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1. Introduction
In discussions with Mikael during the last thirty years many
questions have emerged—not all of them were resolved at the
time of his premature death.

I will present some of these unanswered questions, preceded by
a discussion leading up to the question. Some of the questions
might present challenges to his nine former PhD students, to his
many collaborators around the globe—and to anybody
interested.
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I shall first present two questions in complex analysis: the
non-associativity of multiplication of principal-value
distributions and residue currents, followed by a section on
constructions using meromorphic extension (questions from the
early 1980s and up to 1988).

Then I will speak about Mikael’s more recent interest: amoebas
and tropical geometry (questions from the period 2003–2010).

Tropical geometry has intriguing connections to digital
geometry, mathematical morphology, discrete optimization, and
crystallography, including the theory of quasi-crystals. I believe
these connections could be further developed—I hope they will.
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2. Multiplication of residue currents and
principal-value distributions
Let f and g be holomorphic functions of n complex variables.
The principal value PV(f/g) of f/g is a distribution defined by
the formula〈

PV
(

f
g

)
,ϕ

〉
= lim

ε→0

∫
|g|>ε

fϕ
g

= lim
ε→0

∫
χfϕ
g

, ϕ ∈D(Cn),

where χ = χ(|g|/ε) and χ is a smooth function on the real axis
satisfying 0 6 χ 6 1 and χ(t) = 0 for t 6 1, χ(t) = 1 for t > 2
(in Passare (1985:727) when f = 1 and in (1988:39) in general).



The residue current is ∂̄PV(f/g). Can the products

(PV(f1/g1))(PV(f2/g2)),
(

∂(PV(f1/g1))
)

(PV(f2/g2))

and other similar products be defined?

Schwartz proved (1954) that it is in general impossible to
multiply two distributions while keeping the associative law. He
indicated three distributions u,v ,w ∈D ′(R) where uv , vw ,
(uv)w and u(vw) all have a good meaning but where
(uv)w 6= u(vw). He took u = PV(1/x), the principal value of
1/x ; v as the identity, i.e., the smooth function v(x) = x , which
can be multiplied to any distribution; and w = δ, the Dirac
measure placed at the origin. Then we have uv = 1, (uv)w = δ,
while vw = 0, u(vw) = 0. Hence there is no associative
multiplication in D ′(R). An easy modification proves the same
result for E ′(R), the distributions of compact support.
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Mikael’s construction of residue currents and principal-value
distributions goes as follows. Take f = (f1, . . . , fp+q),
g = (g1, . . . ,gp+q), two (p + q)-tuples of holomorphic
functions, and consider the limit

lim
εj→0

f1
g1
· · · fp+q

gp+q
∂̄χ1∧·· ·∧ ∂̄χp ·χp+1 · · ·χp+q, (1)

where χj = χ(|gj |/εj) and the εj tend to zero in some way.

Coleff and Herrera (1978:35–36) took q = 0 or 1 and assumed
that εj tends to zero much faster than εj+1, which means that
εj/εm

j+1→ 0 for all m ∈ N and j = 1, . . . ,p + q−1; thus it is
almost an iterated limit. This gives rise to the strange situation
that the limit depends in general on the order of the functions
(and is not just an alternating product). However, in the case of
complete intersection, the construction is satisfactory, and
Mikael’s construction then gives the same results as that of
Coleff and Herrera, but Mikael’s construction (1988) is valid
also when we do not have a complete intersection.
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Mikael took εj = εsj for fixed s1, . . . ,sp+q. The limit, which will
be written as RpPq[f/g](s), where we now write [. . . ] for the
principal value, does not exist for arbitrary sj . But he proved
that, if we remove finitely many hyperplanes, then
RpPq[f/g](s) is locally constant in a finite subdivision of the
simplex

Σ =
{

s ∈ Rp+q; sj > 0, ∑sj = 1
}
,

so that the mean value, RpPq
[

f
g

]

=
∫
−
Σ

RpPq
[

f
g

]
(s) = ∂̄

[
f1
g1

]
∧·· ·∧ ∂̄

[
fp
gp

]
·
[

fp+1

gp+1

]
· · ·
[

fp+q

gp+q

]
exists (Definition A in Passare (1987:159)). This is the product
of p residue currents and q principal-value distributions.



In the little paper (1993), based on his talk when accepting the
Lilly and Sven Thuréus Prize in 1991, he discusses the
possibility of defining the product PV(1/x)δ on the real axis,
and finds that it should be −1

2δ′, which is the mean value of −δ′

and zero. This is an analogue in real analysis to the mean value
over Σ which he considered in the complex case.



