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1. Introduction
The problem of describing the shape of a three-dimensional object is impor-
tant in many applications. Images in medicine and industry are often three-
dimensional nowadays.

One should be able to store the description of a shape in a computer and
be able to compare it with other shapes, using some measure of likeness. One
approach to shape description is to introduce a triangulation of the surface
of the object and then map this triangulation to a sphere. The position of a
point on the surface is then a function on the sphere, and can be expanded
in terms of spherical harmonics. This approach, initiated by Brechbühler et
al. (1995), was the background of my talk at the Berenstein conference, and
it leads to the study of harmonic, or more generally subharmonic, functions
on a graph or rather a directed graph with weight functions that need not be
symmetric; indeed the Dirichlet problem is not interesting in the symmetric
case.

It turns out that the values of harmonic functions often cluster together
in an undesirable way, and to get rid of this clustering is a special problem
of importance in the shape-description project of Ola Weistrand (ms). This
means that, although there is a homeomorphism from the surface of the object
to a sphere, the modulus of continuity of the inverse mapping is terribly large.
There are various remedies, one being to use different weights in the definition
of harmonicity.

This paper is an introduction to the study of harmonic and subharmonic
functions on discrete structures. The Dirichlet problem will be studied and
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explicit solutions in some simple cases will be given. In other cases, however,
explicit formulas corresponding to well-known solutions in the classical setting
are apparently not known.

Harmonic functions on discrete structures were introduced by Phillips &
Wiener (1923). They solved the Dirichlet problem for harmonic functions on
subsets of Zn using the minimum of a positive definite quadratic form. Blanc
(1939) solved the Dirichlet problem on a circular net in the plane by classical
arguments from linear algebra. Duffin (1953) developed a discrete potential
theory, including the study of a fundamental solution for the Laplacian in Z3.

In theoretical physics there has been an interest in a discrete calculus
during several years as witnessed for instance by Novikov & Dynnikov (1997)
and Guo & Wu (2003).

Recently several studies of a discrete Laplace operator have appeared, for
instance that of Chung & Yau (2000), who solve the Dirichlet problem in
terms of eigenfunctions for the Laplacian, and that of Kenyon (2002), where
the weight functions are symmetric. A variant of the discrete calculus is when
the edges of a graph are equipped with a metric, as in the research of Favre
& Jonsson (2004) and Baker & Rumely (2004).

2. Subharmonic functions
Let X be an arbitrary set. We shall say that f is a structural function on X if
f is defined on the Cartesian product X2 = X ×X, has complex values, and
is such that the set {y ∈ X; f(x, y) 6= 0} is finite for every x ∈ X. The set of
all structural functions is an algebra with addition defined pointwise:

(f + g)(x, z) = f(x, z) + g(x, z), (x, z) ∈ X2, (2.1)

and multiplication defined as

(f � g)(x, z) =
∑
y∈X

f(x, y)g(y, z), (x, z) ∈ X2. (2.2)

If X is finite, this is just a matrix algebra, but it is convenient to use the func-
tional notation even then. The multiplication generalizes both pointwise mul-
tiplication and convolution. Indeed, if f(x, y) = F (x, y)δ(x, y) and g(x, y) =
G(x, y)δ(x, y) with the Kronecker delta, then (f � g)(x, z) = F (x)G(x)δ(x, z);
if X is an abelian group and f(x, y) = F (x− y), g(x, y) = G(x− y), then

(f � g)(x, z) =
∑

y

F (x− y)G(y − z) = (F ∗G)(x− z),

the convolution product of F and G.
We shall say that a structural function λ : X2 → R is a weight function if

λ > 0 and
∑

y λ(x, y) > 0 for every x ∈ X.
The inequality
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f(x)
∑
y∈X

λ(x, y) 6
∑
y∈X

λ(x, y)f(y) (2.3)

has a sense for all weight functions λ and all functions f : X → R and even
for functions with values in [−∞,+∞[ if we define 0 · (−∞) = 0.

Let us define the Laplacian ∆f = ∆λf of f at a point x as

∆f(x) =
∑
y∈X

λ(x, y)(f(y)− f(x)), x ∈ X. (2.4)

We shall say that f : X → R is subharmonic at x if ∆f(x) > 0, and that
it is subharmonic in X if ∆f(x) > 0 for all x ∈ X. As usual we shall say
that f is superharmonic if −f is subharmonic, and harmonic at x (in X) if
∆f(x) = 0 (for all x ∈ X, respectively). All this depends of course on the
choice of weight function.

