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Abstract. The paper gives an account of the work of Vyacheslav Pavlovich
Zakharyuta in the domain of complex analysis, in particular pluripotential

theory, showing the influence of his research during several decades.

1. Introduction

Professor Vyacheslav Pavlovich Zakharyuta has, over many years, made outstand-
ing contributions to mathematics. He has very early found important phenomena
in complex analysis, thereby initiating new roads of research. I shall try here to out-
line some of the most significant of his contributions to analysis in several complex
variables.

I cannot limit myself to an account of his results only; I find it important
to put them into the framework of a more general development of the field of
several complex variables, especially pluripotential theory and the theory of bases
of topological vector spaces of holomorphic functions.

Professor Zakharyuta has also been a very successful advisor of graduate stu-
dents. More than 30 Master Degree students have finished their degree with him
as an advisor, and eleven doctoral theses were successfully defended with him as
an advisor or co-advisor: he has been the principal advisor of S. N. Kadampatta,
N. I. Skiba, P. A. Chalov, N. S. Manzhikova (Nadbitova), Alexander P. Goncharov,
L. V. Runov, V. A. Znamenskĭı, M. A. Shubarin, and B. A. Derzhavets. He has
been assistant advisor of Thabet Abdeljavad and Erdal Karapınar.

2. The global extremal function

Józef Siciak introduced (1961, 1962) an extremal function of several complex vari-
ables analogous to the Green function for the unbounded component of the comple-
ment of a compact set in the complex plane and with pole at infinity. He emphasized
that the Green function plays a fundamental role in the theory of interpolation and
approximation of holomorphic functions of one variable by polynomials. Indeed his
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function was to play a similar role in several variables and his article became the
starting point for a rich development.

The extremal function z 7→ Φ(z, E, b) depends on a given subset E of Cn
and a given function b defined on E. Siciak’s original definition used Lagrange
interpolation of the values exp b(pν) to define a polynomial taking those values at
certain points pν in E, then choosing the points in an extremal way (in analogy with
the Fekete points in one variable) and finally passing to the limit. A consequence
was the Bernstein–Walsh inequality for polynomials P of degree at most j, viz.

(2.1) |P (z)| 6 ‖P‖E Φ(z, E, 0)j , z ∈ Cn,

where the norm is the supremum norm on E.
Siciak proved that the strict sublevel sets of the extremal function, i.e., the sets

ER = {z; Φ(z, E, 0) < R}, R > 1,

determine the possible holomorphic extensions of a given function f on a compact
set E. More precisely, assuming Φ( · , E, 0) to be continuous, f was shown to admit
a holomorphic extension to the open set ER if and only if

lim sup
j→∞

‖f − πj‖1/jE 6 1/R,

where πj is a polynomial of degree at most j which best approximates f on E
(1962:346). This was a striking generalization of the corresponding one-dimensional
result, due to Bernstein (in the case of an interval), and Walsh and Russell; cf. J. L.
Walsh (1935:79).

Later (2.1) was taken as the definition, i.e., one usually defined

(2.2) Φ(z, E, 0) = sup
j>1

sup
P

(
|P (z)|1/j ; ‖P‖E 6 1

)
, z ∈ Cn,

where P varies in the space of polynomials of degree at most j.
In a talk at an All-Union Conference in Kharkov in 1971, Zakharyuta intro-

duced an extremal function defined in terms of plurisubharmonic functions

VE(z) = sup
u

(
u(z); u ∈ L , u 6 0 on E

)
, z ∈ C,

where L denotes the class of plurisubharmonic functions with logarithmic growth,
i.e.,

L =
{
u ∈ PSH(Cn); supz∈Cn

(
u(z)− log(1 + ‖z‖)

)
< +∞

}
.

Here and in the sequel, log = loge = ln is the natural logarithm.
This definition was published in his Sbornik paper (1975:382) in connection with

a study of multidimensional analogues of classical characteristics of compacta such
as the transfinite diameter, Chebyshev constants, and capacity. The main result
of that paper is that, in all dimensions, the limit in Franciszek Leja’s definition
of the transfinite diameter exists, and that the transfinite diameter is equal to the
Chebyshev constant.