Leibniz’ rule for the derivative of a product and some other
rules of calculus hold; for example we have (1988:43):[

1
z1

][
z1

z2

]
=

[
1
z2

]
,

which yields(
∂

[
1
z1

]){[
1
z1

][
z1

z2

]}
=

(
∂

[
1
z1

])[
1
z2

]
6= 0,

while{(
∂

[
1
z1

])[
1
z1

]}[
z1

z2

]
=

1
2

z1

(
∂

[
1

z2
1

])[
1
z2

]
=

1
2

(
∂

[
1
z1

])[
1
z2

]
.



Thus the associative law does not hold. It is natural to ask
whether these currents are just as bad as the general
distributions when it comes to multiplication, or whether there
is a subclass of them with nicer properties.

Question

2.1. We saw in Schwartz’ example that an associative
multiplication is impossible in general; the last example shown
here makes us wonder whether it is possible to define an
associative multiplication for some residue currents and
principal-value distributions.

Is there an associative algebra of residue currents and
principal-value distributions?

Is there an interesting non-associative algebra of such currents?
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3. Constructions using meromorphic extension
3.1. Extending a given meromorphic function
The Riemann ζ-function is a classical example of meromorphic
extension: the series

ζ(s) =
∞

∑
1

1
ns ,

which converges for s ∈ C, Res > 1, is extended to a
meromorphic function in the whole plane.



The well-known formula
∞

∑
0

α
j =

1
1−α

, |α|< 1,

can be used to define more or less funny results like

∞

∑
0

(−1)j =
1
2

;
∞

∑
0

2j =−1;
∞

∑
0

(−2)j =
1
3

;
∞

∑
0

3j =−1
2

;
∞

∑
0

(−3)j =
1
4
.

This is based on the observation that 1/(1−α) is a
meromorphic function with a single pole at α = 1 but otherwise
regular. But why should ∑αj be meromorphic?



The construction of homogeneous distributions in Hörmander
(1990: Section 3.2), in particular of the distributions xa

+ on the
real axis, is done by meromorphic extension.

In the three examples mentioned, we have a given meromorphic
function in a nonempty open set of the complex plane, and we
know that, if it has a meromorphic extension to the whole plane,
then the extension is unique.

The situation is different when we want to construct an object
and have to choose a meromorphic function.
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3.2. Finding a meromorphic function
Michael Atiyah proved (1970) that if F is a nonnegative
real-analytic function, then λ 7→ F λ can be extended to a
meromorphic function in all of C. Bernšteı̆n and Gel′fand
(1969) proved a similar result for polynomials. Using Atiyah’s
result, Alain Yger (1987) defined residue currents as
meromorphic extensions of (f f )λ for a holomorphic f , and
Mikael compared them (Definition B in (1987:159)) with his
own construction (Definition A already mentioned).



In this case the authors construct (f f )λ for just one value of λ,
viz. λ =−1, which means that they have to choose a
parametrized family; the choice is not obvious.

Another kind of limit of a meromorphic function is

lim
εj→0

∂
f1

|f1|2 + ε1
∧·· ·∧∂

fp
|fp|2 + εp

,

which is obtained by taking χj(t) = t/(t + 1) in (1) (the case
q = 0). It yields the same current as the former construction for
complete intersections (Björk & Samuelsson (2010:35); cf.
earlier results by Samuelsson (2006: Corollary 26), who may
have been inspired to consider averaging from a paper on
defining residues of a complete intersection by Passare & Tsikh
(1996)).
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If we want to evaluate a divergent integral, for instance∫ 1

0
x−2dx , (2)

one method is to embed the integrand into a family of functions
depending on a parameter and define the integral as the value of
an extension in the parameter space. In the case mentioned, we
can define f (x ,α) = xα, and since

Φ(α) =
∫ 1

0
f (x ,α)dx =

∫ 1

0
xα dx =

1
α + 1

is well-defined for Reα >−1 and has a meromorphic extension
to the whole complex plane, we can define the integral of x−2

as Φ(−2) =−1. The question is now: will we get a different
answer if we use a different meromorphic function?



It can be remarked that Φ(−2) is also the finite part of the
integral (2) in view of the formula∫ 1

ε

x−2 dx =
1
ε
−1, 0 < ε < 1,

where 1/ε is the infinite part (to be thrown away) and −1 is the
finite part (to be kept).

We may conclude that meromorphic extension is an often used
method to construct mathematical objects.
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3.3. Two-parameter families
While meromorphic functions of one variable can be assigned
the value ∞ at a pole, and therefore can be defined as good
mappings with values in the Riemann sphere C∪{∞},
meromorphic functions of two variables may have points of
indeterminacy: the function f (z1,z2) = z2/z1 can be assigned
the value ∞ at a point (0,z2) 6= (0,0), but at the origin we
cannot do so. This explains the trouble we are in for.



