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Resumo: Glatecaj klasoj por operacioj en la teorio pri konvekseco
Ni enkondukas klasojn de glateco kiuj estas adaptitaj al la plej gravaj operacioj
en la teorio pri konvekseco. Plej ofte ili estas inter la klasoj C1 kaj C2.

Abstract: We introduce regularity classes which are adapted to the most impor-
tant operations in convexity theory. They are typically between C1 and C2.

1. Introduction
The convex hull of a smoothly bounded set in Rn does not necessarily have a bound-
ary of class C2. This elementary observation is the origin of the present paper. We
ask what regularity such a convex hull must have, and we construct regularity classes
which are adapted to the operation A 7→ cvxA of taking the convex hull of a set in
Rn, as well as to other operations which are of interest in convexity theory: that of
forming the vector sum A+ B of two sets A and B and that of projecting a convex
set into a space of lower dimension. In all these cases, we reduce the question of
regularity to that of a marginal function f(x) = infy F (x, y).

The simple example with A as the union of two disjoint Euclidean balls shows
that the convex hull cvxA need not have C2 boundary, but it is easy to see that
the boundary in this case is of Hölder class C1,1 (i. e., the boundary is described
by a function whose derivative is Lipschitz continuous). Our regularity classes are
generalizations of this Hölder class.

To describe the simplest case of our results, let A be a compact set in Rn. If
the boundary of A is of class C1,1, then A is a union of Euclidean balls with radii
bounded from below; if A is convex, the converse holds. The property of being such
a union of balls is easily seen to be stable under the operation A 7→ cvxA. Thus we
see that ∂A of class C1,1 implies ∂ cvxA in the same class.

Given two compact convex sets A and B in Rn, n > 2, with boundary of class
Ck, k = 1, 2, 3, ..., we may ask whether the boundary of their vector sum A + B
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is also of class Ck. The answer is in the affirmative if and only if k = 1 or n = 2
and k = 2, 3, 4. The result for k = 1, n arbitrary, is an easy exercise if you recall
that a convex set has a C1 boundary if and only if it possesses a unique tangent
plane at every boundary point. For n = 2, the answer is in the affirmative for k = 2
(an easy exercise), for k = 3 (also an exercise), and for k = 4 (not at all easy; see
Boman [1990a]). For k = 5 the answer is in the negative: there exist two compact
convex sets in R2 with C∞ boundary such that ∂(A + B) is not of class C4+ε for
any ε > 0 (Boman [1990a]). However, these sets possess infinitely flat points, so
one may ask what the regularity is in case ∂A and ∂B are smooth and do not have
infinitely flat points. The answer is C20/3. More generally, if finitely many convex
sets Aj are given in R2 with C∞ boundaries without infinitely flat points, then
∂(A1 + · · · + Ak) can be described in a local coordinate system either by a straight
line or by a function h(x) = xp+1g(x, x2/m), where g is a C∞ function of two variables
satisfying g(0, 0) > 0, and where (p,m) is one of the pairs

(1, 1), (3, 1), (5, 3), (7, 15), (9, 105), (11, 315), (13, 3465), (15, 45 045), (17, 45 045), ...

(Kiselman [1987, Theorem 5.4]). Such a function h is of Hölder class Cp+1+2/m at
least. In the case (p,m) = (5, 3), which is the first class not contained in C∞, the
Hölder class Cp+1+2/m = C20/3 is optimal.

In higher dimensions the regularity drops considerably: there exist two compact
convex sets in R3 with boundary of class C∞ such that ∂(A+B) is not of class C2

(Kiselman [1986, Theorem 3.4]). However, again these sets have infinitely flat points:
is it true that ∂(A+B) is of class C2 if ∂A and ∂B are real analytic? The answer is
no in Rn when n > 4 (Boman [1990b]) and unknown in R3. Therefore, looking for
regularity results which are true in all dimensions, we must accept weaker regularity
than C2.

What about projections Rn+m → Rn? If A is a compact convex set in R3, then
its projection in R2 is of Hölder class C2+ε for some ε > 0 if ∂A is real analytic, but
not necessarily of class C2 if ∂A is of class C∞ (Kiselman [1986, Theorems 2.2 and
3.4]). Boman’s result about ∂(A+ B) in R4 not being of class C2 shows that there
is a compact convex set in R7 with real-analytic boundary whose projection in R4

has boundary not of class C2.
Again, the conclusion is that to find regularity results which are true in all

dimensions, we must look below C2. The purpose of this paper is to study regularity
classes of convex sets and functions which appear naturally and are independent of
the dimension. They are typically between C1 and C2, in contrast to the classes that
appear in low dimensions.

Of earlier work concerning dimension-independent regularity, let us mention that
of Krantz & Parks [1991], where the authors prove that the boundary of the sum of
finitely many compact convex sets is of Hölder class C1,ε if one of the sets has this
regularity, and that of Griewank & Rabier [1990], who prove that the convex envelope
of a function in C1,ε is in the same class, under a kind of coerciveness hypothesis.
The present paper arose out of an attempt to simplify the approach of Krantz &
Parks, whereas the work by Griewank & Rabier was unknown to the author until the
paper was more or less completed. However, it unifies, generalizes, and perhaps even
simplifies the earlier results, so maybe publication is nevertheless justified.
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All our classes appear in two versions: with and without local uniformity in
the constants. Under the Fenchel transformation a curious difference between these
appear. In the last section we make a short study of this kind of duality. There is
some relation here with the study by Azé & Penot [ms].

I am grateful to Jan Boman for discussions and helpful comments on earlier
versions of this paper. I would also like to thank the referee for an unusually careful
reading of the manuscript, thus eliminating several inaccuracies.

2. Local comparison of functions
Let h be a function on Rn with values in [0,+∞]. We want to consider functions f
such that x 7→ f(a+ x) can be estimated from above by an affine function plus h(x)
near an arbitrary point a. We also want the comparisons to be stable under a change
of scale in the independent as well as in the dependent variable; in other words, we
compare f(a+x) not only with f(a)+L(x)+h(x) but with f(a)+L(x)+Ch(cx) for
all choices of positive constants c and C. We are thus led to the following definition.

Definition 2.1. Let a function h: Rn → [0,+∞] be given. We shall say that a
function f : Rn → [−∞,+∞] is locally controlled by h from above if for every
point a ∈ Rn such that f(a) ∈ R there exist constants c = ca and C = Ca and a
linear function L such that

(2.1) f(a+ x) 6 f(a) + L(x) + Ch(cx) for all x ∈ Rn.

We shall write Bh = Bh(Rn) for the set of all f which are locally controlled by h
from above.
The sum in the right-hand side of (2.1) is a well-defined element of ]−∞,+∞], for
at most one term, Ch(cx), is infinite. We impose no condition if f(a) = ±∞; in
particular functions with only infinite values belong to every class Bh.