The methods in the Sbornik paper have been widely used, for instance in arith-
metic geometry by Robert Rumely and Chi Fong Lai (1994) and by these two
authors joint with Robert Varley (2000). In December, 2007, Thomas Bloom and
Norman Levenberg deposited a paper (2007) in the ArXiv, where they discuss a gen-
eral framework for various types of transfinite diameter in the spirit of Zakharyuta
(1975).
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Zakharyuta’s definition of the extremal function was introduced in connection
with his new proof of the Bernstein–Walsh theorem based on the use of orthogonal
bases of polynomials published in (1976/77).

Liouville’s theorem for plurisubharmonic functions says that a nonconstant
plurisubharmonic function cannot grow slower than a positive constant times the
function z 7→ log ‖z‖. Therefore L is called the class of plurisubharmonic functions
of minimal growth. It is a subclass of PSH(Cn) of great interest. The upper semi-
continuous envelope V ∗E of VE is either plurisubharmonic (when E is not pluripolar)
or identically +∞ (when E is pluripolar).

If we use (2.2) to define Φ(z, E, 0), it is obvious that log Φ( · , E, 0) 6 VE for any
set E. Zakharyuta proved that V ∗K = log Φ( · ,K, 0) = VK if K is a compact set such
that V ∗K is zero on K (1976/77:146). Siciak (1976, 1981, 1982:23) proved that VK =
log Φ( · ,K, 0) for general compact sets K. A fourth proof, using Hörmander’s L2

methods, was given by Jean-Pierre Demailly in his notes (1989). Thus a definition
that had its origin in interpolation problems in one complex variable came to be
directly expressed using plurisubharmonic functions.

A striking characterization of algebraic varieties in terms of the global extremal
function was established by Azimbay Sadullaev (1982). Let a connected analytic
variety A in an open subset of Cn be given as well as a compact subset K of A,
and assume that K is not pluripolar in A. Then VK is locally bounded on A if and
only if A is a piece of an algebraic variety.

It is not easy to calculate VE . Sadullaev (1985) determined VK when K is a ball
in Rn ⊂ Cn and noted that it is not a smooth function. More generally, Magnus
Lundin (1985) determined VK when K is a convex, symmetric, compact subset of
Rn ⊂ Cn. From the special form of VK in Lundin’s case, one can see easily that
the sublevel sets

{
z ∈ Cn; V ∗K(z) < c

}
, c ∈ R, are convex. It is a general result

of László Lempert that these sublevel sets are convex if K is any convex compact
subset of Cn. Lempert’s result relies on a beautiful description of VK (published
by Siegfried Momm 1996:160) when K is strongly convex and has real analytic
boundary, viz.

VK(z) = inf
r,f

(
log r; r > 1, f(r) = z

)
, z ∈ Cn rK,

where f varies in the class of all holomorphic mappings of the complement of the
closed unit disk into Cn such that f(t)/|t| is bounded and f has a continuous
extension to the unit circle, mapping it into K.

This description has been rendered even more beautiful by the use of the
method of disk functionals developed by Finnur Lárusson and Ragnar Sigurds-
son; see their paper on the Siciak–Zakharyuta extremal function (2005). It works
even for weighted functions as shown by Magnússon and Sigurdsson (2007). The
disk envelope formulas for VK can also be used to characterize polynomial convexity
(Lárusson and Sigurdsson 2007).

Bloom (1997) presented a survey of several results from pluripotential theory,
in particular those of Zakharyuta. An essential role is played by the global extremal
function.

Bedford and Taylor (1986) gave precise estimates for the measure (ddcVK)n

when K is compact and contained in Rn and gave an exact expression for it when
K is convex and symmetric.



4 CHRISTER O. KISELMAN

Zeriahi (1996) investigated the global extremal function on nonsingular alge-
braic varieties and extended results in Cn to that case. To treat the more general
case of analytic spaces, he introduced an axiomatic approach (2000) in that he
replaced the class L by a class of functions satisfying certain axioms.

The global Siciak–Zakharyuta extremal function has had a great significance in
many results on approximation and the problems of isomorphisms between spaces
of holomorphic functions, and even in real analysis; see, e.g., Paw lucki and Pleśniak
(1986) and the surveys by Klimek (1991) and Zakharyuta (1994).