I will consider a divergent integral where we can get different
values for different choices of parametrized families.

We denote by D(c, r) the open disk with center at c and with
radius r :

D(c, r) = {z ∈ C; |z− c|< r}.

Let us consider the divergent integral∫
D(1,1)

z−2dλ(z).

A simple idea is to vary the disk. We have∫
D(c,r)

z−2dλ(z) = πr2/c2 when r < |c|,

i.e., when the origin is not in the closure of D(c, r). Hence the
limit of these values is π as (c, r) ∈ C×R tends to (1,1) under
the restriction r < |c|. So this is one possible method.
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Another idea is to remove a small disk around the origin, like in
the definition of the principal value:

PV
∫

D(1,1)
z−2 dλ(z) = lim

ε→0

∫
z∈D(1,1), |z|>ε

z−2 dλ(z)

= 2
∫

π/2

0
cos2θ logcosθdθ = 1

2π.

The last integral is evaluated in Gradšteı̆n & Ryžik
(1962:598:4.384.7).

Are there other ways to approach the divergent integral? Let us
look at a two-parameter family.
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Lemma

For (α,β) ∈ C2 with Re(α + β) >−2 we have

F(α,β) =
∫

D(1,1)
zαzβ dλ(z) =

πΓ(α + β + 2)

Γ(α + 2)Γ(β + 2)
. (3)

Proof.

This follows from Gradštejn & Ryžik (1962:490:3.892.2).
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So the extended values of the integral (3) define a meromorphic
function F in all of C2, with singularities, e.g., on the
hyperplane α + β =−2. But restrictions of F may be free from
singularities: the function β 7→ F(m,β) is entire (in fact a
polynomial of degreee m) for every m ∈ N. At the point
(α,β) = (−1,−1) we can assign the value ∞ to F if we like, but
the point (α,β) = (−2,0) is a point of indeterminacy.

We take (α,β) = (−2 + ε,θ− ε) and consider

F(α,β) = F(−2+ε,θ−ε) =
πε

θ

Γ(1 + θ)

Γ(1 + ε)Γ(2 + θ− ε)
=

πε

θ
(1+o(1))

as (θ,ε)→ (0,0) under the restriction Reθ > 0. The quantity
πε/θ has no limit as (ε,θ)→ (0,0), but we may introduce a
relation between ε and θ to create a one-parameter family of
functions which has a limit, e.g., ε = θ or ε = 0.
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polynomial of degreee m) for every m ∈ N. At the point
(α,β) = (−1,−1) we can assign the value ∞ to F if we like, but
the point (α,β) = (−2,0) is a point of indeterminacy.

We take (α,β) = (−2 + ε,θ− ε) and consider

F(α,β) = F(−2+ε,θ−ε) =
πε

θ

Γ(1 + θ)

Γ(1 + ε)Γ(2 + θ− ε)
=

πε

θ
(1+o(1))

as (θ,ε)→ (0,0) under the restriction Reθ > 0. The quantity
πε/θ has no limit as (ε,θ)→ (0,0), but we may introduce a
relation between ε and θ to create a one-parameter family of
functions which has a limit, e.g., ε = θ or ε = 0.



If we take ε = θ, we obtain

G(θ) = F(−2 + θ,0) =
∫

D(1,1)
z−2+θ dλ = π, Reθ > 0.

If we take ε = 0, we get

H(θ) = F(−2,θ) =
∫

D(1,1)
z−2|z|θ dλ = 0, Reθ > 0.

More generally, we may take ε = cθ and get the limit cπ for
certain values of c, or θ = ε2 and get infinity.
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Question

3.1. Meromorphic extension using two parameters easily leads
to points of indeterminacy, and so gives rise to infinitely many
one-parameter families. Some choice must be made. And what
is then the natural choice?

This text was essentially written 1988-10-17 and sent out to
some people, among them Mikael Passare and Bo Berndtsson.
Bo expressed surprise.
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4. The axioms of tropical geometry
4.1. Tropicalization
Roughly speaking, tropical mathematics is the mathematics of a
structure with addition and maximum as binary operations. The
simplest example is the semiring of real numbers (R,+,∨),
where + denotes usual addition and ∨ is the maximum
operation, x ∨ y = max(x ,y). Note the distributive law
a + (b∨ c) = (a + b)∨ (a + c): addition is distributive over
maximum. Sometimes R is augmented by adding an element
−∞, the neutral element for the maximum operation:
x ∨ (−∞) = x . Another name is idempotent mathematics, used
because of the idempotency of the maximum operation:
x ∨ x = x .



Tropicalization means that in a semiring with multiplication and
addition we replace multiplication by addition, and addition by
the maximum operation. This is somewhat reminiscent of
taking the logarithm. Start with the semiring (R+,×,+), where
R+ = {x ∈ R;x > 0} is the set of positive real numbers, and
take the logarithm.