Given a point x ∈ X, the points y such that λ(x, y) > 0 may be called
neighbors of x; note that this relation need not be symmetric. We have a
directed graph where there is an arrow from x to all its neighbors, and we
thus compare the value at x with a weighted mean value over all neighbors of
x.
Example 2.1. Extreme examples are the following. If λ(x, y) = δ(x, y), then
every function is harmonic; ∆δ = 0. If X is finite and λ(x, y) = 1 for all x, y,
then only the constant functions are subharmonic.

Example 2.2. Let X = Z and λ(x, y) = δ(x+1, y). Then a function is subhar-
monic exactly when it is increasing.

Example 2.3. The solutions to a discrete analogue of the heat equation,

u(x, s + 1)− u(x, s) = κ
(
u(x− 1, s)− 2u(x, s) + u(x + 1, s)

)
are λ-harmonic if we define λ((x, s), (y, t)) = κ when (y, t) = (x ± 1, s − 1),
λ((x, s), (y, t)) = 1− 2κ when (y, t) = (x, s− 1), and zero otherwise. Here we
assume that 0 6 κ 6 1

2 . Another discrete analogue of the heat equation is

u(x, s)− u(x, s− 1) = κ
(
u(x− 1, s)− 2u(x, s) + u(x + 1, s)

)
;

here we define λ((x, s), (y, t)) = κ when (y, t) = (x± 1, s), λ((x, s), (y, t)) = 1
when (y, t) = (x, s− 1), and zero otherwise. Here any κ > 0 will do. The two
equations have very different properties.

A natural interpretation of the Laplacian is in terms of random walks: λ(x, y)
is then the transition probability from x to y, assuming that

∑
y λ(x, y) = 1;

see, e.g., Chung & Yau (2000). If the weight function λ is symmetric, i.e.,
λ(x, y) = λ(y, x), then there is an interpretation of harmonic functions as
potentials in an electric circuit. We let 1/λ(x, y) be the resistance of the
link between x and y. Then harmonicity at a point x means exactly that
Kirchhoff’s law holds: the sum of all outgoing currents from x is equal to the
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sum of all incoming currents to x. However, for symmetric weight functions
the Dirichlet problem as we formulate it is not interesting.

Let X = Z2 and let λ(x, y) = 1 if ‖y − x‖1 = 1 and zero otherwise. Then
a function is harmonic at a point x if and only if its value at x is equal to the
arithmetic mean of its values at its four neighbors (x1 ± 1, x2), (x1, x2 ± 1).
We shall call such functions Z2-harmonic and define the Z2-Laplacian as

∆Z2u(x) = u(x1 +1, x2)+u(x1−1, x2)+u(x1, x2 +1)+u(x1, x2−1)−4u(x).

We shall compare this with the classical Laplacian,

∆R2u =
∂2u

∂x2
+

∂2u

∂y2
.

Example 2.4. A second degree polynomial u(x, y) = ax2 + 2bxy + cy2, where
(x, y) ∈ R2 or (x, y) ∈ Z2, has Laplacians ∆R2u = 2(a + c), ∆Z2u = 2(a + c),
respectively. It is therefore harmonic simultaneously in the two settings: if and
only if a + c = 0.

Example 2.5. The exponential functions behave differently in the two cases.
An exponential function R2 3 (x, y) 7→ eαx+βy, where α and β are complex
numbers, is harmonic in the classical sense if and only if β = ±iα. In fact, the
R2-Laplacian is

∆R2eαx+βy = (α2 + β2)eαx+βy.

In particular we have the functions cos(βx)e−βy, β ∈ R, which are harmonic
and tend rapidly to zero in the upper half plane if β is a large positive number.
By way of contrast, the exponential function Z2 3 (x, y) 7→ eαx+βy is Z2-
harmonic if and only if cosh α + coshβ = 2; its Z2-Laplacian is

∆Z2eαx+βy = (2 coshα + 2 cosh β − 4) eαx+βy.

The function h(x, y) = cos(αx)e−βy, where α, β ∈ C, is harmonic if and only
if cos α + coshβ = 2, thus if and only if

e−β = 2− cos α±
√

(2− cos α)2 − 1.