3. Capacities defined by the global extremal function

The notion of capacity appeared in classical potential theory as a measure of the
size of sets in Rn, and was a model for the capacity of a metal conductor to hold
electric charges: how many coulombs can you put into the conductor while not
letting the tension exceed one volt? An early attempt to generalize this notion
to several complex variables was the Γ-capacity of Ronkin (1971). It is built up
from the logarithmic capacity in C using induction over the dimension, and is not
invariant under biholomorphic mappings. Zakharyuta (1975) and Siciak (1981)
studied the functionals

(3.1) γ(E) = lim sup
‖z‖→+∞

(
VE(z)− log ‖z‖

)
and c(E) = exp(−γ(E)), E ⊂ Cn.

In fact, for n = 1, c(E) is the classical logarithmic capacity of E, so it was
natural to expect that the behavior of the extremal function at infinity would reflect
important properties of the set. The functional c was called a capacity by analogy
(e.g., by Zakharyuta 1975:383), without claiming that it is actually a capacity in
Choquet’s sense.

Gustave Choquet (1915–2006) introduced an axiomatic approach to capacities
in his immensely influential paper (1955). He defined a capacity as a functional

ϕ : E → [−∞,+∞]

which is defined on an arbitrary family E of subsets of a topological space X and
which is increasing and continuous on the right (1955:174). He then defined the
interior capacity related to ϕ as

ϕ∗(A) = sup
E

(
ϕ(E); E ∈ E , E ⊂ A

)
, A ⊂ X,

with the modification that ϕ∗(A) = infE(ϕ(E); E ∈ E ) when there is no element
of E contained in A (this is to define a zero level for ϕ), and the exterior capacity
as

ϕ∗(A) = inf
ω

(
ϕ∗(ω); ω open, ω ⊃ A

)
, A ⊂ X.

Choquet called a set capacitable if the interior and exterior capacities agree on
it. The continuity on the right means precisely that ϕ(E) = ϕ∗(E) for all E ∈ E ,
and clearly ϕ∗(E) = ϕ(E) when E ∈ E , so all elements of E are capacitable. For
which other sets A does the equality ϕ∗(A) = ϕ∗(A) hold?

Before Choquet it was not known whether all Borel sets are capacitable for
the classical Newtonian capacity (Cartan 1945:94). Choquet solved the problem
affirmatively. His famous theorem of capacitability (1955:223) says that every K-
analytic set is capacitable for every capacity in a very large class. The class of
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K-analytic sets contains all Borel sets in Rn and in particular the sets

{x ∈ Rn; u(x) < u∗(x)},
where u = lim supuj , (uj) being a sequence of subharmonic functions which is
locally bounded from above.

Soon afterwards Choquet streamlined his definition. Specialized to the case of
the family of all compact subsets of a Hausdorff space X, his new definition read
as follows (1959:84): an abstract capacity (later to become known as a Choquet
capacity) is an increasing functional f defined on all subsets of X with values in
[−∞,+∞] and satisfying

(3.2) f
(⋂

Kj

)
= lim f(Kj) and f

(⋃
Aj
)

= lim f(Aj)

for every decreasing sequence (Kj)j∈N of compact sets and every increasing sequence
(Aj)j∈N of arbitrary subsets of X.

In his new theory, he called a set A f -capacitable if f(A) = supK f(K), the
supremum being taken over all compact sets K contained in A. All K-Suslin sets
(in many cases the same as the K-analytic sets) are capacitable for all abstract
capacities. Links between the two systems of axioms are provided by two facts:

(i) The exterior capacity associated to a capacity in Choquet’s theory (1955)
is always an abstract capacity (Brelot 1959:59); and

(ii) An abstract capacity in the sense of Choquet (1959) is a capacity in the
sense of Choquet (1955) when E is the family of compact sets, provided
that the underlying space is locally compact.

For a full account of the history of potential theory, see Brelot (1954, 1972) and
Choquet (1986), who presented his personal reflections on the birth of capacity
theory.

S lawomir Ko lodziej (1988) proved the remarkable result that the functional c
defined in (3.1) actually satisfies Choquet’s axioms (3.2)—the difficult point being
the first condition on decreasing sequences of compact sets. Therefore all theo-
rems on abstract capacities can be applied to this functional: Borel sets can be
approximated from the inside by compact sets and from the outside by open sets.

Ko lodziej later discovered new fundamental properties of extremal functions
(1989) and showed his result in (1988) to be an easy consequence of them.