Then

log(x× y) = logx + logy , and

log(x)∨ log(y) 6 log(x + y) 6 log2 + (log(x)∨ log(y)),

so that multiplication gives addition of the logarithms, and
addition comes close to the maximum of the logarithms—a
good approximation if x � 1 or y � 1.
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If we introduce s = logx and t = logy , and make a change of
scale, we see that

log(es×et) = s + t;

in the limit,

h log(es/h×et/h) = s + t→ s + t and h log(es/h + et/h)→ s∨ t

as h→ 0+.

Thus we may say that tropicalization is a limiting
case of logarithmization. Here h > 0 is an analogue of Planck’s
constant—hence the name dequantization (Litvinov (2005,
2007); Viro (2001: Section 2.1)).

For basic concepts of tropical geometry, see also Viro (2010,
2011). The book by Itenberg et al. (2007) presents fundamental
ideas and key results in tropical algebraic geometry.
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4.2. Tropical straight lines
A polynomial function of degree one has the form

(x ,y) 7→ f (x ,y) = ax + by + c.

So if we tropicalize it we get

f trop(x ,y) = (a + x)∨ (b + y)∨ c.

Thus f trop is a convex function with a simple structure. It is
piecewise affine outside the three lines x + a = c, y + b = c, and
x + a = y + b, which meet at the point

p = (p1,p2) = (c−a,c−b).

More precisely, it is affine outside the three rays emanating
from that point in the directions (−1,0), (0,−1) and (1,1). We
shall call this the tropical straight line TSL(p) with vertex p.
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We see that in general two different tropical lines intersect in a
single point. An exception occurs when the lines have their
vertices at points p = (p1,p2) and q = (q1,q2) with p1 = q1 or
p2 = q2 or p2−p1 = q2−q1, i.e., when q ∈ TSL(p) or
p ∈ TSL(q).

Then there are infinitely many points in the
intersection, but Mikael explained that we should require
stability under small perturbations, which means that we should
define the intersection as the limit of the unique intersection of
the lines TSL(p) and TSL(q + (δ,ε)) as (δ,ε)→ (0,0) while
avoiding the exceptional values (cf. Richter-Gebert et al.
(2005: Theorem 4.3) and Tabera (2008: Definition 4)).
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In this way two distinct tropical straight lines always have a
unique intersection, just like in spherical geometry. And,
similarly, two distinct points always define a tropical straight
line, except in certain cases, where again we use stability to
impose uniqueness.

Question

4.1. So we may ask about all of Euclid’s axioms! Is it possible to
build up an axiomatic theory for tropical geometry? What are the
similarities with spherical geometry?

I asked Mikael these questions a few years ago.
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5. Tropical polynomial functions
5.1. Largest tropical minorants
A tropical polynomial function of one real variable is of the
form

f (x) = sup
j∈Z

(aj + jx), x ∈ R.

It is a piecewise affine function, where each piece has integer
slope.

To any function G : R→ R we associate its largest tropical
minorant f . The example

G(x) = 0∨ (a + 1
2x)∨ x , x ∈ R,

shows that the difference G− f can be arbitrarily large even if G
is convex: in this case we have f (x) = 0∨ x , so that
G(0)− f (0) = 0∨a.
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On the other hand, if

G(x) = sup
|z|=ex

log |h(z)|, x ∈ R, (4)

for a holomorphic function h, I proved (1984:168) that

f 6 G 6 f + log3.

Question

5.1. Which is the smallest constant c such that f 6 G 6 f + c if
G is of the form (4) for some polynomial h?
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We know that c 6 log3≈ 1.09861. The example h(z) = 1 + z
shows that c > log2≈ 0.69315: in this case G(0) = log2 and
f (0) = 0.

I sent this question to Mikael Passare, Jan Boman, David
Jacquet, Hans Rullgård, Erik Melin, and Markku Ekonen in a
letter of 2003-10-21.
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5.2. Approximation of the exponential function
The Fenchel transformation is a tropical analogue of the Fourier
transformation or the Laplace transformation.

The Fenchel transform f̃ of a function f : R→ [−∞,+∞] is
defined by

f̃ (ξ) = sup
x∈R

(
ξx− f (x)

)
, ξ ∈ R.

We have ˜̃f 6 f with equality if and only if f is convex, lower
semicontinuous, and takes the value −∞ only if it is identically
−∞.

The equality f = ˜̃f means that f is represented as a supremum of
affine functions—a tropical integral of the simplest convex
functions—just as the Fourier inversion formula
f = F−1(F (f )) represents f as an integral of the simplest
oscillations.
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Now take f (x) = ex , x ∈ R. The Fenchel transform of this
function is

f̃ (ξ) =


+∞, ξ < 0,

0, ξ = 0,

ξ logξ−ξ, ξ > 0.

