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Abstract

We define, using difference operators, a class of functions on the
set of points with integer coordinates which is preserved under
the formation of marginal functions.

1. Introduction

A simple everyday observation is that the shadow of a convex body
is convex. Mathematically this means that the image under an affine
mapping of a convex subset of a vector space is convex. It is often
convenient to express this in terms of marginal functions: if F is a
convex function defined on Rn × Rm and with values in

R! = [−∞,+∞] = R ∪ {−∞,+∞},

then its marginal function H : Rn → R!, defined by

H(x) = inf
y∈Rm

F (x, y), x ∈ Rn,

is convex in Rn. This result has manifold uses in the theory of convexity
of real variables, and it would be of interest to establish a similar result
for functions f : Zn × Zm → R!, i.e., functions defined at the points
in Rn × Rm with integer coordinates. However, for the most obvious
attempt at defining a convex function of integer variables, such a result
fails in a very conspicuous way, even in low dimensions, n = m = 1:

Example 1.1. Define f : Z× Z→ Z by

f(x) = |x1 − 2mx2|, x = (x1, x2) ∈ Z× Z,

where m is a positive integer. Then its marginal function

h(x1) = inf
x2∈Z

f(x1, x2), x1 ∈ Z,

is a periodic function of period 2m which is equal to |x1| for −m 6
x1 6 m. This means that it is a saw-tooth function with teeth as large
as we like. We remark also that if we define f in R × Z by the same
expression, then the same phenomenon appears.
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We shall say that a function f : Zn → R! is convex extensible if it
is the restriction of a convex function F : Rn → R!. (This term has
been used in another, narrower sense by Murota [10], page 93.) With
this terminology we see that the function f in Example 1.1 is actually
convex extensible; indeed, an extension is given by the same expression,
while h is not convex extensible (or convex in any reasonable sense).
Our conclusion is that the property of being convex extensible is too
weak to be of use in this context. In view of this observation, one of us
has studied a class of functions defined on Z × Z which is suitable for
this and other important properties in convexity theory [3, 4, 6].

In the case of two integer variables, there are several equivalent
ways to define integral convexity; see [3, 6]. From a characterization
using difference operators it is obvious that the class is closed under
addition. It was also proved that in a certain sense integral convexity
is necessary for marginal functions to be convex extensible.

The purpose of the present paper is to extend this study to higher
dimensions, i.e., functions on Zn × Zm.

In addition to the result on marginal functions, there are two other
results in convexity theory of real variables which would be of interest
to have also in the discrete case, viz. that a local minimum is global,
and that two disjoint convex sets can be separated by a hyperplane.
Also in the other two cases it can be proved by simple examples that
convex extensibility of the functions is not enough; see [6] and Murota
[10], page 15.

Several kinds of discrete convexity have been studied. Miller [7],
page 168, introduced discretely convex functions for which local minima
are global. These functions are neither convex extensible nor is the class
closed under addition.

Another kind of convexity was introduced by Favati and Tardella [1]
using locally convex functions. These functions were called integrally
convex and for them local minima are global. They are all convex
extensible. However, there are some examples which show that the
class of integrally convex function is not closed under addition (see
Murota and Shioura [12]).

Two other concepts of convexity were presented by Murota in [8]
and [9]. They are called M- and L-convexity, respectively. For these two
classes of functions, local minima are global. Two other classes of func-
tions are obtained by a special restriction of M- and L-convex functions
to a space of one dimension less. These functions are called M\ and L\-
convex and were introduced by Murota and Shioura [11] and Fujishige
and Murota [2], respectively. The class of M\-convex (L\-convex) func-
tions properly contains M-convex (L-convex) functions. These classes
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of functions have been studied with respect to some operations such
as infimal convolution, addition, and addition by an affine function
(Murota and Shioura [12]).

The class of M- and L-convex functions form two distinct classes of
discrete convexity which are conjugate to each other under the Fenchel
transformation. Similarly we have a conjugacy relation between the
classes of M\- and L\-convex functions. An M\-convex function is
supermodular, whereas an L\-convex function is submodular (Murota
[10]:145, 189). On the other hand, in dimensions n > 3, it is not
in general true that the Fenchel transform of a supermodular func-
tion is submodular; however, the converse is always true. Thus, these
two concepts, submodularity and supermodularity, are not symmetric
under this transformation. On the other hand, adding an exchange
axiom to supermodularity and a linearity to submodularity makes the
behavior under the Fenchel transformation different.

