; an example is the
Bessel function J0 of order zero, which we will encounter shortly.

In this study we shall need the Fourier transforms of functions u : C → C,

FC(u)(ζ) =
∫
C

u(z)e−iRe ζz̄dxdy, ζ ∈ C,

as well as the inverse transformation

F−1
C (v)(z) =

1
4π2

∫
C

v(ζ)eiRe ζz̄dξdη, z ∈ C.

We thus have two inverse Fourier transformations, F−1, defined by (5.2), and F−1
C .

The relation between them is easy:

(5.8) F−1
C (v)

∣∣
Z[i]

= F−1(V ), where V (ζ) =
∑

j,k∈Z

v(ζ + 2πj + 2πik)

is the doubly periodic function generated by v.
With this notation, the Fourier inversion formula becomes

(5.9) F−1
C (V ) =

1
4π2

FC(V̌ ),

where V̌ (ζ) = V (−ζ).
By duality or by a density argument, the Fourier transformation can be extended

to the space S ′(C) of tempered distributions. In particular, the function z 7→ 1/|z|,
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which is in L1
loc(C) ∩S ′(C) but not in L1(C), has the Fourier transform in the sense

of S ′(C),

(5.10) FC(1/z)(ζ) =
−2πi

ζ
.

If we cut off this function we get an L1 function with compact support, the Fourier
transform of which is

(5.11) FC(χτ/z)(ζ) =
2πi

ζ

(
− 1 + J0(τ |ζ|)

)
,

where χτ is the characteristic function of the disk {z ∈ C; |z| < τ}, and J0 is the Bessel
function of order zero, defined as

J0(τ) =
1
π

∫ 1

−1

eiτt

√
1− t2

dt, τ ∈ R.

It is the Fourier transform of a function in L1(R), and J0(τ) tends to zero no faster
than |τ |−1/2.

In view of (5.9) it follows that

(5.12) F−1
C (1/ζ)(z) =

1
4π2

FC(−1/ζ)(z) =
i

2πz
,

and

(5.13) F−1
C (χτ/ζ)(z) =

i

2πz

(
1− J0(τ |z|)

)
.

Theorem 5.4. The fundamental solution F defined by (5.7) is such that zF (z) is
bounded in Z[i].

Gürlebeck (1994: T 626) gives an estimate which implies that zF (z) is bounded. Also,
Theorem 7 in Gürlebeck & Hommel (2002) contains a statement similar to Theorem
5.4. However, no proof is given.

Proof. Let v ∈ D(C) be a radial test function which is equal to 1 in a neighborhood
of the origin and has its support contained in the disk in C with center at the origin
and of radius

√
2π. We shall prove in the following lemmas that the inverse Fourier

transforms

F1(z) = F−1
C (v/ζ)(z) and F2(z) = F−1

C (v/P − v/((1 + i)ζ)(z)

are both bounded by a constant times 1/|z|, more precisely that zF1(z) tends to i/(2π)
and that zF2(z) tends to 0 as |z| → +∞. It follows that v/P has this property.

Similary, also F3 = F−1(vπ/P ), where vπ(ζ) = v(ζ − π − iπ), is bounded by a
constant times 1/|z|,
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Finally
1− V − Vπ

P
,

where V , Vπ are the doubly periodic functions associated to v and vπ as in (5.8), is
smooth in a neighborhood of the square [0, 2π]+i[0, 2π], so its inverse Fourier transform
F4 defined by (5.2) is rapidly decreasing, thus zF4(z) → 0.

Summing up, we obtain that the inverse Fourier transform F−1(1/P ) of 1/P is
bounded by a constant times 1/|z|. �

Lemma 5.5. Let v ∈ D(C) be a radial test function which is equal to 1 in a neighbor-
hood of the origin. Then

F1(z) = F−1
C (v/ζ)(z) =

i

2πz
+ O(|z|−3/2), z ∈ Z[i], |z| → +∞.