Then, for ξ > 0,

ef̃ (ξ) = ξ
ξe−ξ = sup

x∈R
eξx−ex

= sup
y>0

yξe−y ≈
∫

∞

0
yξe−ydy = ξ!,

for the integral is approximately equal to a tropical integral, i.e.,
a supremum. This is a crude form of Stirling’s formula.
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Furthermore, since ˜̃f = f ,

eex
= e

˜̃f (x) = sup
ξ>0

eξx−f̃ (ξ) = sup
ξ>0

eξx

ef̃ (ξ)
≈ sup

ξ>0

eξx

ξ!
≈ ∑

k∈N

ekx

k!
= eex

,

where we have used the former approximation that ef̃ (ξ) ≈ ξ!
and a new tropical approximation: the sum defining the
exponential function is approximately equal to a tropical sum,
i.e., to a supremum.



Question

5.2. We have thus showed that eex
is approximatively equal to

eex
. This is not so remarkable. But the surprising fact is that it is

an exact equality. After two approximations we return to the
exact value. Is there an explanation? To be precise: is there a
more direct explanation why

sup
ξ>0

eξx

ef̃ (ξ)
=

∞

∑
k=0

ekx

k!
, x ∈ R?

Are there other, similar examples?

I sent this question to Mikael Passare, Jan Boman, David
Jacquet, Hans Rullgård, Erik Melin, and Markku Ekonen on
2003-10-21.
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5.3. Representation of tropical polynomial
functions by tropical polynomials

Proposition

A tropical polynomial function

f (x) = sup
α∈Zn

(x ·α + aα), x ∈ Rn,

with coefficients aα ∈ [−∞,+∞] can be represented in several
ways by tropical polynomials. The representation

f (x) = sup
α∈Zn

(x ·α + bα), x ∈ Rn,

with bα =−f̃ (α), α ∈ Zn, is the one with largest coefficients.



5.4. The exponential of a tropical polynomial
function
Let ϕ : Zn→ [−∞,+∞] be a function on the integer points
which is < +∞ only at finitely many of them. Equivalently we
may take ϕ defined on Rn but with the value +∞ at all points in
Rn rZn.

We define f = ϕ̃, the Fenchel transform of ϕ,

f (x) = ϕ̃(x) = sup
α∈Zn

(
x ·α−ϕ(α)

)
, x ∈ Rn.

It is a tropical polynomial function.



5.4. The exponential of a tropical polynomial
function
Let ϕ : Zn→ [−∞,+∞] be a function on the integer points
which is < +∞ only at finitely many of them. Equivalently we
may take ϕ defined on Rn but with the value +∞ at all points in
Rn rZn.

We define f = ϕ̃, the Fenchel transform of ϕ,

f (x) = ϕ̃(x) = sup
α∈Zn

(
x ·α−ϕ(α)

)
, x ∈ Rn.

It is a tropical polynomial function.



Passing to the exponential, we see that

ef (x) = eϕ̃(x) = sup
α∈Zn

ex ·αe−ϕ(α) 6 ∑
α∈Zn

ex ·αe−ϕ(α) = g(y),

where yj = exj and

g(y) = ∑
α∈Zn

e−ϕ(α)yα

is a classical Laurent polynomial majorizing ef (x) = eϕ̃(x), but
actually often rather close to it.

Summing up, we see that ϕ contains all information, from
which f = ϕ̃ and g can be constructed. Also g determines its
coefficients exp(−ϕ(α)), thus also ϕ and f . On the other hand,
f = ϕ̃ contains less information, from which ϕ cannot in general
be retrieved.
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Question

5.3. Is it possible to pass from ef = eϕ̃ to g using some other
structure? (Cf. the next section.)

Question

5.4. Is it possible to pass to the limit in some way so that the
classical polynomials tend to the tropical one?
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6. Ghosts in tropical mathematics
In a polynomial function f (z) = ∑ajz j all coefficients can be
retrieved from the values of f , both in the real case and in the
complex case: if ∑ajz j = ∑bjz j for sufficiently many z, then
aj = bj for all j .

But in a tropical polynomial function f (x) = supj(aj + jx), a
coefficient ak cannot be retrieved from the values of f if
ak 6 1

2(ak−1 + ak+1): if this is so, we can replace ak by a
smaller value without changing the values of f at any point. In
fact, under this hypothesis,

ak + kx 6
(
ak−1 + (k−1)x

)
∨
(
ak+1 + (k + 1)x

)
for all x ∈ R.