Moreover, an integrally convex function is L\-convex if and only
if it is submodular (Fujishige and Murota [2]; Murota and Shioura
[12]:172); also an M\-convex function is integrally convex (Murota and
Shioura [12]:170). Various classes of discrete convexity were compared
in Murota and Shioura [12].

2. The convex envelope and the canonical
extension

To each function f : Zn → R! we shall associate two functions defined
on Rn. The first is the convex envelope of f , the second the canonical
extension of f .

Definition 2.1. The convex envelope of a function f : Zn → R! is the
largest convex function G : Rn → R! such that G|Zn 6 f . We shall
denote it by cvxe(f).

The convex envelope is well defined, because the supremum of all func-
tions G which are convex and satisfy G|Zn 6 f has the same properties.

As already mentioned, we shall say that f : Zn → R! is convex
extensible if f is the restriction of a convex function F : Rn → R!. This
happens if and only if cvxe(f) is an extension of f . Indeed, if f admits
a convex extension, then also cvxe(f) is a convex extension.

Definition 2.2. The canonical extension of a function f : Zn → R!

is defined, in each cube p + [0, 1]n, p ∈ Zn, as the convex envelope of
f |p+{0,1}n , the restriction of f to the 2n vertices of the cube p+ [0, 1]n.
We shall denote it by can(f).
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It may of course happen that a point x belongs to two cubes p+ [0, 1]n

and q + [0, 1]n for some p, q ∈ Zn, p 6= q. But then the definition
yields the same result in both cases. To see this, we define the integer
neighborhood of a real number a, denoted byN(a), as the set {bac , dae}.
We define the integer neighborhood of a point a = (a1, . . . , an) ∈ Rn as
the set

N(a) = N(a1)× · · · ×N(an).

It has 2k elements, where k is the number of indices j such that aj ∈
Rr Z. Equivalently,

N(a) =
(
a+B∞< (0, 1)

)
∩ Zn, a ∈ Rn,

where B∞< (c, r) denotes the strict ball for the l∞ norm with center at
c and of radius r. The mapping

Rn ⊃ A 7→
⋃
a∈A

N(a) ⊂ Zn

is a dilation and one of many digitizations of Rn.

Proposition 2.3. For any function f : Zn → R! and any point a ∈
Rn, can(f)(a) is equal to the convex envelope of f |N(a). In partic-
ular, can(f) is an extension of f : when a ∈ Zn, N(a) = {a} and
(can(f))(a) = f(a).

Proof. We shall denote by cvxh(A) the convex hull of a set A ⊂ Rn.
Denote by K : cvxh(N(a))→ R! the function which is equal to can(f)
in cvxh(N(a)), and by L : cvxh(N(a)) → R! the function which is
equal to the convex envelope of f |N(a). Clearly K 6 L.

To prove the opposite inequality L 6 K we shall prove that L can
be extended to a convex minorant of f restricted p + {0, 1}n, where
p+ [0, 1]n is any cube containing N(a).

Let J be the set of indices j such that aj ∈ Z. By a change of
coordinates we may assume that aj = 0 for j ∈ J and that 0 < aj <
1 for j /∈ J . This change is actually just translation by the vector
(ba1c , . . . , banc) (we must note here that all definitions commute with
the translation by a vector with integer components). We define a
convex function

G(x) =


+∞ when

∑
j∈J xj < 0;

(cvxe(L))(x) when
∑

j∈J xj = 0;

−∞ when
∑

j∈J xj > 0.
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We note that the restriction to cvxh(N(a)) of cvxe(L) is equal to
L. We see that G is a convex minorant of f |p+{0,1}n , hence of can(f)
restricted to p+ [0, 1]n, so L 6 K.

We shall say with Favati and Tardella [1], page 9, that f is integrally
convex if can(f) is convex.

We always have cvxe(f) 6 can(f) with equality if and only if f is
integrally convex.

3. Lateral convexity

The following definition generalizes that for two variables in [3], Defi-
nition 2.1; cf. Theorem 2.4 there. See also [5, 6].