Although Definition 2.1 has a sense for an arbitrary function h, we shall often
have reason to impose some condition on it. A weak and reasonable such condition
is
(2.2)

There is a constant M such that 0 6 h(tx) 6Mh(x) when 0 6 t 6 1, x ∈ Rn.

A stronger condition is:

(2.3) 0 6 h(tx) 6 th(x) for 0 6 t 6 1, x ∈ Rn.

Sometimes we will need

(2.4) 0 6 h(x) = o(|x|) as x→ 0,

which is weaker than

(2.5) h is convex, h(0) = 0, and h′(0) = 0.

A typical case, important in geometry, is when h(x) = |x|2 for |x| 6 1, h(x) =
+∞ when |x| > 1.
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If h is identically zero, then a function with values in [−∞,+∞] and with at
least one finite value belongs to Bh if and only if it is concave, does not take the
value +∞, and admits a supergradient at every point where it has a finite value.

Functions in Bh need not be differentiable, even in the case h(x) = |x|2, for if
f, g ∈ Bh, then also min(f, g) ∈ Bh. In particular all real-valued concave functions
are in Bh. Thus in general the linear function L is not unique. However, if f
and h are differentiable and h(0) = 0, then L is uniquely determined and must be
L(x) = f ′(a) · x, so that (2.1) can be written

(2.6) f(a+ x) 6 f(a) + f ′(a) · x+ Ch(cx).

If h is differentiable with h(0) = 0, then real-valued convex functions in Bh are
differentiable, and for them (2.6) can be improved to

(2.7) f(a) + f ′(a) · x 6 f(a+ x) 6 f(a) + f ′(a) · x+ Ch(cx).

Here the first inequality just expresses the fact that the graph of f lies above its
tangent plane. More generally, if h(x) = o(|x|) as x → 0 and f,−f ∈ Bh, then f is
differentiable and

(2.8) f(a) + f ′(a) · x− C1h(c1x) 6 f(a+ x) 6 f(a) + f ′(a) · x+ C2h(c2x).

If (2.2) holds we can get c1 = c2 and C1 = C2 in (2.8).
It is sometimes of interest to have some kind of uniformity in the constants c

and C in Definition 2.1. The following definition seems to work well in many cases.

Definition 2.2. We shall say that f is locally uniformly controlled by h from
above if for every a0 ∈ Rn such that f(a0) ∈ R there are constants c and C such
that (2.1) holds for all a near a0 with f(a) finite. We shall write Gh = Gh(Rn) for
the set of all f such that f is locally uniformly controlled by h from above.
A weaker form of uniformity will be introduced in Section 4.
Example. It is easy to see that Bh and Gh are different in general. Let for example
h(x) = x2 for x ∈ R, |x| 6 1, and h(x) = +∞ elsewhere. We can then just take
f(x) = −

√
|x|, or f(x) = −|x|+ |x|3/2. But it does not help to require that f be in

C1: take f(x) = x3 sin(1/x) for x 6= 0, f(0) = 0. Then f ∈ Bh \ Gh. We can take
c0 = C0 = 1, but when a = 1/(2πm− π/2), c2aCa → +∞ as m→ +∞.

It is also easy to construct examples of real-valued convex functions which are
in Bh but not in Gh:

Proposition 2.3. Assume that h: Rn → [0,+∞] satisfies (2.5) and that h ∈ Bh.
Assume also that h(x) > 0 for x 6= 0. Then there is a convex function in Bh \Gh.

Proof. Let us take a sequence aj ∈ Rn with aj 6= 0, aj → 0 and such that h(aj) is
finite. Define f as the convex envelope of

x 7→ min
[
2h(x),min

j

[
h(x) + h(j(x− aj))

]]
.

Using Theorem 5.3 below we conclude that f ∈ Bh (here we need that h ∈ Bh).
Now in a neighborhood of aj we must have f(x) = h(x) + h(j(x − aj)), at least for
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infinitely many j’s. (Here we need h(x) = o(x).) If f did belong to Gh we would get,
for x close to aj ,

h(x) + h(j(x− aj)) = f(x) 6 f(aj) + L(x− aj) + Ch(c(x− aj)),

which implies h(jx) 6 Ch(cx) for small x. Now the inequality h(jx) 6 Ch(cx) can
hold near the origin only if c > j or Cc > j. In fact, if c < j, then the inequality
implies

h(jx) 6 Ch(cx) 6 C(1− c/j)h(0) + Cch(jx)/j = Cch(jx)/j,

which is possible only if 1 6 Cc/j, since h(x) > 0 for x 6= 0. Thus we cannot choose
both ca and Ca bounded: we must have caj > j or cajCaj > j for infinitely many j’s.

3. Imposing conditions on the gradient
It turns out that for convex functions, the kind of one-sided regularity expressed by
(2.1) imposes a regularity on the function’s gradient. To prove this is the purpose of
the present section.

Definition 3.1. Let Ω be an open set in Rn, and let h: Rn → [0,+∞] be +∞
outside the unit ball. We define the class B1,h(Ω) as the class of all continuously
differentiable functions f : Ω→ R such that for every point a ∈ Ω there are constants
c = ca and C = Ca such that

(3.1) |f ′(a+ x)− f ′(a)||x| 6 Ch(cx) for all x ∈ Rn.

(The constant c shall be so large that if a+x /∈ Ω, then |cx| > 1, making the condition
void.) The class G1,h(Ω) is defined in the same way with the extra requirement that
the constants ca and Ca shall be chosen as locally bounded functions of a ∈ Ω. Finally
we define B1,h

dot(Ω) and G1,h
dot(Ω) by replacing (3.1) with the weaker inequality

(3.2) |(f ′(a+ x)− f ′(a)) · x| 6 Ch(cx) for all x ∈ Rn.

The Hölder classes C1,ε with 0 < ε 6 1 are special cases of the regularity classes
G1,h, viz. with h(x) = |x|1+ε for |x| 6 1, h(x) = +∞ for |x| > 1.

That B1,h
dot differs from B1,h follows from the example h(x) = x2

1 + |x2|1+ε, where
0 < ε < 1. Here |(h′(a + x) − h′(a)) · x| 6 2h(x), so that h ∈ B1,h

dot(R
2), but the

inequality |h′(x)||x| 6 Ch(x) is impossible (try x2 = |x1|α with 1 < α < 1/ε), proving
that h cannot belong to B1,h.