Thus such a coefficient is invisible. We see that many tropical
polynomials P(X) =

∨
j∈Z(aj + jX) have the same evaluations

on the real axis.
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On the other hand, if the function Z 3 j 7→ aj is strictly concave
in the sense that aj >

1
2aj−1 + 1

2aj+1 for all j ∈ Z, then the
coefficients can be retrieved from the values of the function; in
fact, under this hypothesis, aj =−f̃ (j), j ∈ Z.

I found this slightly disturbing, and asked Mikael the following
question in a letter of 2010-03-26.

Question

6.1. Is there some structure which will allow us to retrieve all
coefficients of a tropical polynomial from its point evaluations?
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It is clear that we need more information than just the values on
the real axis.

In his answer of 2010-03-29, Mikael directed me to the preprint
by Izhakian and Rowen (2009), published as (2010). (Perhaps
the paper by Izhakian (2009) is easier to start with.) It seemed
to me that Mikael hinted at a solution in that the ghost elements
could be used to retrieve the coefficients.
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A first lesson is that, just as for classical polynomials, we must
distinguish between a polynomial and the function given by a
polynomial. A polynomial P(X) = ∑ajX j is a formal
expression containing an indeterminate X . If we give X a value
as a variable in some ring, we get a polynomial function. For
instance, if P(X) = X 3−3X 2 + 2X , and we replace X by a
variable in the finite field Z3 = Z/3Z, then the value is
everywhere zero.

The situation is similar for tropical polynomials: a tropical
polynomial is a formal expression P(X) =

∨
j∈N(aj + jX), where

information about all the coefficients aj is preserved. That the
coefficients are not retrievable from an evaluation in R is no
more upsetting than the example with evaluation in Z3.
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The situation is similar for tropical polynomials: a tropical
polynomial is a formal expression P(X) =

∨
j∈N(aj + jX), where

information about all the coefficients aj is preserved. That the
coefficients are not retrievable from an evaluation in R is no
more upsetting than the example with evaluation in Z3.



In the quoted papers by Izhakian and Rowen, the authors
construct a space T = (R×{0,1})∪{−∞}, where we have two
copies of R; the first copy consists of the usual real numbers,
represented as (x ,0), the second of the ghost elements,
represented as (x ,1). We can evaluate a tropical polynomial at
the points of T.

However, Zur Izhakian explains:
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In the tropical framework there is no injection of the
polynomial semiring into the function semiring. Namely, a
function could have several polynomial descriptions. In
particular there are monomials (called inessential) which
can be omitted without changing the function determined
by the polynomial.

This phenomena is obtained due to convexity
considerations involved in this setting, which cause a loss
of information. Accordingly, a full recovery of the exact
coefficients of a polynomial from the corresponding
function is not always possible. (Zur Izhakian, personal
communication 2011-10-26)

So this is just the observation I made concerning evaluation at
real numbers in the beginning of this section, but now extended
to the larger space T.

This means that my original Question 6.1 remains unanswered.
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Question

6.2. It is well known that the coefficients of a holomorphic
function can be retrieved from its values:

if h(z) = ∑
j∈N

ajz
j , z ∈ C, then ak =

1
2πi

∫
|z|=r

h(z)

zk+1 dz, k ∈ N.

What can be said if we know only the values of the growth
function

g(r) = sup
|z|=r
|h(z)|, r > 0?

If we have two entire functions h1 and h2 with growth functions
g1 and g2, does it follow that g1(r) = g2(r) for all r only if the
coefficients of h1 and h2 have the same absolute values? Is
there even a formula that yields the |aj | from g?
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We can at least retrieve the absolute values of the first and
second nonzero coefficients from the growth function:

Proposition

Let h be an entire function with Taylor series

h(z) =
∞

∑
q

ajz
j , z ∈ C,

and let g be its growth function. Then

g(r)r−q→ |aq| and
g(r)r−q−|aq|

r
→ |aq+1| as r → 0+.
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Corollary

If h is a polynomial of the form

h(z) =
q+3

∑
q

ajz
j ,

then the absolute values of all four coefficients
aq,aq+1,aq+2,aq+3 can be determined from the growth function.



When the coefficients are real, Jean-Pierre Kahane could give
an affirmative answer:

Proposition

(Jean-Pierre Kahane, 2011-11-11.) If h(z) = ∑ajz j is an entire
function with real coefficients aj and if a0 and a1 are positive,
then all coefficients can be determined from the Taylor
expansion at the origin of the square of the growth function.



Proof.

From the following lemma we have that h(r)h(r) = g(r)2 for
small r . It is easy to see that the coefficients aj of h can be read
off from the Taylor expansion of hh at the origin.