Definition 3.1. Given a ∈ Rn we define a difference operator

Da : RRn → RRn

by

(3.1) (DaF )(x) = F (x+ a)− F (x), x ∈ Rn, F ∈ RRn .

If a ∈ Zn, it operates from RZn to RZn and from ZZn to ZZn . In
particular, De(j) is the difference operator in the jth coordinate.

Definition 3.2. Given a set A ⊂ Zn × Zn ∼= Z2n we shall say that a
function f : Zn → R is A-laterally convex if

(3.2) (DbDaf)(x) > 0, x ∈ Zn, (a, b) ∈ A.

From the definition it is obvious that this class is closed under addition
and multiplication by a nonnegative scalar. From the formulas

(D−af)(x) = −(Daf)(x−a), (D−bD−af)(x) = (DbDaf)(x−a−b)

it follows that

−A = {(−a,−b); (a, b) ∈ A}

defines the same class as A. The same is true of

A˘= {(b, a); (a, b) ∈ A}.
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We define
Asym = A ∪ (−A) ∪A˘∪ (−A) ,̆

which may have up to four times as many elements as A but still defines
the same class.

The formula

DbD−af(x) = −DbDaf(x− a)

shows that f is {(−a, b)}-laterally convex if and only if −f is {(a, b)}-
laterally convex. So the concepts introduced will enable us to study
also A-laterally concave functions and A-laterally affine functions.

The formula

(Dbf)(x) + (Dcf)(x+ b) = (Db+cf)(x)

applied to Daf yields

(3.3) (DbDaf)(x) + (DcDaf)(x+ b) = (Db+cDaf)(x),

which implies that if DbDaf > 0 and DcDaf > 0, then we also have
Db+cDaf > 0. This means that the set of pairs {(a, b) ∈ Zn×Zn} such
that the inequality holds is closed under partial addition:

(a, b) +2 (a, c) = (a, b+ c),

i.e., if the first elements agree, we may add the second elements. For
sets we define

B +2 C = {(a, b+ c); (a, b) ∈ B, (a, c) ∈ C}.

Similarly we can define of course (a, b) +1 (c, b) = (a+ c, b) and

B +1 C = {(a+ c, b); (a, b) ∈ B, (c, b) ∈ C}

when the two second elements are the same.
By repeated use of these formulas we see that A-lateral convexity

is equivalent to B-lateral convexity, where B is any class such that
A ⊂ B ⊂ Ã, denoting by Ã the smallest set which contains

(Zn × {0}) ∪ ({0} × Zn) ∪Asym

and is closed under both partial additions

(B,C) 7→ B +1 C, (B,C) 7→ B +2 C.

Thus Ã contains the sets Asym +1 A
sym, Asym +2 (Asym +1 A

sym) and
so on.

We sum up the discussion on Ã in the following lemma.
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Lemma 3.3. Let A be any subset of Zn × Zn.

1. For any a ∈ Zn, (a,0) and (0, a) belong to Ã.

2. If (a, b) ∈ Ã, then (b, a), (−a,−b), (−b,−a) all belong to Ã.

3. If (a, b), (c, b) ∈ Ã, then (a, b) +1 (c, b) = (a+ c, b) belongs to Ã.

4. If (a, b), (a, c) ∈ Ã, then (a, b) +2 (a, c) = (a, b+ c) belongs to Ã.

5. For a given function f , let us denote by Cf the set of all pairs
(a, b) ∈ Zn × Zn such that DbDaf > 0. Then if Cf contains A,
it also contains Ã.

When n = 1 and A = {(1, 1)}, f is A-laterally convex if and only if it is
convex extensible. This is the only reasonable definition of convexity in
one integer variable. We note that it is equivalent to B-lateral convexity
for any B such that

(1, 1) ∈ B ⊂ Ã or (−1,−1) ∈ B ⊂ Ã.

In this case, Ã is easy to determine: it is equal to {(s, t) ∈ Z×Z; st > 0}.
More generally, for any n and any j ∈ [1, n]Z, if A = {(e(j), e(j))},

then a function is A-laterally convex if and only if it is convex exten-
sible in the variable xj when the others are kept fixed. Since this is a
convenient property, we shall normally require that

(3.4) (e(j), e(j)) ∈ A, j = 1, . . . , n.