4. The relative extremal function and common bases

An extremal function which has become known as the relative extremal function
was introduced by Siciak (1969:154). Given an open set Ω in Cn and a compact
subset E of Ω he defined a function (UE,Ω)∗, written U∗E,Ω, where the star denotes
the upper semicontinuous envelope, and where

(4.1) UE,Ω(z) = sup
u

(
u(z); u ∈ PSH(Ω), u 6 0 on E, u 6 1 in Ω

)
, z ∈ Ω.

The definition makes sense of course for any subset E of Ω. Siciak noted that
U∗E,Ω is extremal in the sense that any plurisubharmonic function v which is 6 m

on E and 6 M in Ω must satisfy v 6 m+ (M −m)U∗E,Ω in Ω; the function U∗E,Ω
serves in a version of the Two Constants Theorem for plurisubharmonic functions.

Zakharyuta (1974: §3) used the sublevel sets of the function U∗E,Ω to define open
and compact sets

Ωα = {z ∈ Ω; U∗K,Ω(z) < α}, Kα = {z ∈ Ω; U∗K,Ω(z) 6 α}.
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He proved that they are associated to interpolation of Hilbert spaces. Suppose two
Hilbert spaces H1 and H0 are given satisfying

O
(

Ω
)
⊂ H1 ⊂ O(Ω) ⊂ O(K) ⊂ H0 ⊂ AC(K),

where O(Ω) is the space of holomorphic functions in Ω, O(K) the inductive limit
of O(ω) for all open neighborhoods ω of a compact set K, and finally AC(K) is
the Banach space obtained by taking the closure of O(K) in C(K). Then, under
certain regularity assumptions,

(4.2) O(Kα) ⊂ Hα ⊂ O(Ωα), 0 < α < 1,

where Hα is the interpolation between H0 and H1 defined using a basis (ej)j∈N
which is common for H1 and the closure of H1 in H0, and determined by the
requirement that ‖ej‖Hα = eαaj if ‖ej‖H0 = 1 and ‖ej‖H1 = eaj , j ∈ N. Thus
interpolation in Hilbert spaces approximates very well the interpolation between K
and Ω provided by U∗K,Ω.

Zakharyuta proved (1976/77) the general result on bases common to O(Ω) and
O(K) for pluriregular pairs (K,Ω) using the method of Hilbert scales of (1974); in
his paper (1967) this was done for one variable and it was indicated by examples that
it would work also for several variables. Nguyen Thanh Van (1972:230) generalized
the results of Zakharyuta (1967) for one complex variable.

Vyacheslav Zakharyuta and Nikolai Skiba (1976) used common bases of Hilbert
spaces for pairs on open Riemann surfaces of dimension 1 to prove asymptotic
formulas for Kolmogorov’s width (see Section 6).

A theorem of Poletsky (1991, 1993) and Bu and Schachermayer (1992) states
that if ϕ is an upper semi-continuous function on Ω, then
(4.3)

sup
(
u(z); u ∈ PSH(Ω), u 6 ϕ

)
= inf

f

[∫
T
ϕ ◦ f dσ; f ∈ O(D,Ω), f(0) = z

]
.

Here D and T denote the unit disk and the unit circle in C, σ is the arc length
measure on T normalized to 1, and O(D,Ω) denotes the set of all analytic disks
that extend as holomorphic mappings to some neighborhood of the closed unit
disk. Thus the plurisubharmonic envelope of ϕ defined by the left-hand side can be
expressed also as an infimum as defined by the right-hand side, an approach from
above. The change of viewpoint is similar to that in convexity theory: the convex
envelope of a function is defined by taking the supremum of all convex minorants,
but can also be expressed as an infimum of linear combinations of function values,
thus approximated from above.

If we take ϕ = 1 − χE = χ{E , the characteristic function of the complement
of an open set E, then ϕ is upper semi-continuous, and the left hand side of (4.3)
is equal to UE,Ω(z); we know that UE,Ω is plursubharmonic in Ω. The integral in
the right hand side is equal to σf (E) = σ

(
f−1({E) ∩ T

)
. Hence we can say that

the function UE,Ω takes a given value a ∈ [0, 1[ at the point z ∈ Ω if and only if for
every ε > 0 there exist a closed analytic disk f which maps the origin 0 to z and
maps an open subset of the unit cicle T of arc length at least 2π(1− a− ε) into E.