Lemma

(Jean-Pierre Kahane, 2011-11-11.) If h(z) = ∑ajz j is an entire
function with real coefficients aj and if a0 and a1 are positive,
then g(r) = |h(r)| for sufficiently small r > 0.
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7. The discrete Prékopa problem
If F : R2→ [−∞,+∞] is a function of two real variables, its
marginal function H : R→ [−∞,+∞] is defined by

H(x) = inf
y∈R

F(x ,y), x ∈ R.

It is well known and easy to prove that H is convex if F is
convex.

There is a more general marginal function Hp, called the
p-marginal function, of F : R2→ [−∞,+∞]. It is defined by

e−pHp(x) =
∫
R

e−pF(x ,y)dy , x ∈ R,

for any positive real number p. Prékopa’s theorem, first
presented by András Prékopa in Budapest in 1972 and
published in (1973: Theorem 6), says that Hp is convex if F is
convex.
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In the discrete case, with f : Z2→ [−∞,+∞], we define the
marginal function h by

h(x) = inf
y∈Z

f (x ,y), x ∈ Z,

and the p-marginal function hp by

e−php(x) = ∑
y∈Z

e−pf (x ,y), x ∈ Z. (5)

The classical marginal function h = h∞ is a limiting case when
p→+∞ and may be defined by

e−h∞(x) = sup
y∈Z

e−f (x ,y), x ∈ Z. (6)

So we may say that (6) is a dequantization of the sums of the
exponential functions in (5): replacing the sum by the sup. We
have hp 6 h∞.



Question

7.1. Is it possible to go from ∑y∈Z e−f (x ,y) to supy∈Z e−f (x ,y)

under some reasonable hypotheses on f? (Cf. Question 4.4.)

In the digital case, it is not enough to assume that f has a convex
extension to all of R2 to conclude that h is convex. But a
stronger convexity property, now called rhomboidal convexity,
implies that h is convex (Kiselman 2008). I call f : Z2→ R
rhomboidally convex if its second differences satisfy six
conditions:

DbDaf > 0 for all (a,b) ∈ {((1,0),(1,b2)); b2 =−1,0,1},

as well as

DbDaf > 0 for all (a,b) ∈ {((0,1),(b1,1)); b1 =−1,0,1}.

Here Da is the difference operator (Daf )(x) = f (x + a)− f (x). It
is not known whether the result holds for the p-marginal
function. This is the discrete Prékopa problem:
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Question

7.2. Is it true that the p-marginal function hp is convex if f is
rhomboidally convex?

I asked Mikael Passare and Bo Berndtsson this question in the
spring of 2008.

It is enough here to take p = 1. Examples show that it is not
enough that f admits a convex extension to all of R2, and that
rhomboidal convexity is sufficient in some special classes.
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8. A conjecture on coamoebas and Newton
polytopes
This part was contributed by Timur Sadykov and is included
here with his permission. The conjecture was formulated by
Mikael in Stockholm in December 2010 and written down on a
napkin. Timur kept this napkin and reconstructed the
conversation.

Mounir Nisse and Jens Forsgård provided the most recent
information on this conjecture.
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Definition

A Laurent polynomial is a polynomial in zj and z−1
j , j = 1, . . . ,n.

It thus has the form
f (z) = ∑

α∈A
aαzα

for some finite subset A of Zn. The Newton polytope of a
Laurent polynomial is defined to be the convex hull in Rn of the
set {α ∈ A; aα 6= 0}. We will denote this polytope by ∆f . A
Laurent polynomial is said to be maximally sparse if the number
of its nonzero terms is equal to the number of vertices of its
Newton polytope.



Definition

The amoeba of a function f defined in (Cr{0})n is a set in Rn

defined as follows. We define a mapping

Log : (Cr{0})n→Rn by Log(z) = (log |z1|, log |z2|, . . . , log |zn|).

Then the amoeba Af of f is the image under Log of its set of
zeros. The coamoeba A ′

f is defined analogously but with the
mapping Log replaced by the mapping

Arg(z) = (argz1,argz2, . . . ,argzn).

The amoeba of a Laurent polynomial f is said to be solid if the
number of components of its complement is as small as it can
possibly be, that is, if it equals the number of vertices of the
Newton polytope ∆f .
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Mikael wanted to establish formally the duality between
amoebas and coamoebas, and he started to write a paper with
Mounir Nisse (2012), which Mounir has now finished (Mounir
Nisse, personal communication 2011-11-13, 2012-06-24).

Maximally sparse polynomials enjoy certain minimality
properties. For instance, it has been proved by Mounir Nisse
that the amoeba of a maximally sparse polynomial is
necessarily solid; see Nisse (2008, 2009:33). This was earlier
conjectured by Mikael and others.