If so, all A-laterally convex functions are separately {(1, 1)}-laterally
convex.

Example 3.4. If f is a polynomial of degree at most two,

f(x) = α+
n∑
j=1

βjxj +
n∑
j=1

n∑
k=1

γjkxjxk, x ∈ Rn,

with γjk = γkj , we see that

(DbDaf)(x) = 2

n∑
j=1

n∑
k=1

γjkajbk,

so that f is A-laterally convex if and only if the last expression is
nonnegative for all (a, b) ∈ A.

In particular, all affine functions are A-laterally convex.
We also see that the special polynomial f(x) = x2j is A-laterally

convex if and only if ajbj > 0 for all (a, b) ∈ A. Conversely, if ajbj >
0 and g is any convex extensible function of one variable, then the
function x 7→ g(xj) is {(a, b)}-laterally convex.
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In view of this example we shall normally require that

(3.5) (a, b) ∈ A implies ajbj > 0, j = 1, . . . , n.

4. Two variables

Let us see what the definitions mean for functions of two variables.
When n = 2 and A = {(e(1), e(2))}, a function is A-laterally convex

if and only if it is submodular. (Cf. Murota [10]:26, 206–207.)
When n = 2 and

A = {((1, 0), (1, t)); t ∈ [−1, 1]Z} ∪ {((0, 1), (s, 1)); s ∈ [−1, 1]Z},

then a function is A-laterally convex if and only if it is integrally convex;
see [3, 6].

Given a function f , we consider the set Cf of all pairs (a, b) ∈ Z2×Z2

such that DbDaf > 0. Then we have to take into account several
conditions, e.g., the two one-variable conditions

(4.1) (e(1), e(1)), (e(2), e(2)) ∈ Cf

(which we always require in order to avoid uninteresting cases—see
(3.4)), the two diagonal conditions

(4.2) ((−1, 1), (−1, 1)), ((1, 1), (1, 1)) ∈ Cf ,

the left and right horizontal lozenge conditions1

(4.3) ((−1, 0), (−1, 1)), ((1, 0), (1, 1)) ∈ Cf ,

and finally the left and right vertical lozenge conditions,

(4.4) ((0, 1), (−1, 1)), ((0, 1), (1, 1)) ∈ Cf .

We note that, by partial addition, ((1, 0), (1, 1)) +1 ((0, 1), (1, 1)) =
((1, 1), (1, 1)): the right horizontal lozenge condition and the right ver-
tical lozenge condition yield the diagonal condition for ((1, 1), (1, 1)).
So this means that we often do not need to consider the diagonal con-
ditions.

It follows from simple examples in [6] that all four lozenge conditions
are necessary if we want to obtain a reasonable result on the convex
extensibility of marginal functions.

1We are aware that lozenge and rhombus are considered to be synonyms, but
we are brave enough to call a set like cvxh{(0, 0), (1, 0), (1, 1), (2, 1)} a lozenge,
although its sides have Euclidean lengths 1 and

√
2. But their l∞ lengths are all

equal, so it is actually a rhombus as well as a lozenge for the l∞ metric. A slightly
generalized lozenge . . .
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5. The set where the infimum is attained

We shall first study the relation between A-lateral convexity and the
interval (possibly empty) where the infimum defining the marginal func-
tion is attained.

Theorem 5.1. Let us define, for any function f : Zn → R,

Mf (x1, . . . , xn−1)

= {b ∈ Z; f(x1, . . . , xn−1, b) = inft∈Z f(x1, . . . , xn−1, t)} ,

where (x1, . . . , xn−1) ∈ Zn−1. We also define

fβ(x) = f(x)− βxn, x = (x1, . . . , xn) ∈ Zn, β ∈ R.

Now let a = (a′, an) ∈ Zn, where a′ = (a1, . . . , an−1) and an > 0, and
define

A = {(e(n), e(n)), ((a′, an), e(n)), ((−a′, an), e(n))}.

Then f is A-laterally convex if and only if t 7→ f(x, t) is convex exten-
sible for every x and

Mfβ (x+ a′) ⊂Mfβ (x) + [−an, an]Z, x ∈ Zn−1, β ∈ R.