If we take α real here and choose the minus sign, we note that e−β satisfies
3 −

√
8 6 e−β 6 1, so that the functions tend to zero, but not as rapidly as

in the real case. Choosing α = π we get e−β = 3−
√

8 and

h(x, y) = cos(πx)e−βy = (−1)x
(
3−

√
8
)y

, (x, y) ∈ Z2,

with the fastest possible decay as y → +∞ for this class of functions. Therefore
R2-harmonic functions cannot be well approximated by Z2-harmonic ones. We
can get a faster decay as y → +∞ only if we allow growth in the x direction:
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h(x, y) = eiαx−βy is harmonic for large positive β and a suitable α, but then
α cannot be real, implying that h is unbounded on the real axis.

We shall say that a weight function λ is normalized if
∑

y∈X λ(x, y) = 1 for all
x ∈ X. To any weight function λ we associate a normalized weight function

λ′(x, y) =
λ(x, y)∑

z∈X λ(x, z)
, (x, y) ∈ X2. (2.5)

If λ is normalized, the Laplacian may be written

∆f(x) =
∑
y∈X

(λ(x, y)− δ(x, y))f(y), x ∈ X.

We note that I+∆ is an increasing operator: f 6 g implies (I+∆)f 6 (I+∆)g.
Proposition 2.6. Assume that u is subharmonic with respect to two weight
functions λ and µ. Let c : X → R be a function with nonnegative values. Then
u is subharmonic with respect to λ′ (defined by (2.5)), λ(x, y)+c(x)µ(x, y), and
λ�µ′. Moreover it is subharmonic with respect to λ(x, y)+g(x)δ(x, y) for any
real-valued function g such that g(x)+λ(x, x) > 0 and g(x)+

∑
y∈X λ(x, y) > 0

for all x ∈ X. (We may thus choose g(x) = −λ(x, x) except when λ(x, y) = 0
for all y 6= x.)

The proofs are straightforward. We note that the Laplacian of λ � µ is given
by

∆λ�µu(x) =
∑

y

λ(x, y)∆µu(y) + ∆λu(x) (2.6)

if µ is normalized. If both λ and µ are normalized, this can be written suc-
cinctly as

I + ∆λ�µ = (I + ∆λ) ◦ (I + ∆µ). (2.7)

Example 2.7. Let X be the infinite strip {x ∈ Z2;x2 = 0, 1} with only two
pixels in the vertical direction. We define the weight function for (x, y) ∈ X
by λ(x, y) = 1 when y = (x1 ± 1, x2); λ(x, y) = κ when y = (x1, 1 − x2) and
zero otherwise. Here κ > 0 is a kind of coupling constant. Thus

∆u(x) = u(x1− 1, x2) + κu(x1, 1−x2) + u(x1 + 1, x2)− (2 + κ)u(x), x ∈ X.

Let τ > 1 be the largest solution to the equation τ2 − 2(κ + 1)τ + 1 = 0 and
put γ = log τ . The function

U(x) = (2x2 − 1)τx1 = (2x2 − 1)eγx1 , x ∈ X, (2.8)

is harmonic.
By combining U and its reflection in the x1 variable and then performing

a translation we get further examples for all choices of real constants a and
C,

U0(x) = (2x2 − 1) cosh γ(x1 − a) + C(x1 − a), x ∈ X, (2.9)
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and

U1(x) = (2x2 − 1) sinh γ(x1 − a) + C(x1 − a), x ∈ X, (2.10)

with odd symmetry in the line x1 = a. This is an infinitely long finger, and
the solution will serve as a building block for the case of a finitely long finger.

3. The Dirichlet problem on finite sets
Given a weight function λ on a set X we define the boundary of X, denoted
by ∂X, as the set of all points x ∈ X such that λ(x, y) = 0 for all y 6= x. Its
complement X◦ = X r ∂X is the interior of X. We note that a point x has
a neighbor different from x if and only if x is in the interior.

Given a point a ∈ X we define N0(a) = {a} and then inductively

Nk+1(a) = {y;λ(x, y) > 0 for some x ∈ Nk(a)}, k ∈ N.

The union of all the Nk(a) will be called the λ-component of a and be denoted
by C(a). Clearly C(a) = {a} if and only if a is a boundary point.

We shall say that X is boundary connected if C(a) intersects ∂X for every
a ∈ X◦. (In particular ∂X is nonempty if X is boundary connected and
nonempty.) We shall say that X is connected if C(a) = X for all a ∈ X◦.
(Here ∂X may be empty.)

Proposition 3.1. If X is finite and boundary connected, then supX u =
sup∂X u for all subharmonic functions u on X. The converse holds.

Proof. Take a point a ∈ X such that u(a) = supX u = A. Then u must take
the value A also at all points y such that λ(a, y) > 0, in other words in the set
N1(a). Continuing this argument, we see that u = A at all points in Nk(a)
and so in their union C(a). By hypothesis C(a) contains a point in ∂X. We
are done.