Theorem 3.2. Let h: Rn → [0,+∞] satisfy (2.3), and assume that h(x) = +∞ for
|x| > 1. Then B1,h(Ω) ⊂ B1,h

dot(Ω) ⊂ Bh and G1,h(Ω) ⊂ G1,h
dot(Ω) ⊂ Gh for every open

set Ω. (We define the functions as being +∞ outside Ω.)
In particular the hypothesis on h is satisfied if h is convex, h > 0 and h(0) = 0, for
then h(tx) 6 (1− t)h(0) + th(x) = th(x).
Proof. If f ∈ C1(Ω) we can write

f(a+ x)− f(a)− f ′(a) · x =
∫ 1

0

(f ′(a+ tx)− f ′(a)) · x dt
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provided a ∈ Ω and |x| is so small that the whole segment [a, a + x] is contained in
Ω. If now f ∈ B1,h

dot(Ω) we can apply (3.2) at the point a and with x replaced by tx,
0 < t 6 1:

|(f ′(a+ tx)− f ′(a)) · x| 6 Ch(ctx)
t

6 Ch(cx),

where the last inequality follows from (2.3). Thus

|f(a+x)−f(a)−f ′(a) ·x| 6
∫ 1

0

|(f ′(a+tx)−f ′(a)) ·x| dt 6
∫ 1

0

Ch(cx) dt = Ch(cx),

which shows that (2.1) holds.
Since we can control the constants c and C, this also proves that G1,h

dot ⊂ Gh.
Theorem 3.2 is proved.

On the other hand, we cannot of course infer any regularity of f ′ from an inequal-
ity like (2.1) or (2.6). However, if we add convexity the situation is quite different;
more generally we can assume that −f belongs to some class Gh. Let us define F (X)
as the set of all functions f : Rn → [−∞,+∞] which have real values in X ⊂ Rn and
take the value +∞ in Rn \X.

Theorem 3.3. Let h and k be two functions satisfying (2.2) and (2.4) and taking
the value +∞ outside the unit ball. Then for every open set Ω ⊂ Rn we have

F (Ω) ∩Bh ∩ (−Gk) ⊂ B1,H
dot (Ω) and F (Ω) ∩Gh ∩ (−Gk) ⊂ G1,H

dot (Ω),

where H(x) = h(x) + k(x) + k(−x). If h and k are radial (i. e., functions of |x|),
then

F (Ω) ∩Bh ∩ (−Gk) ⊂ B1,h+k(Ω) and F (Ω) ∩Gh ∩ (−Gk) ⊂ G1,h+k(Ω).

It is not enough to assume that ±f ∈ Bh to conclude that f ∈ B1,h
dot; some uniformity

is needed:
Example. Let h(x) = x2 when x ∈ R, |x| 6 1, and h(x) = +∞ outside this interval.
Define f(x) = x2 sin |x|α, x 6= 0, f(0) = 0, with a number α satisfying −1 < α < 0.
Then ±f ∈ Bh, and f ′ exists and is continuous. But f /∈ B1,h(R) = B1,h

dot(R).
Proof of Theorem 3.3. If f ∈ Bh, −f ∈ Bk, where h(x), k(x) = o(|x|), then f ′(a)
exists at every point a where f has a finite value; see (2.8). We want to prove (3.1)
or (3.2) with h replaced by H, i. e., that

(3.3) |f ′(a+ x)− f ′(a)||x| 6 CH(cx)

or the weaker

(3.4) |(f ′(a+ x)− f ′(a)) · x| 6 CH(cx)

for a, a+ x ∈ Ω. The hypotheses imply that for every a ∈ Ω, there are constants ca,
Ca, da, Da such that

f(a+ x+ y)− f(a) 6 f ′(a) · (x+ y) + Cah(ca(x+ y)),
−f(a+ x) + f(a) 6 −f ′(a) · x+Dak(dax),

−f(a+ x+ y) + f(a+ x) 6 −f ′(a+ x) · y +Da+xk(da+xy).
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Moreover da+x and Da+x can be chosen to be bounded above for all a + x near a,
say for x ∈ ω, ω a neighborhood of the origin. Adding these three inequalities we get

(3.5) (f ′(a+ x)− f ′(a)) · y 6 Cah(ca(x+ y)) +Dak(dax) +Da+xk(da+xy).

Now choose y = ±x. This gives

(f ′(a+ x)− f ′(a)) · x 6 Cah(2cax) +Dak(dax) +Da+xk(da+xx),
−(f ′(a+ x)− f ′(a)) · x 6 Cah(0) +Dak(dax) +Da+xk(−da+xx),

which we can simplify to

|(f ′(a+ x)− f ′(a)) · x| 6 C ′a(h(c′ax) + k(c′ax) + k(−c′ax)) = C ′aH(c′ax),

thanks to the assumption (2.2), putting

c′a = max(2ca, sup
x∈ω

da+x) and C ′a = M max(Ca, Da + sup
x∈ω

Da+x).

This is (3.4) with new constants. Note that we use ca and Ca only at the point a,
which is why we need not assume them to be locally bounded.

In the radial case we argue instead as follows. Choose y = λz = λ(f ′(a + x) −
f ′(a)) in (3.5). This gives

(3.6) λ|f ′(a+ x)− f ′(a)|2 6 Cah(ca(x+ λz)) +Dak(dax) +Da+xk(da+xλz).

If z = f ′(a+ x)− f ′(a) = 0, (3.3) certainly holds. If not, we may choose λ = |x|/|z|,
and we note that h is to be evaluated at the point

ca(x+ λz) = cax+ ca
|x|
|z|
z,

whose distance to the origin is at most 2ca|x|. Thus (3.6) yields, since h and k are
radial,

|f ′(a+ x)− f ′(a)||x| = λ|z|2 6 Cah(2cax) +Dak(dax) +Da+xk(da+xx)
6 2C ′a(h(c′ax) + k(c′ax));

this proves (3.3) (with new constants).
Since the argument keeps track of the constants ca and Ca, it works also to prove

that f ∈ G1,H
dot (Ω), resp. f ∈ G1,h+k(Ω), if we strengthen the hypothesis f ∈ Bh to

f ∈ Gh.

Corollary 3.4. Let f : Rn → ]−∞,+∞] be convex, finite in a convex open set Ω and
equal to plus infinity outside. Let h satisfy (2.3) and (2.4) and be +∞ outside the
unit ball. Then f belongs to Bh(Rn) if and only if f belongs to B1,h

dot(Ω). Similarly,
f belongs to Gh(Rn) if and only if f belongs to G1,h

dot(Ω). If we assume in addition
that h is radial, then f ∈ Bh iff f ∈ B1,h(Ω) iff f ∈ B1,h

dot(Ω), and similarly for the
G classes.

Proof. Theorem 3.2 says that B1,h
dot(Ω) ⊂ Bh and G1,h

dot(Ω) ⊂ Gh. For the other
inclusions we just have to take k = 0 in Theorem 3.3 and note that −f is in Gk = G0

if f is convex, real-valued in Ω and +∞ outside.
Every convex function of class C1 belongs to some G1,h locally:
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Proposition 3.5. Let f ∈ C1(Ω) be convex in a convex open set Ω. Then for every
relatively compact convex open subset ω of Ω there exists a radial convex function H
with H > 0, H(0) = 0 and H ′(0) = 0 such that f |ω ∈ G1,H(ω).