Proof. Let as before χτ denote the characteristic function of the disk {z ∈ C; |z| < τ}.
It is known that

J0(τ) =

√
2
πτ

(
cos(τ − π/4) + O(τ−1)

)
, τ → +∞;

see for example Råde & Westergren (2000:271). Let v1 : R → C be the function defined
by v1(|ζ|) = v(ζ). We obtain

v(ζ) = v1(|ζ|) = −
∫ b

a
χτ (|ζ|)v′1(τ)dτ, ζ ∈ C,

where a and b are chosen so that supp v′1 ⊂ [a, b], 0 < a < b 6 1. Integration of (5.13)
with respect to τ yields

F−1
C (v/ζ)(z) =

i

2πz
− i

2πz

∫ b

a
J0(τ |z|)v′1(τ)dτ.

Here the integral tends to zero like |z|−1/2. �

Lemma 5.6. Let v be as in Lemma 5.5 and with support contained in the disk of
radius π/

√
2 and center at the origin. Then the gradient of w(ζ) = v/P − v/((1 + i)ζ)

is in L1(C). Hence its inverse Fourier transform F2(z) = F−1
C (w)(z) is bounded by a

constant times 1/|z|; it is even o(|z|−1).

Proof. In a punctured neighborhood of the origin, we have

∂

∂ξ

(
1

P (ζ)
− 1

(1 + i)ζ

)
=
−∂P/∂ξ

P (ζ)2
+

1
(1 + i)ζ2

=
−(1 + i)ζ2∂P/∂ξ + P 2(ζ)

(1 + i)ζ2P (ζ)2
.

The absolute value of the denominator in the last expression is no smaller than
√

2|ζ|4
in view of Lemma 5.2. The numerator is the restriction to R2 of an entire function of
two variables whose Maclaurin series does not contain any powers of degree less than
three. Hence the numerator is O(|ζ|3) and the quotient is O(|ζ|−1), implying that it
is integrable in a neighborhood of the origin. A similar calculation can be made for
∂
(
P−1 − ((1 + i)ζ)−1

)
/∂η. �
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Finally we shall study the values of F in more detail:

Theorem 5.7. The fundamental solution F defined by (5.7) satisfies

(5.14) F (z) =
1 + i

4π

(
1

x + iy
+

(−1)x+y

y + ix

)
+ o

(
1
z

)
, |z| → +∞.

We see that F can be written F = G + Gd + o(1/z), where

G(z) =
1 + i

4πz
and Gd(z) =

(1− i)(−1)x+y

4πz
.

The oscillation due to the factor (−1)x+y is damped if we form the mean of two adjacent
points, e.g., z and z + 1:

Corollary 5.8. The fundamental solution F satisfies

(5.15) 1
2F (z) + 1

2F (z + 1) =
1 + i

4πz
+ o(1/z), |z| → +∞.

Proof of Theorem 5.7. What needs to be done, in addition to the calculation already
made, is a more careful study of the contribution of the singularity at ζ = π + iπ.
We know that P (π + iπ + ζ) = P (η + iξ) is approximately equal to (1 + i)(η + iξ) =
(i − 1)ζ, and via a change of variable in the integral this shows that the function
F3 = F−1(vπ/P ) in the proof of Theorem 5.4 is

1 + i

4π
· (−1)x+y

y + ix
+ o(1/z).

This completes the proof. �

6. Domains of holomorphy

Given two subsets A and B of Z[i] with A ⊂ B, we have a restriction operator

RB
A : OF(B) → OF(A).

It may well be that RB
A is injective but not surjective, or surjective but not injective.

Example 6.1. Let A = {0, 1, i}, B = A ∪ {1 + i}. Then RB
A is bĳective.

Example 6.2. Let A = {0, i, 1 + i, 2 + i, 2}, B = A ∪ {1}. Then RB
A is easily seen to be

injective, but it is not surjective, for a monodiffric function on B must satisfy

−if(1 + i) + if(0) + f(i) = f(1) = f(2 + i) + if(1 + i)− if(2).