Proof. Assume first that f is A-laterally convex. Since A contains
(e(n), e(n)), Z 3 t 7→ f(x, t) is convex extensible for every x.

We note that for a function which is convex extensible in the last
variable,

(5.1) b ∈Mf (x) if and only if De(n)f(x, b− 1) 6 0 6 De(n)f(x, b).

Moreover

(5.2) b, b+ 1 ∈Mf (x) if and only if De(n)f(x, b) = 0.

Let now f satisfy DaDe(n)f > 0 and consider two points x and x+a′

in Zn−1. Then for any b ∈ Mf (x) we have, since also (e(n), (−a′, an))
is in A,

(5.3)
De(n)f(x+ a′, b− an − 1) 6 De(n)f(x, b− 1) 6 0

6 De(n)f(x, b) 6 De(n)f(x+ a′, b+ an),

which implies that there is a point c ∈ [b− an, b+ an]Z with

De(n)f(x+ a′, c− 1) 6 0 6 De(n)f(x+ a′, c).
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In view of (5.1) this means that c ∈Mf (x+ a′). We have proved that
b ∈ c+[−an, an]Z ⊂Mf (x+a′)+[−an, an]Z, and, since b was any point
in Mf (x), that Mf (x) ⊂ Mf (x + a′) + [−an, an]Z. We are done, since
the whole argument holds also for fβ.

Conversely, suppose that the function f satisfies De(n)De(n)f > 0
but is notA-laterally convex. Then it either does not satisfyDaDe(n)f >
0 or D−aDe(n)f > 0. It suffices to consider one of these cases. We thus
assume that there exist (x, b) ∈ Zn−1 × Z such that

De(n)f(x+ a′, b+ an) < De(n)f(x, b).

We shall reach a contradiction to the Lipschitz property.

We take a real number β such that

De(n)f(x+ a′, b+ an) < β < De(n)f(x, b).

If we rewrite this for the function fβ, for which De(n)fβ = De(n)f − β,
we obtain

(5.4) De(n)fβ(x+ a′, b+ an) < 0 < De(n)fβ(x, b),

which implies that Mfβ (x+a′) ⊂ [b+ an + 1,+∞[Z and that Mfβ (x) ⊂
]−∞, b]Z. Hence

Mfβ (x+ a′) + [−an, an]Z ⊂ [b+ 1,+∞[Z

and Mfβ (x) + [−an, an]Z ⊂ ]−∞, b+ an]Z. Thus Mfβ (x + a′) is not
contained in Mfβ (x) + [−an, an]Z unless it is empty, and Mfβ (x) is not
contained in Mfβ (x+a′)+[−an, an]Z unless it is empty. As soon as one
of them is nonempty, we get a contradiction to the Lipschitz property.

So the case when both sets are empty remains to be considered—so
far, there is no contradiction in this case. Since De(n)fβ(x+a′, b+an) <
0, we must then have, in view of (5.1),

De(n)fβ(x+ a′, t) < 0 for all t ∈ Z.

Now define γ = De(n)f(x, b) > β. Then, by (5.2), Mfγ (x) is certainly
nonempty; it contains b and b+ 1. And since γ > β we have

De(n)fγ(x+ a′, t) = De(n)fβ(x+ a′, t) + β − γ < De(n)fβ(x+ a′, t) < 0

for all t ∈ Z, so that (5.1) shows that Mfγ (x + a′) is empty. This
contradicts the inclusion Mfγ (x) ⊂ Mfγ (x + a′) + [−an, an]Z. We are
done.
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By permuting the variables we easily obtain the following corollary.

Corollary 5.2. Given a function f : Zn → R, we define, for 1 6 j 6 n
and (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Zn−1,

Mj,f (x1, . . . , xj−1, xj+1, . . . , xn−1)

=
{
b ∈ Z; f(x1, . . . , xj−1, b, xj+1, . . . , xn−1, xn) = infxj∈Z f(x)

}
.

We also define

fj,β(x) = f(x)− βxj , x = (x1, . . . , xn) ∈ Zn, j = 1, . . . , n, β ∈ R.