Proof. The convexity gives

0 6 f(a+ x)− f(a)− f ′(a) · x 6 f ′(a+ x) · x− f ′(a) · x
6 |f ′(a+ x)− f ′(a)||x| 6 |x|g(|x|)

for a, a+ x ∈ ω. Here g is the modulus of continuity of f ′ in ω. We now define

h(x) = sup
a

[
f(a+ x)− f(a)− f ′(a) · x; a, a+ x ∈ ω

]
, x ∈ Rn.

As a supremum of convex functions, h is convex, and f |ω ∈ Gh by construction.
Moreover, h(x) 6 |x|g(|x|) = o(|x|), so Corollary 3.4 yields f |ω ∈ G1,H(ω) if we
define H as the smallest radial majorant of h.

4. Marginal functions
In this section we study the marginal function f(x) = infy F (x, y) of a function F
defined in Rn×Rm. To conclude anything about regularity, it is necessary to assume
that the infimum is attained for every x. Therefore it is natural to assume that the
partial functions F (x, ·) are lower semicontinuous. But this is not enough: we need
some kind of coerciveness. We shall use the following terminology:

Definition 4.1. A function f :Y → [−∞,+∞], Y being a topological space, is said
to be coercive in Y if the sublevel sets {y ∈ Y ; f(y) < s} are relatively compact in
Y for all real numbers s. We shall say that a function F :X × Y → [−∞,+∞] is
coercive in the y direction if all partial functions F (x, ·) are coercive in Y . Finally
we shall say that F is locally uniformly coercive in the y direction, if for every
x0 ∈ X, X being another topological space, the sublevel sets {y ∈ Y ;F (x, y) < s} are
contained in a fixed compact subset of Y for all x in some neighborhood of x0.

Theorem 4.2. Let H: Rn×Rm → [0 +∞] and F : Rn×Rm → [−∞,+∞] be given,
let

(4.1) f(x) = inf
y∈Rm

F (x, y), x ∈ Rn,

be the marginal function of F , and define h(x) = H(x, 0) for x ∈ Rn. Assume that
the infimum in (4.1) is attained for every point x ∈ Rn. (In particular this is true
if all partial functions F (x, ·) are lower semicontinuous and F is coercive in the y
direction.) Then F ∈ BH(Rn ×Rm) implies f ∈ Bh(Rn).

In applications of this theorem, most often h is given, and we define H on Rn ×Rm

by

(4.2) H(x, y) =
{
h(x), y = 0,
+∞, y 6= 0.
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For such H, the assumption F ∈ BH is a condition only on the partial functions
F (·, y).
Proof. To every given a ∈ Rn with f(a) ∈ R there is a point b ∈ Rm such that
f(a) = F (a, b). Then by definition there is a linear function L and constants c =
c(a,b), C = C(a,b) such that

F (a+ x, b+ y) 6 F (a, b) + L(x, y) + CH(cx, cy).

In particular, taking y = 0,

F (a+ x, b) 6 F (a, b) + L(x, 0) + CH(cx, 0) = f(a) + L(x, 0) + Ch(cx).

Now by the definition of f , f(a+ x) 6 F (a+ x, b). This proves that f ∈ Bh(Rn).
We would like to have a result analogous to Theorem 4.2 but with uniformity.

A somewhat weaker uniformity than that of the classes Gh appears naturally. The
definition is as follows.

Definition 4.3. Let h: Rn → [0,+∞] be given. A function f : Rn → [−∞,+∞] is
said to belong to Eh(Rn) if for every point a0 ∈ Rn such that f(a0) ∈ R and every
number A there exist a neighborhood U of a0 and constants c and C such that for
every a ∈ U with f(a) 6 A there exists a linear function L such that (2.1) holds.
Thus we now allow the constants c and C to blow up in a neighborhood of a0, but
only if f(a) tends to +∞.

Obviously Gh ⊂ Eh ⊂ Bh. A function in Eh which is locally bounded above
belongs to Gh, and therefore Eh = Gh if h is bounded above in a neighborhood of
the origin. For this reason Eh can often be replaced by Gh, and it was not needed in
the previous sections. However, in general the classes Eh and Gh do differ as shown
by the following two examples.
Example. Define h(x) = 0 for x ∈ R satisfying −1 6 x 6 0, and h(x) = +∞
otherwise. Let f(x) = 1/x, x > 0; f(x) = 0, x 6 0. Then f ∈ Eh \Gh.

There are also convex functions in Eh \Gh, at least in three variables:
Example. Define h(x, y, z) = z2 when (x, y) = (0, 0), |z| 6 1; h(x, y, z) = +∞
otherwise. There is a convex function g in R3 which is C∞ except at the origin,
satisfies 0 6 g(x, y, z) 6 x2 + y2 + z2, and equals x2 + y2 + z2 outside small neigh-
borhoods Uj of the points aj = (1/j, 1/j3, 0), let us say g(x, y, z) = x2 + y2 + z2

when |(x, y, z) − aj | > 1/j3. We require that the second derivative |∂2g(aj)/∂z2|
tend to +∞ as j → +∞. Then g ∈ Bh \ Gh: if cj and Cj are constants that can
serve in (2.1) at the point aj , then the product Cjc2j must blow up. Now define
f(x, y, z) = g(x, y, z) + x2/y when y > 0, f(0, 0, z) = z2, and f(x, y, z) = +∞ other-
wise. Then f ∈ Eh \Gh. The constants blow up at the origin all the same, but now
f tends to +∞ at the special points; in fact, when f 6 A, then y > x2/A, so only
finitely many neighborhoods Uj are involved.

Theorem 4.4. Let H, F and f be as in Theorem 4.2. Assume in addition that (2.2)
holds for H and that F is lower semicontinuous in Rn ×Rm and locally uniformly
coercive in the y direction. Then F ∈ EH(Rn × Rm) implies f ∈ Eh(Rn). If
moreover f is locally bounded above where it is less than +∞, then f ∈ Gh(Rn). (In
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particular this holds if h is bounded above in a neighborhood of the origin, or if F is
locally bounded above where it is less than +∞.)

Proof. Let a0 ∈ Rn and A ∈ R be given. In view of the semicontinuity and the
locally uniform coerciveness, there exists a compact neighborhood U of a0 such that

K = {(a, b); a ∈ U and F (a, b) 6 A}

is compact in Rn × Rm. The hypothesis F ∈ EH and condition (2.2) imply the
existence of constants c and C such that for every (a, b) ∈ K with F (a, b) ∈ R there
is a linear function L such that, for all (x, y) ∈ Rn ×Rm,

(4.3) F (a+ x, b+ y) 6 F (a, b) + L(x, y) + CH(cx, cy).