For the converse we note that the characteristic function χC(a) is subhar-
monic in X and if C(a) is contained in X◦, then it is zero on the boundary
but takes the value one at a.

Example 3.2. If X is boundary connected and u is harmonic and constant
on ∂X (in particular if ∂X consists of just one point), then u is constant in
all of X. It might be surprising that one point suffices to keep u constant. If
X = [0,m]Z with ∂X = {0} and λ(x, y) = 1 when x ∈ X◦ and y ∈ X with
y = x ± 1 and zero otherwise, then this result applies. (The harmonicity at
x = m forces u(m − 1) to be equal to u(m).) If on the other hand X is the
infinite interval [0,+∞[Z, then all functions u(x) = ax + b are harmonic.
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Proposition 3.3. If X is connected (finite or infinite), then a subharmonic
function which attains its supremum at an interior point must be constant.
The converse holds.

Proof. Assume that there exists a point a ∈ X such that u(a) = supX u = A.
Then, just as in the previous proof, u must take the value A also at all points
in C(a). But by assumption this is all of X.

For the converse we note again that χC(a) is subharmonic. If C(a) 6= X it
is not constant.

We shall now take a look at the Dirichlet problem in finite sets X. This is
about finding u such that ∆u = f in X and u = g on ∂X for given functions
f and g. Since a function is always harmonic at a boundary point, we must
have f = 0 on ∂X; equivalently, we let f be given in X◦ and require only that
∆u = f in the interior X◦.

From linear algebra we know that a system of equations ∆u(x) = f(x)
has a solution if f satisfies as many independent linear conditions as there are
independent functions ρ satisfying∑

x∈X

ρ(x)
(
λ(x, y)− δ(x, y)

)
= 0, y ∈ X. (3.1)

More precisely, if (3.1) holds, then we must have
∑

x ρ(x)f(x) = 0. (We assume
λ to be normalized here.) We can always take ρ(x) = δ(a, x) if a is a boundary
point. This gives the condition that f(a) must vanish as we already noted.
But there may be other such functions ρ. For instance if λ is symmetric,
λ(x, y) = λ(y, x), then we may take ρ equal to 1 identically, and we conclude
that the equation ∆u = f can be solved only if

∑
x∈X f(x) = 0. In this case

the set X is not boundary connected: C(a) is contained in X◦ for all a ∈ X◦.
Even though the equation ∆u(x) = f is a finite system of linear equations

it is convenient to express conditions for solvability in terms of subsolutions,
just as in the real case. The resulting theorem is more general than those of
Phillips & Wiener (1923) and Blanc (1939).
Theorem 3.4. Let X be a finite set and λ a weight function on X. Assume
that X is boundary connected. Let two functions be given: f > 0 in X◦ and
g on ∂X. Assume also that the Dirichlet problem has a subsolution, i.e., that
there exists a function w such that ∆w > f in X◦ and w 6 g on ∂X. Then
the Dirichlet problem ∆u = f in X◦, u = g on ∂X, has a unique solution.

We note that if f is identically zero, then there is always a subsolution: we
may take w as a constant not exceeding infx∈∂X g(x). Also, if X is a subset
of Z2 and we define λ(x, y) = 1 when ‖y− x‖1 = 1 and the five points y with
‖y−x‖1 6 1 all lie in X, and λ(x, y) = δ(x, y) otherwise, then there is always
a subsolution: we may take w(x) = c1‖x‖2

2− c2 for sufficiently large constants
c1 and c2.
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As already noted before the statement of the theorem, there are cases
when there is no solution (hence no subsolution).
Proposition 3.5. Under the hypotheses in Theorem 3.4, the unique solution
to the Dirichlet problem is given as the supremum of all subsolutions: define

u(x) = sup
w

(
w(x);∆w > f in X◦ and w 6 g on ∂X

)
.

Then u solves the Dirichlet problem: ∆u = f in X◦, u = g on ∂X.

Proof. We define an operator T by the equations T (w) = w + ∆w − f in X◦,
T (w) = g on ∂X. We assume here that λ is normalized, i.e., that

∑
y λ(x, y) =

1, which is no restriction. If w is a subsolution, then T (w) > w. Then also T (w)
is a subsolution in view of the fact that I + ∆ is increasing: (I + ∆)T (w) >
(I+∆)w = T (w)+f , which implies that ∆T (w) > f . The boundary condition
is of course satisfied.