Its restriction to A must then satisfy

if(0) + f(i)− f(2 + i)− 2if(1 + i) + if(2) = 0.

But any function on A is monodiffric.
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Example 6.3. Let A = {0, 1, 1 + i, i} and B = A ∪ {2}. Then the restriction mapping
is surjective but not injective.

In view of the properties of the restriction operator RB
A is seems reasonable to propose

the following definition.

Definition 6.4. A domain of holomorphy in Z[i] is a set A such that if B ⊃ A and
RB

A is bĳective, then B = A.

Remark 6.5. In analogy with the situation in Cn, n > 2, it may be of interest to admit
also Riemann domains over Z[i] and Z[i]n. The set

A = {z; 1 6 |z| 6
√

2},

consisting of eight points, is a domain of holomorphy in the sense of Definition 6.4, but
not if we allow non-schlicht domains.

Let us call a set A 4-connected if any two points in A can be joined by a path
consisting of horizontal and vertical segments. We shall say that a subset of Z[i] is
horizontally convex if it cuts every horizontal line in an interval. Similarly we define
vertically convex.

To a bounded nonempty set A in Z[i] we associate the smallest rectangle Rect(A)
of the form

(6.1) [a0, a1] + i[b0, b1] = {z ∈ Z[i]; a0 6 Re z 6 a1, b0 6 Im z 6 b1}

which contains it. Here a0 6 a1 and b0 6 b1 are integers. From this we define also the
smallest rectangle containing an unbounded set.

Theorem 6.6. Let A ⊂ Z[i] be 4-connected and either horizontally or vertically convex.
Then every f ∈ OF(A) can be uniquely extended to the smallest rectangle which contains
A.

Proof. The set Rect(A) is the union of four sets, viz. the four sets

(A±N) ∩ (A± iN).

We shall prove that any monodiffric function on A can be uniquely extended to (A −
N) ∩ (A − iN). The proofs for the other three cases are of course similar. We shall
define the extension step by step in the next lemma, assuming the set to be bounded.
The unbounded case then follows easily since Rect(A) =

⋃
k Rect(Ak), where Ak is

the bounded set {z ∈ A; |Re z|, |Im z| 6 k}, k ∈ N. �

Lemma 6.7. Given two bounded 4-connected and vertically convex sets A and B with
A a subset of B and B a proper subset of (A−N)∩ (A− iN) such that any monodiffric
function on A can be uniquely continued to a monodiffric function on B, we can find a
strictly larger set B′ with the same properties.
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Proof. Suppose we have found a point q ∈ (A−N) ∩ (A− iN) r B such that all three
points q + 1, q + 1 + i and q + i belong to B. Then we can define B′ = B ∪ {q} and
extend any monodiffric function on B to B′ in a unique way by using the equation
CR(f)(q) = 0. The set B′ has all the properties required.

We shall now describe how to find such a point q. Since B is a proper subset of
(A−N)∩ (A− iN), there exists a point p /∈ B but in A−N and A− iN. There exists
a point b ∈ B such that Im b = Im p and Re b > Re p. We take Re b minimal, so that
b − 1 /∈ B. Also, there exists a point b′ ∈ B such that Re b′ = Re p and Im b′ > Im p.
If b − 1 + i ∈ B, we choose q = b − 1, for then q + 1 = b and q + i = b − 1 + i belong
to B and also q + 1 + i = b + i must do so in view of the 4-connectedness and vertical
convexity of B. If, on the other hand b − 1 + i does not belong to B, then there is
some point c ∈ B with Re c = Re b− 1 and Im c > Im b. We take Im c minimal, so that
c − i /∈ B. We now choose q = c − i. Then q + i = c belongs to B. Since b and b′ are
connected by a polygon with vertical and horizontal segments, there must exist a point
d in B with Re d = Re b and Im d > Im c. From the vertical convexity we conclude that
the whole segment [b, d] is contained in B; hence q + 1 and q + 1 + i belong to B. Thus
q has all properties required in the first paragraph of the proof. �

Corollary 6.8. A 4-connected horizontally or vertically convex subset of Z[i] is a
domain of holomorphy if and only if A = Rect(A).