For every a ∈ U such that −∞ < f(a) 6 A there exists b such that (a, b) ∈ K and
F (a, b) = f(a); hence (4.3) shows that

f(a+ x) 6 F (a+ x, b) 6 F (a, b) + L(x, 0) + CH(cx, 0) = f(a) + L(x, 0) + Ch(cx).

This proves that f ∈ Eh.
Example. One can construct F ∈ C∞(R2) such that F (x, y) = y2 when |xy| 6 1

2 or
|xy| > 2, and F (x, y) > −

√
|x| everywhere, with equality when |xy| = 1. Then the

marginal function is f(x) = −
√
|x|. So if we put H(x, y) = |(x, y)|2 for |(x, y)| 6 1

and +∞ elsewhere, we see that F ∈ GH , f ∈ Bh \ Eh. (Here F is coercive in the y
direction without being uniformly so.)
Example. Put

F (x, y) =


y2 + 1/(y2 − 1/x2), x > 0, |y| > 1/x,
+∞, x > 0, |y| 6 1/x,
y2, x 6 0.

Then the marginal function is f(x) = 2 + 1/x2 for x > 0, f(x) = 0 for x 6 0. Define
H(x, y) = 0 if y = 0 and −1 6 x 6 0, H(x, y) = +∞ elsewhere. Then F ∈ GH ,
f ∈ Eh \Gh. (Here f is not bounded above near the origin; all other hypotheses of
Theorem 4.4 are satisfied.)

The infimal convolution

f ut g(x) = inf
y∈Rn

[
f(x− y) + g(y); f(x− y) < +∞, g(y) < +∞

]
, x ∈ Rn,

of two functions is a special kind of marginal function. We formulate the following
particular case of Theorem 4.2 for them.

Theorem 4.5. Let f, g: Rn → ]−∞,+∞] be two lower semicontinuous functions.
Assume that one of them is coercive and the other is bounded below. If one of f, g is
in Bh(Rn), then their infimal convolution f ut g ∈ Bh(Rn). Similarly for Eh.

Proof. The function F (x, y) = f(x− y) + g(y) is lower semicontinuous and coercive
in the y direction, so infy F (x, y) is attained. Define H by (4.2). Then F is in BH
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if f ∈ Bh(Rn). (If g ∈ Bh we consider f(y) + g(x − y) instead.) It follows from
Theorem 4.2 that the marginal function of F is in Bh. Now this marginal function
is exactly f ut g. The result for Eh follows because under the hypothesis made, F is
automatically locally uniformly coercive in the y direction.
Remark. Of course we actually need only that F is coercive in the y direction, or
locally uniformly coercive in the y direction, respectively; the theorem describes a
simple case when this is true.

Corollary 4.6. Let f, g: Rn → ]−∞,+∞] be two lower semicontinuous convex func-
tions which are coercive in Rn and assume that one of them is of class Bh for some
radial function h satisfying (2.2) and (2.4) and being +∞ outside the unit ball. Then
f ut g ∈ B1,h(Ω), where Ω is the interior of the set where f ut g is finite. If in addition
one of f , g is in Eh, then f ut g ∈ G1,h(Ω).

Proof. We only need to remember that f ut g is convex and apply Theorem 3.3.

5. The convex envelope
Given a function f : Rn → [−∞,+∞] we denote by cvx f the largest convex minorant
of f . We can express cvx f as
(5.1)

cvx f(x) = inf
[ p∑

1

λjf(xj); λj > 0,
p∑
1

λj = 1,
p∑
1

λjxj = x, f(xj) < +∞
]
.

(We put 0 · (−∞) = 0.) Here the infimum is taken over all p > 1, all numbers λj and
all points xj ∈ Rn satisfying the conditions indicated. Let us denote by fp(x) the
infimum in (5.1) with p fixed. Then for every convex function g 6 f we have

f = f1 > f2 > · · · > fp > fp+1 > · · · > g.

It is also elementary to prove that for all t between 0 and 1 we have

fp+q((1− t)x+ ty) 6 (1− t)fp(x) + tfq(y).

This proves immediately that f∞ = inf fp = lim fp is equal to cvx f . However, it
is important here not to let p tend to infinity. And in fact the sequence (fp) is
stationary; more precisely fp = fn+1 for all p > n+ 1. In other words, the following
lemma holds.

Lemma 5.1. In (5.1) it is enough to take p = n+ 1.

Proof. This follows from Carathéodory’s theorem [1911: 200], but for completeness we
shall include a proof. Assume first that f > −∞ so that only finite values f(xj) ∈ R
appear in (5.1). If p > n+2 and p points x1, ..., xp are given, there exist real numbers
µ1, ..., µp, not all zero, such that

∑
µj = 0 and

∑
µjxj = 0. Hence in any linear

combination x =
∑
λjxj the numbers λj can be replaced by λj(t) = λj + tµj as long

as the latter are nonnegative. We choose t as

t = max
j

[
− λj/µj ; µj > 0

]
6 0 if

p∑
1

µjf(xj) > 0,
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and

t = min
j

[
− λj/µj ; µj < 0

]
> 0 if

p∑
1

µjf(xj) < 0.

In both cases λj(t) > 0 with equality for at least one index k. Then the number

p∑
1

λj(t)f(xj) =
p∑
1

λjf(xj) + t

p∑
1

µjf(xj) 6
p∑
1

λjf(xj)

competes in the infimum (5.1), but now since λk(t) = 0, the point xk is no longer
needed. Thus we can eliminate one point at a time as long as p > n+ 2.

In the general case we apply this result to fc(x) = max(f(x), c), c ∈ R, and let
c→ −∞; then fc → f and cvx fc → cvx f .

Simple examples like 1/(1 + x2) and |x|+
√
|x| show that the infimum in (5.1)

is not always attained, not even for coercive functions. However, if we add a strong
coerciveness hypothesis this is true. Let us say that f grows faster than any
linear function if f −L is coercive in Rn for every linear function L. In particular
this holds if f is +∞ outside a bounded set.

Lemma 5.2. Let f : Rn → ]−∞,+∞] be lower semicontinuous and assume that f
grows faster than every linear function. Then the infimum in (5.1) is attained at
every point x with cvx f(x) < +∞.
The result in Lemma 5.2 does not hold if f assumes the value −∞. We shall denote
by dom f the set {x ∈ Rn; f(x) < +∞} (the effective domain of f).
Proof. Suppose cvx f(x) < +∞ and take a hyperplane H in Rn+1 which contains
(x, cvx f(x)) and has the graph of f on one side. If this hyperplane is vertical, say
equal to K ×R where K is a hyperplane in Rn, then (cvx f)|K is equal to cvx(f |K)
and we can assume that the result is already proved by induction. If H is not vertical,
it is equal to the graph of an affine function C+L, and we take sequences (xkj )k∈N and
(λkj )k∈N, j = 1, ..., n+ 1, with f(xkj ) < +∞ such that

∑
λkj f(xkj ) tends to cvx f(x).