Let now u be the supremum of all subsolutions. Since there exists at least
one subsolution, u > −∞. On the other hand u < +∞, for a subsolution can
never exceed supx∈∂X g(x) in view of Proposition 3.1. Thus u has real values.
We claim that u itself is a subsolution. Let w be any subsolution. Then u > w
and, since I + ∆ is increasing, also (I + ∆)u > (I + ∆)w > w + f . Taking the
supremum over all w we get (I + ∆)u > supw w + f = u + f , which shows
that u is a subsolution.

Now also T (u) = u + ∆u − f is a subsolution; hence T (u) 6 u. But
we already proved that T (u) > u. Therefore T (u) = u, which implies that
∆u = f .

Proof of Theorem 3.4. Only uniqueness remains to be considered. Let us as-
sume that we have two solutions u and v. Then their difference u − v is
harmonic and Proposition 3.1 shows that supX(u − v) = sup∂X(u − v). But
u− v = g − g = 0 on the boundary. Hence u− v 6 0 in X; on interchanging
the roles of u and v we obtain v − u 6 0 in X.

Proposition 3.6. There is a comparison principle: if X is finite and boundary
connected, and if u and v satisfy ∆u > ∆v in X◦ and u 6 v on ∂X, then
u 6 v in all of X.

Proof. The function w = u − v is subharmonic and satisfies w 6 0 on the
boundary. Hence also in the interior by Proposition 3.1.

Remark 3.7. We can get the solution as the limit of a sequence. We may start
with u0 = w, any subsolution, and then define uj+1 = T (uj), j ∈ N. The
sequence (uj) is increasing as we have seen, and all the uj are subsolutions.
It is bounded from above, for in view of Proposition 3.1 it can never exceed
supx∈∂X g(x). Hence the sequence admits a limit u. If we pass to the limit in
the definition uj+1 = uj +∆uj−f we obtain ∆u = f . The boundary condition
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u = g on ∂X is preserved. The convergence may be very slow, however. Better
start with a very good approximation.

Example 3.8. Let X be the cube {0, 1}n in Zn, and let the boundary consist
of the two points 0 and (1, 1, . . . , 1). Let the weight function be λ(x, y) = 1 if
x is an interior point and ‖y−x‖1 = 1, and zero otherwise. Then the solution
to the Dirichlet problem with zero Laplacian and boundary values u(0) = 0,
u(1, 1, . . . , 1) = 1 is

u(x) = C
k−1∑
j=0

(
n− 1

j

)−1

where k =
n∑

j=1

xj and C =

n−1∑
j=0

(
n− 1

j

)−1
−1

.

Here (
n− 1

j

)−1

=
j!(n− 1− j)!

(n− 1)!

is the inverse of the binomial coefficient. For example, in the six-dimensional
cube we have u(0, 0, 0, 0, 0, 1) = 5

13 and u(0, 0, 0, 0, 1, 1) = 6
13 , the other values

being easily obtained from these two and the symmetry.

Example 3.9. Let us look at a narrow rectangle in Z2 with boundary at two
vertices: Xm = {x ∈ Z2;x1 = 0, . . . ,m, x2 = 0, 1}. Let the boundary be
∂Xm = {(0, 0), (m, 0)} and let the weight function be λ(x, y) = δ(x, y) if
x ∈ ∂Xm; λ(x, y) = 1 if y = (x1 ± 1, x2) and x, y ∈ Xm; and λ(x, y) =
κ when y = (x1, 1 − x2), x1 = 1, . . . ,m − 1 or (x, y) = ((0, 1), (0, 0)) or
(x, y) = ((m, 1), (m, 0)). Then the function U1 defined by (2.10) is harmonic
at all points in Xm except at the two vertices (0, 1) and (m, 1) where we have
changed the weight function compared with the infinite strip in Example 2.7.
This is true for all choices of the constants a and C. We now choose a = 1

2m
to get odd symmetry in the line x1 = 1

2m. If κ > 0, there is a unique constant
C such that U1 is harmonic at (0, 1) (and by the symmetry also at (m, 1)).
This value of C is

C = − 1
2 (τ − 1)

(
τm/2 + τ−m/2−1

)
= −2 sinh( 1

2γ) cosh 1
2γ(m + 1),

and the boundary values are

U1((0, 0)) = −U1((m, 0)) = sinh 1
2γm + m sinh( 1

2γ) cosh 1
2γ(m + 1),

where τ and γ = log τ are defined as in Example 2.7. After a normalization
we get the solution u = U1/U1((m, 0)) to the Dirichlet problem ∆u = 0 in
Xm, u = −1, 1 at the two boundary points (0, 0) and (m, 0) respectively. How
much does it deviate from the affine function v(x) = −1 + 2x1/m, which is
harmonic at all points x ∈ Xm except at the two vertices (0, 1) and (m, 1)?
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4. Clustering of values
We shall now study a phenomenon which can be expressed as clustering of
values of harmonic functions.