Fix a set A which contains (a, e(j)) and (ā, e(j)), where

ā = 2aje
(j) − a = (−a1, . . . , aj , . . . ,−an),

and satisfies (3.4) and (3.5). If f is A-laterally convex, then f is convex
extensible in each variable separately and we have

Mj,fj,β (x+ a′) ⊂Mj,fj,β (x) + [−aj , aj ]Z, x ∈ Zn−1,

where now a′ = (a1, . . . , aj−1, aj+1, . . . , an).

6. Lateral convexity of marginal functions

In [3], Theorem 3.1, and [6] it was shown that for integrally convex
functions of two integer variables, the marginal function is convex ex-
tensible. We shall now study the marginal function of A-laterally con-
vex functions.

Theorem 6.1. Let A ⊂ Zn−1 × Zn−1 and B ⊂ Zn × Zn be given. We
assume that (3.4) and (3.5) hold both for A and B. Assume that

(6.1) If (a, b) ∈ A and s ∈ [−1, 1]Z, then ((a, s), (b, 0)) belongs to B̃;

that
(6.2)

If there exists c ∈ Zn−1 such that (a, c) ∈ A, then ((a, 1), e(n)) ∈ B̃;

and finally that

(6.3) If ((a, 1), e(n)) ∈ B, then ((−a, 1), e(n)) ∈ B̃.

If f : Zn → R is B-laterally convex, then its marginal function

h(x) = inf
t∈Z

f(x, t), x ∈ Zn−1,

is A-laterally convex, provided that it does not take the value −∞.
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Lemma 6.2. Let A and B satisfy the hypotheses in Theorem 6.1. Then

(6.4) If (a, b) ∈ A, then ((a,−1), (b,−1)), ((a, 1), (b, 1)) ∈ B̃.

Proof. From the conditions (6.1) and (6.2) we know that ((a, 1), (b, 0))
and ((a, 1), e(n)) belong to B̃. By partial addition +2 we conclude that
so does ((a, 1), (b, 1)).

From the condition (6.2) we know that ((a, 1), e(n)) and, conse-
quently, in view of (6.3), also ((−a, 1), e(n)) belongs to B̃. So does the
opposite pair −((−a, 1), e(n)) = ((a,−1),−e(n)). By condition (6.1) we
find that ((a,−1), (b, 0)) is in B̃, and we now only have to form the
partial sum

((a,−1),−e(n)) +2 ((a,−1), (b, 0)) = ((a,−1), (b,−1))

to conclude.

By this lemma we know that if A and B satisfy the hypotheses of the
theorem and if (a, b) ∈ A, then there are pairs of the form ((a, s), (b, t))
in B̃ with −1 6 s, t 6 1 and the sum s+ t taking any of the five values
−2,−1, 0, 1, 2.

Proof of Theorem 6.1. It is enough to prove the theorem for functions
such that the infimum defining h is attained at a unique point. Indeed,
if t 7→ f(x, t) is convex extensible, then for any positive ε > 0, the
infimum defining the marginal function hε of fε(x, t) = f(x, t) + εt2 is
attained at a unique integer t = ϕε(x), and hε tends to h as ε → 0,
preserving the A-lateral convexity of hε. We observe that fε is B-
laterally convex with f provided that (e(n), e(n)) ∈ B, which we assume.

We may therefore suppose that h(x) = f(x, ϕ(x)) for some function
ϕ : Zn−1 → Z. Moreover, we know that ϕ is Lipschitz in the sense that

(6.5) |ϕ(x+ a)− ϕ(x)| 6 1, x ∈ Zn−1,

for certain values of a ∈ Zn−1, viz. when ((a, 1), e(n)) and ((−a, 1), e(n))
both belong to B̃. For this to happen, it is enough that there exists a
c such that (a, c) ∈ A.

Similarly, we know that

(6.6) |ϕ(x+ b)− ϕ(x)| 6 1 x ∈ Zn−1,

for certain values of b ∈ Zn−1, viz. when ((b, 1), e(n)) and ((−b, 1), e(n))
both belong to B̃. For this it is enough that there exists a d such that
(b, d) ∈ A.
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In particular, if (a, b) is in A, we can take c = b and d = a above to
conclude that the two Lipschitz conditions (6.5) and (6.6) hold.