By compactness the sequence (λkj )k has an accumulation point λj . If λj = 0 we can
say nothing about (xkj ), but we simply discard it, since it does not contribute to the
sum. If λj > 0 on the other hand, the sequence (xkj ) must have an accumulation
point, for the value of f at xkj must appoach that of C + L, and the coerciveness of
f − L keeps all the xkj in a bounded set. Let xj be an accumulation point of (xkj )k,

the limit of a subsequence (xk(i)
j )i. The semicontinuity yields f(xj) 6 lim inf f(xk(i)

j ),
which shows that

∑
λjf(xj) 6 cvx f(x), so that the infimum is attained.

Theorem 5.3. Let f ∈ Bh(Rn) be lower semicontinuous and satisfy −∞ < f 6
+∞. Assume that f grows faster than every linear function L. (In particular this is
true if f is equal to plus infinity outside a bounded set.) Let h be any function with
values in [0,+∞]. Then f ∈ Bh implies cvx f ∈ Bh. If h is radial and satisfies (2.2)
and (2.4), then cvx f ∈ B1,h(Ω), where Ω denotes the interior of cvx dom f .

Proof. For every point a ∈ Rn with cvx f(a) < +∞ there are points aj and numbers
λj > 0, j = 1, ..., n + 1, such that

∑
λj = 1 and g(a) = cvx f(a) =

∑
λjf(aj)
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(Lemmas 5.1 and 5.2). By definition of the convex envelope, we have for any x,

g(a+ x) = cvx f(a+ x) 6 λkf(ak + y) +
∑
j 6=k

λjf(aj),

if we can choose y so that

a+ x = λk(ak + y) +
∑
j 6=k

λjaj = a+ λky.

This is possible if λk > 0: take y = x/λk. Using that f is controlled from above by
h at the point ak we see that
(5.2)
g(a+ x) 6 λk(f(ak) + L(y) + Ch(cy)) +

∑
j 6=k

λjf(aj) = g(a) + L(x) + λkCh(cx/λk).

This proves that g = cvx f ∈ Bh. The statement about B1,h(Ω) follows from Theo-
rem 3.3.
Remark. It is also possible to prove Theorem 5.3 using Theorem 4.2 if h satisfies
(2.2). We take λj ∈ R, xj ∈ Rn, and define

y = (λ1, ..., λn+1, x1, ..., xn+1) ∈ R(n+1)2
,

Y = {y ∈ R(n+1)2
; λj > 0,

∑
λj = 1,

∑
λjxj = 0},

and

F (x, y) =
{∑

λjf(x+ xj), x ∈ Rn, y ∈ Y,
+∞, x ∈ Rn, y /∈ Y.

(Here as usual 0 · (+∞) = 0.) We want to apply Theorem 4.2 to F , its marginal
function (4.1) being cvx f . Define H by (4.2). Then F ∈ BH(Rn ×R(n+1)2

) (here
we need (2.2)). Clearly F is lower semicontinuous in all variables. But it is not
necessarily coercive in the y direction as can be seen from simple examples (for
n = 1, F (x, 1, 0, 0, x2) = f(x) does not tend to plus infinity as x2 → ∞). However,
Lemma 5.2 is a satisfactory substitute for this, since all we need to know is that the
infimum in cvx f(x) = infy F (x, y) is attained. Therefore Theorem 4.2 applies, and
we can conclude that cvx f ∈ Bh.

The uniformity of the constants is preserved under the operation f 7→ cvx f as
shown by the following result.

Theorem 5.4. Let h: Rn → [0,+∞] satisfy (2.2). Assume that f : Rn → ]−∞,+∞]
is lower semicontinuous and grows faster than any linear function. Then f ∈ Eh

implies cvx f ∈ Eh.

Proof. It seems we cannot use Theorem 4.4 due to lack of coerciveness. We can
instead argue as follows. Consider again (5.2), but take k this time so that λk >
1/(n+ 1). There is at least one such index. The function f is bounded below, and it
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is no restriction to assume that f > 0. We claim that f(ak) 6 (n + 1)g(a). Indeed,
since f > 0,

1
n+ 1

f(ak) 6 λkf(ak) 6
n+1∑

1

λjf(aj) = g(a).

Thus, when g(a) is bounded above, f is bounded above in at least one of the points
ak. Let now a vary in a neighborhood of a fixed point a0 under the restriction
g(a) 6 A. Then with our choice of k (depending on a), f(ak) 6 (n + 1)A, so that
ak varies in a bounded set and, if f ∈ Eh, the constants c and C in (5.2) remain
bounded. We now use (2.2) and the fact that there is a lower bound for λk. Thus
(5.2) shows that g is controlled from above by h in a uniform way for all points a, in
other words that g ∈ Eh.

Corollary 5.5. Let h: Rn → [0,+∞] satisfy (2.2). Let f : Rn → ]−∞,+∞] be lower
semicontinuous and grow faster than any linear function. Assume in addition that
dom f is open. Then f ∈ Eh implies cvx f ∈ Gh. If h is radial and satisfies (2.2) and
(2.4) and is +∞ outside the unit ball, then cvx f ∈ G1,h(Ω), where Ω = cvx dom f =
dom cvx f .

Proof. When dom f is open, then also cvx dom f = dom cvx f is open, so cvx f is
locally bounded above there. This proves the corollary. We note that if h is bounded
above in a neighborhood of the origin, then f ∈ Bh implies that dom f is open.
Example. If the boundary of Ω is not smooth, then its lack of smoothness can be
inherited by the convex envelope of a smooth function. Let us take for example a
convex domain

Ω = {x ∈ Rn; |xn|+ g(x1, ..., xn−1) < 0},

where g is a convex function which is negative in some subset of Rn−1, and let us
define f(x) = −|xn| in Ω, and as +∞ outside. Then cvx f(x) = g(x1, ..., xn−1) in
the set where g is negative. If we choose g and h so that g /∈ Bh we therefore
get cvx f /∈ Bh; similarly for Gh and Eh. But f ∈ Gh for every h > 0. A slight
modification gives f ∈ C∞(Ω). (In this case f is not lower semicontinuous in Rn.)
Example. It may of course happen, even if the boundary of Ω is smooth, that the
constants ca and Ca degenerate as a→ ∂Ω. For Ω = R2, we let ϕ be a test function
which is equal to 1 near the origin and satisfies 0 6 ϕ 6 1. Then