On a long narrow object, clustering can be severe as shown by the following
example. But by relaxing the coupling between strategically chosen parts of
the structure, the clusters can be resolved.
Example 4.1. Let us consider Xm = {x ∈ Z2; 0 6 x1 6 m, 0 6 x2 6 1},
but now with the boundary ∂X = {(0, 0), (0, 1)}. We prescribe the boundary
values g(0, 0) = −1, g(0, 1) = 1. The weight function shall be λ(x, y) = 1 if
x is an interior point and y = (x1 ± 1, x2) ∈ Xm; λ(x, y) = κ > 0 if x is an
interior point and y = (x1, 1 − x2); otherwise λ(x, y) = 0. We would like to
illustrate what happens if we vary the weight by varying the coupling constant
κ. When κ = 0 there is no coupling between the points (x1, 0) and (x1, 1) and
the solution to the Dirichlet problem is u(x) = 2x2 − 1.

In view of the symmetry, the solution to the Dirichlet problem with zero
Laplacian must satisfy u(x1, 0) = −u(x1, 1). We define u as AU0 in (2.9),
where C = 0 and where a and A are constants to be determined. This function
is harmonic everywhere in Xm except possibly when x1 = m. We determine a
so that it becomes harmonic also at the two points (m, 0), (m, 1); this happens
if and only if a = m + 1

2 . To give the function the value 1 at (0, 1) we define

A =
1

U0((0, 1))
=

1
cosh γ(m + 1

2 )
=

2τ−m−1/2

1 + τ−2m−1
.

The function v(x) = (2x2 − 1)τ−x1 is harmonic in the infinite set X =
N× {0, 1}. Its restriction to 0 6 x1 6 m is close to being harmonic in X. In
fact, it is harmonic at every point x ∈ X with x1 < m; at the point (m, 1) it
is subharmonic, and at the point (m, 0) superharmonic:

∆v(m, 1) = −∆v(m, 0)

= v(m− 1, 1) + κv(m, 0)− (1 + κ)v(m, 1) = (1− 1/τ)τ−m,

which is a small number for large m. So it is natural to guess that v is a good
approximation of u.1 In fact,

u(j, 1) = aj = τ−j +
τ−2m−1(τ j − τ−j)

1 + τ−2m−1
.

The relative deviation of the true solution u from the comparison function v
is
1 One could perhaps believe that it would be enough to change v at the points

(m, 1) and (m, 0) so that it becomes subharmonic or superharmonic in all of X
(to be able to use the comparison principle). But this is not possible! One must
change the value at several points.
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u(j, 1)− v(j, 1)
v(j, 1)

=
aj − τ−j

τ−j
=

τ−2m−1(τ2j − 1)
1 + τ−2m−1

6 τ2(j−m)−1 6
1
τ

.

It is clear that the solution u to the Dirichlet problem decays exponentially
and that the values lie extremely close to each other if for instance κ = 1 and
m = 100. Then τ = 2 +

√
3 ≈ 3.73 and τ−100 ≈ 6 · 10−58. If κ is small, the

decay is slower: κ = .01 yields τ ≈ 1.15 and τ−100 ≈ 7 · 10−7. In this simple
example it is thus possible to dissolve the clusters by relaxing the coupling.

Example 4.2. Let us look at an example in three dimensions. Let Ym be the
set of points x = (x1, x2, x3) in Z3 satisfying 0 6 x1 6 m, 0 6 x2, x3 6 1.
Its boundary shall be {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}, the four points in
Ym with x1 = 0. For an interior point x we take λ(x, y) = 1 if y ∈ Ym,
‖y−x‖1 = 1, y1 = x1; we take λ(x, y) = κ if y ∈ Ym, ‖y−x‖1 = 1, y2 = 1−x2;
and zero otherwise. We define boundary values g(0, 0, 0) = g(0, 0, 1) = −1,
g(0, 1, 0) = g(0, 1, 1) = 1. Then the solution to the Dirichlet problem with
zero Laplacian satisfies −u(x1, 0, x3) = u(x1, 1, x3) = ax1 , where the sequence
(aj) is the same as in the previous example. Thus the phenomenon of rapid
exponential decay occurs also in three dimensions when there is a narrow
finger; in this case consisting of four voxels at each level x1 = constant. Of
course this finger can be a part of a larger set provided the latter is symmetric
around the plane x2 = 1

2 .