The solidness of the amoeba is also one of the characteristic
properties of discriminants according to Passare et al. (2005).
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Conjecture

(Mikael Passare, 2010-12.) For z ∈ Cn, let f (z) be a maximally
sparse Laurent polynomial with generic coefficients. Then the
number of holes in the compactified coamoeba A ′

f is equal to
n!Vol(∆f ).



However, the conjecture is false: Jens Forsgård and Petter
Johansson found counterexamples in dimensions 2 and 3. In
two dimensions their polynomial is of the form

f (z,w) = 1 + z2 + w3 + azw3 + bz2w2,

where a and b are constants. The normalized area of the
Newton polytope is 11, while the maximal number of
components in the complement of the closed coamoeba is 10.
In three dimensions, the Newton polytope is the cube with side
length 1. The normalized volume is then 6, while the maximal
number of components in the complement is 4. Part of the
results is described in Broms (2012). (Jens Forsgård, personal
communication 2012-06-26.)



Also Mounir Nisse and Frank Sottile found a counterexample in
dimension two. More precisely, they proved that there exists a
2-dimensional polygon ∆ such that, for any complex plane
curve with ∆ as Newton polygon, the number of components in
the complement of its coamoeba is strictly less than 2Area(∆)
(in particular when it is defined by a maximally sparse
polynomial). (Mounir Nisse, personal communication
2012-06-24.)



9. The constant term in powers of a Laurent
polynomial
Let P(X) = ∑α∈A aαX α, A a finite subset of Zn, be a Laurent
polynomial and assume that its Newton polytope contains the
origin in its interior. We consider powers P(X)k , k ∈ N, of
P(X) and denote by ck (P) the constant term in P(X)k . The
question is whether there are infinitely many k such that ck (P)
is nonzero. This seems plausible, and for n = 1 it is not difficult
to prove. Mikael lectured on this problem in the Pluricomplex
Seminar on 2000-03-14.



Alain Yger points out that Hans Duistermaat and Wilberd van
der Kallen (1998) proved that the answer is in the affirmative as
well as a more precise result: the radius of convergence of the
formal power series ∑

∞
k=1 ck (P)tk is finite (Alain Yger, personal

communication 2011-12-01). However, the proof relies on a
very heavy machinery when n > 2.

Alain writes that Mikael was “deeply concerned” about finding
a simpler proof of this result. So we may list a new question:

Question

9.1. Is there a simpler proof of the result of Duistermaat and van
der Kallen (1998) that the constant term ck (P) in the k-th power
of a Laurent polynomial is different from zero for infinitely many
values of k?
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10. Lineal convexity
André Martineau (1930–1972) gave a couple of seminars on
lineal convexity (convexité linéelle) in Nice during the
academic year 1967-68, when I was there. This is a kind of
complex convexity which is stronger than pseudoconvexity and
weaker than convexity.

Since I was of the opinion that the
results for this convexity property were too scattered in the
literature and did not always have optimal proofs, I suggested
that Mikael write a survey article on the topic.

On the one hand, this piece of advice was certainly very good,
for he found a lot of results in cooperation with his friends Mats
Andersson and Ragnar Sigurðsson (Mikael’s mathematical
uncle). On the other hand, it was perhaps not such a good
suggestion, for the survey just kept growing, and two preprints
were circulating starting in 1991—and then they had already
been busy writing a long time.
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The article became a book, and it did not appear until 2004.
Anyway, it is thanks to André Martineau that lineal convexity
came to be studied in the Nordic countries—and the book has
become a standard reference.

In the book, the authors study in detail a property which
Martineau called strong lineal convexity (convexité linéelle
forte), and which he did not characterize geometrically. This
notion, in the book called C-convexity, is not linked to any
cleistomorphism (closure operator), since the intersection of
two strongly lineally convex sets need not have the property.
Therefore it has a different character than lineal convexity and
usual convexity.
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The latest on lineal convexity

We say that an open set Ω is weakly lineally convex if there
passes, through every boundary point p ∈ ∂Ω a complex
hyperplane which does not cut Ω.

We say that Ω is locally weakly lineally convex if every
boundary point p ∈ ∂Ω has a neighborhood V such that Ω∩V is
weakly lineally convex.

Conjecture

Let Ω be an open connected subset of Cn with boundary of
class C1 and assume that Ω is locally weakly lineally convex.
Then Ω is weakly lineally convex.

When Ω is bounded this is contained in Proposition 4.6.4 in
Hörmander (1994). In my paper (1998) I claimed that his proof
is valid also if Ω is unbounded. However, this was careless and
must be justified.

I believe the conjecture is true.
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Tablicy integralov, summ, ryadov i proizvedeniı̆. Moscow:
Gosudarstvennoe izdatel′stvo fiziko-matematičeskoı̆ literatury.
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