f(x) = (1− ϕ(x1x2))|x1|3/2 + ϕ(x1x2)(1 + x2
1), x ∈ R2,

is in C∞(R2), so in particular f ∈ G1,h(R2), putting h(x) = |x|2 for |x| 6 1 and
equal to +∞ elsewhere. But cvx f(x) = |x1|3/2 which is not in Bh. (The function is
not coercive.) To get a similar example with Ω as the unit ball in Rn, we can take
ϕ ∈ C∞(R), 0 6 ϕ 6 1, with ϕ(t) = 0 for t 6 1 and ϕ(t) = 1 for t > 2. Then

f(x) =
{

(1− |x1|3/2)ϕ
(
(1− |x|2)/x2

1

)
+ |x1|3/2, |x| < 1, x1 6= 0,

1, |x| < 1, x1 = 0,

is C∞ in the open unit ball, and as before cvx f(x) = |x1|3/2. (Here the infimum
in (5.1) is attained for every x with x1 6= 0, although the function is not lower
semicontinuous as a function in Rn, nor coercive in Ω.)
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6. Regularity of sets
If f is a function of n− 1 variables in a regularity class Bh, we would like to say that
its epigraph

epi f = {x ∈ Rn; f(x1, ..., xn−1) 6 xn}

is a set of class Bh. This notion should be invariant under change of coordinates.
A convenient class of sets are those with C1 boundary, and then the admissible
coordinate systems are those which do not have the xn-axis (the line x1 = x2 = · · · =
xn−1 = 0) in the tangent plane. Now it is easy to see that if h is radial and satisfies
(2.2), the condition on the epigraph to belong to the class Bh is the same for all such
coordinate systems. (It scarcely has a sense to define regularity classes of sets for
nonradial h.)

Proposition 6.1. Let h: Rn−1 → [0,+∞] be radial, bounded in some neighborhood
of the origin, and equal to +∞ outside some neighborhood of the origin. Assume that
h satisfies (2.2). Let f be a Lipschitz function with f(0) = 0. Consider the epigraph
epi f in Rn and make a linear mapping T of Rn onto itself such that, for some
neighborhood ω of the origin, T (epi f ∩ ω) agrees with the epigraph of a Lipschitz
function g in a neighborhood of the origin. Then f ∈ Bh if and only if g ∈ Bh.
Similarly for Gh.

Proof. This is really obvious. The assumptions on h are natural since we are inter-
ested in local regularity properties.

Definition 6.2. Let h: Rn−1 → [0,+∞] be radial, equal to +∞ outside some neigh-
borhood of the origin and satisfy (2.2) and (2.4). Let A be a set with C1 boundary
in Rn. Then we shall say that A is of class Bh or Gh if, in an admissible coordinate
system, the function whose epigraph agrees with A near an arbitrarily given point of
∂A is of the same class as a function of n− 1 variables.

Theorem 6.3. Let A be a compact set in Rn × Rm of regularity class BH for
some function H in Rn+m−1 satisfying the properties of Definition 6.2. Assume
that its projection π(A) in Rn has a C1 boundary (in particular this is true if A is
convex). Then π(A) is of class Bh, where h(x1, ..., xn−1) = H(x1, ..., xn−1, 0, 0, ..., 0).
Similarly for Gh.

Proof. This follows from Theorems 4.2 and 4.4.

Theorem 6.4. Let A and B be two compact convex sets one of which is of class Bh

for a function h satisfying the requirements of Definition 6.2. Then the boundary of
A+B is of class Bh. Similarly for Gh.

Proof. This is immediate from Theorem 4.5.
Krantz & Parks [1991: Theorem 3] prove this result in the case of Hölder classes

C1,ε, 0 < ε 6 1.

Theorem 6.5. Let A be a compact set in Rn of regularity class Bh for some function
h as in Definition 6.2. Then its convex hull cvxA is of class Bh. Similary for Gh.
In particular, if ∂A is of class C1 this is true also of ∂ cvxA; and similarly for the
Hölder classes C1,ε, 0 < ε 6 1.
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Proof. This is immediate from Theorem 5.3, Corollary 5.5, and Proposition 3.5.
Griewank & Rabier [1990: Theorem 4.2] prove this result in the case of Hölder

classes C1,ε, 0 < ε 6 1.
Note that Corollary 3.4 enables us to translate properties in terms of Bh, Gh

into properties in terms of B1,h and G1,h, under some mild conditions on h.

7. Dual regularity classes
We shall now define classes of functions which are analogous to the Bh by using
instead estimates from below.

Definition 7.1. Given a function h: Rn → [0,+∞] we shall say that f : Rn →
[−∞,+∞] is locally controlled by h from below if for every point a ∈ Rn such
that f(a) ∈ R there are constants c = ca > 0 and C = Ca > 0 and a linear function
L such that

(7.1) f(a+ x) > f(a) + L(x) + Ch(cx) for all x ∈ Rn.

We shall say that f is locally uniformly controlled by h from below if for every
a0 ∈ Rn such that f(a0) ∈ R there are constants c > 0 and C > 0 such that (7.1)
holds for all a near a0 with f(a) ∈ R. We shall write Bh = Bh(Rn) for the set of all
f which are locally controlled by h from below, and Gh = Gh(Rn) for the set of all f
such that f is locally uniformly controlled by h from below.

Proposition 7.2. Every strictly convex function is locally in some class Gh for a
function h such that h(0) = 0 and h(x) > 0 for x 6= 0.

Proof. Let Γa denote the set of subgradients at a and define for a compact set K
contained in the interior of dom f ,

h(x) = inf
a,ξ

[
f(a+ x)− f(a)− ξ · x; a ∈ K and ξ ∈ Γa

]
, x ∈ Rn.

Then f |K ∈ Gh by construction. In view of the strict convexity, h(x) > 0 for x 6= 0.
The classes Bh and Gh are dual to the classes defined by control from above.

This duality is expressed by means of the Fenchel transformation. Given any function
f : Rn → [−∞,+∞] we define its Fenchel transform (or Legendre transform or
conjugate function) as

f̃(ξ) = sup
x∈Rn

[
ξ · x− f(x)

]
, ξ ∈ Rn.

We shall see that essentially f ∈ Gh if and only if f̃ ∈ Gh̃. As an example consider
the functions that we use to define the Hölder classes:

h(x) =


1

1 + ε
|x|1+ε, |x| 6 1,

+∞, |x| > 1,

for 0 < ε 6 1. Their transforms are

h̃(ξ) =


1

1 + 1/ε
|ξ|1+1/ε, |ξ| 6 1,

|ξ| − 1
1 + ε

, |ξ| > 1.
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More generally, writing f ≈ g if there exists a constant C such that C−1g 6 f 6 Cg
in a neighborhood of the origin, we see that h(x) ≈

∑
|xj |pj with 1 < pj < +∞,

h(x) = +∞ outside a bounded set, implies h̃(ξ) ≈
∑
|ξj |qj , where qj = pj/(pj − 1).