5. The Dirichlet problem on infinite sets
Let us take a look at a Dirichlet problem on infinite sets.
Theorem 5.1. Let X be a finite or infinite set and λ a weight function on
X. We shall consider a Dirichlet problem,

∆u = f in X◦, u = g on Y,

where Y is a subset of X, not necessarily contained in the boundary, and where
f and g have real values. Assume that X can be written as a disjoint union
X =

⋃N
0 Xj or X =

⋃∞
0 Xj with X0 ⊂ Y . In the finite case we assume that

XN is contained in the boundary. Assume moreover that for every y ∈ Xj+1

either y belongs to Y or there is a unique x ∈ Xj such that λ(x, y) > 0, that

{z;λ(x, z) > 0} ⊂ X0 ∪ · · · ∪Xj ∪ {y},

and that every x ∈ Xj occurs in this way. (There is thus a bijection between
Xj+1 r Y and Xj.) Then the Dirichlet problem has a unique solution.

Proof. We define first u = g in X0. Then, if u has already been defined in

X0 ∪ · · · ∪Xj
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satisfying ∆u = f in X0 ∪ · · · ∪ Xj−1 (the empty set if j = 0) and u = g in
Y ∩(X0∪· · ·∪Xj), we define u at a point y ∈ Xj+1 so that it satisfies ∆u = f
at every point in Xj . Indeed, if y ∈ Y we just define u(y) = g(y); if not, we
need to solve the equation

λ(x, y)(u(y)− u(x)) +
∑
z 6=y

λ(x, z)(u(z)− u(x)) = f(x),

where x is uniquely determined from y. The equation has only one unknown
u(y); the coefficient in front of it is nonzero by hypothesis and all the z that
occur in the sum belong to X0 ∪ · · · ∪ Xj . We do this for every y ∈ Xj+1.
The extended function is now defined in X0 ∪ · · · ∪Xj+1 and satisfies ∆u = f
in X0 ∪ · · · ∪Xj , so the induction step is completed, and the induction goes
on in the infinite case. In the finite case it stops, and we note that we need
not require that u be harmonic in XN since this is automatic in view of our
assumption that XN is contained in the boundary.

Example 5.2. Let X = {x ∈ Z2;x2 > 0} with λ(x, y) = 1 if ‖y−x‖1 = 1, x, y ∈
X, and zero otherwise. Let Y = {x ∈ X;x2 = 0}. (Note that Y is not con-
tained in the boundary; the latter is in fact empty.) Here we can define Xj =
{x ∈ X;x2 = j}, j ∈ N. The theorem shows that the Dirichlet problem
∆u = f in X, u = g on Y has a unique solution. This problem is equiva-
lent to constructing a solution (with another weight function) in Z2 which is
symmetric in the second variable.

Example 5.3. Let X = {x ∈ Z2;x1 > |x2|} with λ(x, y) = 1 if ‖y − x‖1 = 1,
x, y ∈ X, and zero otherwise. Let Y = {x ∈ X;x1 = |x2|}. (The boundary is
empty also in this case.) We define now Xj = {x ∈ X;x1 = j}. The theorem
says that there is a unique solution to the Dirichlet problem. This problem is
equivalent to solving the Dirichlet problem with a function u which is sym-
metric in the sense that u(x1, x2) = u(x2, x1) and u(x1, x2) = u(−x2,−x1)
and prescribed on the diagonals.

6. The Poisson kernel
The Poisson kernel in two real variables is

Py(x) =
1
π

y

x2 + y2
, (x, y) ∈ R×R+.

It satisfies the convolution equations

Py ∗ Py′ = Py+y′ , y, y′ ∈ R+,

where the convolution, denoted by ∗, is in the x-variable only. Its Fourier
transform with respect to x is
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P̂y(ξ) =
∫
R

Py(x)e−iξxdx = e−y|ξ|, y ∈ R+, ξ ∈ R,

from which the convolution property is also evident; P̂y = P̂1

y
for all y > 0. If

we define P0 as the Dirac measure at the origin, then the convolution equation
extends to all y > 0.