We have

(6.7)

DbDah(x)

= f(x+ a+ b, ϕ(x+ a+ b))− f(x+ a, ϕ(x+ a))

− f(x+ b, ϕ(x+ b)) + f(x, ϕ(x)).

The formula holds of course for all x, a, b ∈ Zn−1, but we shall need it
only when (a, b) ∈ A. We shall compare (6.7) with

(6.8)

D(b,t)D(a,s)f(x, ϕ(x))

= f(x+ a+ b, ϕ(x) + s+ t)− f(x+ a, ϕ(x) + s)

− f(x+ b, ϕ(x) + t) + f(x, ϕ(x))

for suitable s and t. This expression is nonnegative if ((a, s), (b, t)) ∈ B̃.
By the definition of ϕ we have −f(x+ a, ϕ(x+ a)) > −f(x+ a, s)

and −f(x+ b, ϕ(x+ b)) > −f(x+ b, t) for any s and t, so we get

DbDah(x) > D(b,t)D(a,s)f(x, ϕ(x))

as soon as s+ t = ϕ(x+ a+ b)− ϕ(x).
In view of (6.5) and (6.6), which, as we have remarked, are appli-

cable,

|ϕ(x+a+ b)−ϕ(x)| 6 |ϕ(x+a+ b)−ϕ(x+a)|+ |ϕ(x+a)−ϕ(x)| 6 2,

and we know from Lemma 6.2 that there are numbers s, t such that
s+ t = ϕ(x+ a+ b)− ϕ(x) and ((a, s), (b, t)) ∈ B̃. We are done.

By iteration we easily obtain the following result.

Corollary 6.3. Let us define B(0) = {(0, 0)}, B(1) = {(1, 1)}, and
generally B(n) ⊂ Zn × Zn such that B(n−1) and B(n) satisfy the condi-
tions for A and B in Theorem 6.1 for n > 2. If f : Zn → R is a given
B(n)-laterally convex function, then the successive marginal functions
hn = f ,

hm(x) = inf
t∈Z

hm+1(x, t), x = (x1, . . . , xm) ∈ Zm, m = n−1, . . . , 0,

are B(m)-laterally convex, provided that the constant h0 is not −∞. In
particular, the marginal function h1 of one variable is {(1, 1)}-laterally
convex, equivalently convex extensible.
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In condition (6.1) it is often preferable to replace the pair

((a,−1), (b, 0)) by its opposite ((−a, 1), (−b, 0)),

which determines the same condition. This is to be able to continue
as in Corollary 6.3, where the last component should be nonnegative—
this is needed in Theorem 5.1. We denote the set B so constructed by
Φn(A). We can now define B(n) = Φn(B(n−1)) and get Corollary 6.3
to work.

When n = 2, the corollary is about three functions: h2 = f defined
on Z2, h1(x1) = infx2∈Z f(x1, x2) defined on Z1, and the constant h0 =
infx∈Z2 f(x) defined as a function on Z0 = {0}. But here we do not say
anything about the marginal function k1(x2) = infx1∈Z f(x1, x2). To
do so, we should permute the variables. However, it turns out, perhaps
surprisingly, that this is not necessary, for the conditions are symmetric
in the two variables.

If we start with A = {(1, 1)} ⊂ Z1 × Z1 in one variable, the con-
struction in Theorem 6.1 yields, in order,

((e(2), e(2))) (applying (3.4));

((1,−1), (1, 0)), ((1, 0), (1, 0)), ((1, 1), (1, 0)) (applying (6.1));

((1, 1), e(2)) (applying (6.2)); and

((−1, 1), e(2)) (applying (6.3)).

However, as already mentioned, we should replace ((1,−1), (1, 0)) by
((−1, 1), (−1, 0). We thus have

B = {((e(1), e(1)), (e(2), e(2)), ((1, 1), (1, 0)), },

∪ {((−1, 1), (−1, 0)), ((−1, 1), (0, 1)), ((1, 1), (0, 1))},

This means that the two one-dimensional conditions and the four loz-
enge conditions are all satisfied, while the two diagonal conditions need
not be listed since they follow from the others. We see that if we per-
mute the variables, the conditions remain the same.

We see that B = Φ2(A) consists of 6 pairs, and that Φ3(B) consists
of 62 = 36 pairs.
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