Theorem 7.3. Let f : Rn → [−∞,+∞] be a lower semicontinuous function in Rn

which grows faster than any linear function. Suppose that h(x) = o(|x|) as x→ 0. If
f ∈ Bh, then f̃ ∈ Bh̃. Also f ∈ Eh implies f̃ ∈ Gh̃.

Proof. If f takes the value −∞, then f̃ is identically +∞, and if f is identically +∞,
then f̃ is −∞ identically; in these two cases the result is true, so suppose that this
is not the case. Then f̃ is finite everywhere. For any given α ∈ Rn, there is a point
a such that f̃(α) = α · a− f(a). The regularity means that

(7.2) f(x) 6 f(a) + L(x− a) + Ch(c(x− a))

for all x. The linear function L must be L(x) = α · x. In fact, we have

α · (a+ x)− f̃(α) 6 f(a+ x) 6 f(a) + L(x) + Ch(cx),

which yields α · x−L(x) 6 Ch(cx), and this is possible only if α · x = L(x). We now
calculate the Fenchel transform of the right-hand side of (7.2):

(7.3)

sup
x

[
ξ · x− f(a)− α · (x− a)− Ch(c(x− a))

]
= −f(a) + ξ · a+ C sup

y

[
((ξ − α)/cC) · y − h(y)

]
= −f(a) + ξ · a+ Ch̃((ξ − α)/cC)

= f̃(α) + (ξ − α) · a+ Ch̃((ξ − α)/cC).

So
f̃(ξ) > f̃(α) + (ξ − α) · a+ Ch̃((ξ − α)/cC)

for all ξ. This means precisely that f̃ ∈ Bh̃. The statement for the class Gh̃ follows
because the constants c and C are bounded when α varies in a compact set.

Theorem 7.4. Let f : Rn → [−∞,+∞] be a lower semicontinuous function which
grows faster than any linear function. Assume that f is differentiable at every point
where it is finite. Let h: Rn → [0,+∞]. If f ∈ Bh, then f̃ ∈ Bh̃.

Proof. As before, if f is +∞ identically or if f takes the value −∞ the theorem holds,
so we can suppose that f̃ is finite everywhere. Moreover we know that to every given
α ∈ Rn there is a point a such that f̃(α) = α · a − f(a). The hypothesis f ∈ Bh
means, for every a such that f(a) is finite, that

(7.4) f(x) > f(a) + L(x− a) + Ch(c(x− a)).

Here the only choice for L is L(x) = f ′(a) · x, since we now assume that f ′(a) exists.
The Fenchel transform of the right-hand side of (7.4) at α is again given by (7.3), so
it follows that

f̃(ξ) 6 f̃(α) + (ξ − α) · a+ Ch̃((ξ − α)/cC)
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for all ξ. Thus f̃ ∈ Bh̃.
The hypothesis that f ′ exists is of course not satisfactory, but it is necessary as

the following example shows.
Example. Let f(x) = |x| + 1

4x
4, x ∈ R. Then f ∈ Bh \ Gh if we take h(x) = x2/2

for |x| 6 1 and equal to |x| − 1/2 outside this interval. But f̃(ξ) = 3
4 ((|ξ| − 1)+)4/3

which is not in Bh̃.
As this example suggests, things improve if we strengthen the hypothesis f ∈ Bh

to f ∈ Gh:

Theorem 7.5. Let h: Rn → [0,+∞] be given, and let f : Rn → ]−∞,+∞] be a lower
semicontinuous convex function which grows faster than any linear function. Assume
that dom f is open and nonempty. Then if f ∈ Gh it follows that f̃ ∈ Gh̃.

Proof. We know that f̃ is finite everywhere and that there exists, to every given α, a
point a such that f̃(α) = α ·a− f(a). Let b be any point such that f is differentiable
at b; this happens for a dense set of points in the effective domain of f . At such a
point we have, as in the proof of Theorem 7.4,

(7.5) f̃(β + η) 6 f̃(β) + η · b+ h̃(η), η ∈ Rn,

where β = f ′(b). Here we have assumed that c = C = 1, which is legitimate since
f ∈ Gh and all points under consideration remain in a compact set. Let Γa denote
the set of subgradients at a point a; thus Γb = {β}. Let further Θa be the subset of
Γa formed by all limits of f ′(bk) where bk is such that f is differentiable at bk and
bk → a. Both Γa and Θa are compact, and Γa = cvx Θa. Given any β ∈ Θa we have

(7.6) f̃(βk + η) 6 f̃(βk) + η · bk + h̃(η), η ∈ Rn,

for some βk = f ′(bk) → β, bk → a. We can pass to the limit in (7.6). Indeed, all
terms except perhaps h̃ are continuous in Rn. Thus f̃(β + η) 6 f̃(β) + η · a+ h̃(η),
or equivalently

(7.7) f̃(ξ) 6 f̃(β) + (ξ − β) · a+ h̃(ξ − β), β ∈ Θa, ξ ∈ Rn.

We shall now extend the validity of (7.7) from Θa to all of Γa:

(7.8) f̃(ξ) 6 f̃(α) + (ξ − α) · a+ h̃(ξ − α), α ∈ Γa, ξ ∈ Rn.

We shall of course use that f̃ is affine in Γa, specifically that f̃(β) + (ξ − β) · a =
f̃(α) + (ξ − α) · a for all ξ ∈ Rn when α, β ∈ Γa. Thus (7.7) implies, if we fix α and
let β vary in Θa,

f̃(ξ) 6 f̃(α) + (ξ − α) · a+ inf
β∈Θa

h̃(ξ − β), α ∈ Γa, ξ ∈ Rn.

Since f̃ is convex, this inequality can be replaced by the formally stronger

f̃(ξ) 6 f̃(α) + (ξ − α) · a+ ϕa(ξ), α ∈ Γa, ξ ∈ Rn,
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where ϕa denotes the convex envelope of the function ξ 7→ infβ∈Θa h̃(ξ − β). To get
(7.8) it suffices to prove that ϕa(ξ) 6 h̃(ξ − α). This is easy. In fact, if α =

∑
λjβj

with βj ∈ Θa, λj > 0,
∑
λj = 1, then ξ =

∑
λjξj , where ξj = βj + ξ − α, so by

definition

ϕa(ξ) 6
∑

λjϕa(ξj) 6
∑

λj h̃(ξj − βj) =
∑

λj h̃(ξ − α) = h̃(ξ − α).

This proves the theorem. It is the limiting process of passing from (7.6) to (7.7)
which saves us, and which cannot be done for f ∈ Bh: then the constants may blow
up.

These theorems say that the transform of a function in a regularity class Gh

must be strictly convex in a certain sense, and conversely.

Let ˜̃h = h satisfy the hypotheses of Theorems 7.3 and 7.5. Then f ∈ Gh implies˜̃
f ∈ Gh. This gives a new proof of Corollary 5.5 under the stated conditions.
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