Estimates

If Ω is a rectangle in Z[i] of the form (6.1), we define

β0Ω = {z ∈ Ω; Re z = a0 or Im z = b0},
β1Ω = {z ∈ Ω; Re z = a1 or Im z = b1}, and
βΩ = β0Ω ∪ β1Ω.

The set βΩ will serve as a kind of boundary of Ω in the following. Note that βΩ = Ω
if a0 6 a1 6 a0 + 1 or b0 6 b1 6 b0 + 1.

A monodiffric function on a rectangle Ω is determined by its restriction to β0Ω;
likewise by its restriction to β1Ω. We have

h(z) =
∑

s∈β0Ω

CΩ,0(z, s)h(s) =
∑

s∈β1Ω

CΩ,1(z, s)h(s), z ∈ Ω, h ∈ OF(Ω),

where CΩ,j( · , s) ∈ OF(Ω) for every s ∈ βjΩ, j = 0, 1.
These formulas lead to easy estimates:

(6.2) |h(z)| 6
∑

s∈β0Ω

|CΩ,0(z, s)| sup
s∈β0Ω

|h(s)| 6 A sup
s∈β0Ω

|h(s)|,

where
A = sup

z∈Ω

∑
s∈β0Ω

|CΩ,0(z, s)|
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is a very bad constant (cf. the Delannoy numbers). It is known (Ferrand 1944:157) that
the holomorphic functions in the sense of Ferrand satisfy a maximum principle, so that
|h(a)| 6 supz∈βΩ |h(z)| for all a ∈ Ω. The passage from β0Ω or β1Ω to βΩ = β0Ω∪β1Ω
thus improves the constant dramatically. However, the formula with β0Ω is still useful
when proving the uniqueness of an extension.

7. The Hartogs phenomenon

In several complex variables it is known that a holomorphic function cannot have its
singularities contained in a compact set: a holomorphic function defined on a neigh-
borhood of the boundary of a bounded region can be extended holomorphically to
the whole region. This is known as the Hartogs phenomenon or the Hartogs–Osgood
theorem, or the Hartogs–Osgood–Brown theorem. For its history, see Range (2002).

There is a similar phenomenon in Z[i]2. We formulate it in the simplest case only.
In a Cartesian product Ω1 × Ω2, the set (βΩ1 × Ω2) ∪ (Ω1 × βΩ2) serves as a kind of
boundary, and its complement in Ω as a kind of interior.

Theorem 7.1. Let Ω = Ω1×Ω2, where Ωj are two rectangles in Z[i]. If h is holomor-
phic in the sense of Ferrand in (β0Ω1×Ω2)∪ (Ω1× β0Ω2), then there exists a function
H ∈ OF(Ω) which extends H.

There are variants of this theorem which can be obtained by replacing β0Ω1 by β1Ω1

or βΩ1, and similarly for Ω2.

Proof. Construct a function H by the formula

H(z1, z2) =
∑

s1∈β0Ω1

CΩ1,0(z1, s1)h(s1, z2), (z1, z2) ∈ Ω.

Clearly H is monodiffric in z1 (since CΩ1,0 is), and also in z2 (since h is).
First fix z2 ∈ β0Ω2. Then H(z1, z2) = h(z1, z2) for all z1 ∈ Ω1; the formula just

reproduces the function h( · , z2).
Next fix z1 ∈ β0Ω1. We know that H(z1, z2) = h(z1, z2) when z2 ∈ β0Ω2. In view

of the uniqueness of monodiffric continuation, we must have H(z1, z2) = h(z1, z2) for
all z2 ∈ Ω2.

Summing up, we have proved that H is holomorphic in the sense of Ferrand in Ω
and that H = h in the domain of h. �
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