The Poisson kernel in Z2 shall be defined in a similar way. It is a function
Qy(x) of (x, y) ∈ Z×N which is Z2-harmonic at every point (x, y) with y > 1
and satisfies Qy ∗Qy′ = Qy+y′ . Its Fourier transform

Q̂y(ξ) =
∑
x∈Z

Qy(x)e−ixξ, ξ ∈ R,

satisfies Q̂y = Q̂1

y
, y ∈ N.

If we use the harmonicity of Q at points (x, y) with y = 1 and the condition
that Q0 = Q0

1 = δ, Q2 = Q1 ∗ Q1, then Q̂1 must satisfy an equation of the
second degree,

Q̂1(ξ)2 + e−iξQ̂1(ξ) + eiξQ̂1(ξ) + 1 = 4Q̂1(ξ),

so that
Q̂1(ξ) = 2− cos ξ ±

√
(2− cos ξ)2 − 1, ξ ∈ R,

where we may choose the sign ± for each ξ ∈ R in a measurable way. If we
always choose the negative sign, we get a decreasing function of y,

Q̂y(ξ) =
(
2− cos ξ −

√
(2− cos ξ)2 − 1

)y

, y ∈ N, ξ ∈ R.

We can state that Qy is the inverse Fourier transform of Q̂y = Q̂1

y
:

Qy(x) =
1
2π

∫ π

−π

Q̂1(ξ)yeiξxdξ, x ∈ Z, y ∈ N.

So there is an explicit formula for Q̂y but hardly for Qy. However, Qy(x) is
very close to Py(x).

7. Fundamental solutions
In two real variables a well-known fundamental solution for the Laplacian is

E(x, y) =
1
4π

log(x2 + y2), (x, y) ∈ R2.

We would like to determine a fundamental solution of the Z2-Laplacian.

Lemma 7.1. Let a be a nonnegative number and define

Ea(x, y) = log(a + x2 + y2) = log(a + r2), (x, y) ∈ Z2,

where r =
√

x2 + y2. It is subharmonic in all of Z2 if and only if a > 1
2 .
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Proof. We find that ∆Ea = log N
D , where

N = r8 + 4ar6 + (6a2 + 4a− 2)r4 + (4a3 + 8a2 + 4a)r2 + (a + 1)4 + 16x2y2

and
D = (a + r2)4 = r8 + 4ar6 + 6a2r4 + 4a3r2 + a4.

Now this function is nonnegative if and only if N/D > 1; equivalently
N −D > 0. We get

N −D = (4a− 2)r4 + (8a2 + 4a)r2 + 4a3 + 6a2 + 4a + 1 + 16x2y2,

from which the result is obvious.

We see that for all a, the function is very close to being harmonic far away
from the origin: ∆Ea = O(r−4) as r → +∞. When a = 0 the function is
superharmonic in sectors of openings 45◦ around the x-axis and y-axis far
away from the origin, and subharmonic in sectors of openings 45◦ around the
diagonals far away from the origin.

The fundamental solution E satisfies the differential equation ∆E = δ. On
taking the Fourier transform in the Schwartz space S ′(R2) we get

−(ξ2 + η2)Ê(ξ, η) = 1,

so that Ê is a tempered distribution defined in R2 as an extension of the
homogeneous function −(ξ2 + η2)−1 defined in R2 r {0}. One such extension
is the pseudofunction −pf(ξ2 + η2)−1 defined as the finite part of an integral.

Similarly, a fundamental solution for the Z2-Laplacian shall satisfy ∆Z2F =
δ, which implies that its Fourier transform, defined as a distribution in R2,
or rather in (R mod 2π)2, shall satisfy

(2 cos ξ + 2 cos η − 4)F̂ (ξ, η) = 1.

The inverse of the factor in front of F̂ has the same kind of singularity at the
origin as −(ξ2 + η2)−1. Therefore F̂ can be defined by the finite part of an
integral of (2 cos ξ + 2 cos η − 4)−1. The fundamental solution F is its inverse
Fourier transform. Can one find an explicit formula for F?

For the corresponding problem in Z3, Duffin (1953:239) determined the
first terms in the asymptotic development as ‖x‖2 → +∞ to be

F (x) =
1

4π‖x‖2
+

1
32π‖x‖3

2

[
−3 +

5(x4
1 + x4

2 + x4
3)

‖x‖4
2

]
+ O

(
‖x‖−5

2

)
, x ∈ Z3.

Burkhardt (1997:1159) proved that there exist asymptotic developments to
any order and gave formulas that allow us to calculate them; he gave explicit
formulas for the terms of order −5 and −7.
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