Poletsky (1993: Theorem 7.2) extended the disk formula to pluriregular sets.
In the case when E is a pluriregular compact set in a bounded domain Ω, it becomes

UE,Ω(z) = inf
f

(
σf (Ω r E); f ∈ O(D,Ω) ∩ C(D,Ω), f(0) = z

)
.
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Observe that in this formula the infimum is taken over all analytic disks that extend
continuously to the closed unit disk.

By applying this formula Poletsky (1993: Corollary 7.1), was able to describe
polynomial convexity in terms of existence of analytic disks. This is like the result
by Lárusson and Sigurdsson (2007) mentioned in Section 2, but the disk functionals
used are quite different in the two cases.

The formula of Poletsky and Bu–Schachermayer was generalized to hold for
a large class of complex manifolds by Lárusson and Sigurdsson (1998) and to all
manifolds by Rosay (2003). The disk formula for (locally) pluriregular sets was
generalized to all manifolds by Edigarian and Sigurdsson (2006).

5. Separate analyticity

A motivation for Siciak’s studies was Hartogs’ theorem on separate analyticity
(1906:12). Terada (1967) weakened its hypotheses, using Chebyshev polynomials
in the proof.

Siciak considered sets in the form of a cross, X = (Ω1×K2)∪ (K1×Ω2), where
Kj is a compact set in a domain of holomorphy (or a Stein manifold) Ωj , j = 1, 2,
and he established the existence of holomorphic extensions of separately analytic
functions defined on such sets. The conclusion was that every separately analytic
function on X can be extended to a holomorphic function in

Ω =
{

(z, w) ∈ Ω1 × Ω2; U∗K1,Ω1
(z) + U∗K2,Ω2

(w) < 1
}
.

Actually Siciak proved some special cases of that result in his paper (1969), whereas
Zakharyuta (1976:64) proved the more general result just quoted, assuming a cer-
tain regularity of the Kj .

This is just one of several generalizations of Hartogs’ theorem on separately
analytic functions. Siciak returned to the subject in (1981).

In subsequent studies, the extremal function VE as well as the relative extremal
function have played important roles in the proofs of generalizations of this theorem
of Hartogs; see, e.g., Siciak (1969), Nguyen Thanh Van and Zeriahi (1983), Shiffman
(1989) and Nguyên (2008). The last-mentioned paper contains new results as well
as a careful study of the history of the subject.

Using Siciak’s methods, Ozan Öktem (1998) proved a new result to which he
was led on the basis of his work on the Radon transformation. In this result, as well
as in (1999), he allows singularities in the given function as well as in the extended
function. Theorems of this kind have been proved recently by Jarnicki and Pflug;
see (2007) and several of their earlier papers.

6. Kolmogorov’s entropy and width

To single out an element in a finite set C, we need dlog2 card(C)e bits of information.
If C is an infinite subset of a metric space X, we specify instead an element within
a distance ε > 0: we cover C by finitely many sets Cj , each of diameter at most
ε and denote the smallest cardinality of such a covering by Nε(C,X). Following
Kolmogorov and Tihomirov (1959), we define the ε-entropy of C in X as

Hε(C,X) = logNε(C,X).

(We use the natural logarithm rather than the 2-logarithm here.) The question is
now how this number depends on ε.
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Given a normed space X and a subset A, Kolmogorov’s width of A relative to
X is the sequence of numbers (ds(A,X))s∈N defined by

ds(A,X) = inf
L∈Ls(X)

sup
x∈A

inf
y∈L
‖y − x‖, s ∈ N.

Here Ls(X) is the family of all vector subspaces of X of dimension s.
We shall use this definition writing H∞(D) for the space of all bounded holo-

morphic function in a domain D in Cn with the supremum norm. We let K be a
compact subset of D, and A the set of restrictions to K of functions in the unit
ball of H∞(D), i.e.,

A = A D
K =

{
f
∣∣
K

; f ∈ H∞(D), ‖f‖∞ 6 1
}
.

Moreover X shall be the Banach space AC(K), the closure of O(K) in C(K).
The width and the entropy are a kind of inverses to each other: the asymptotic

relation
− log ds

(
A D
K , AC(K)

)
=
(
σ + o(1)

)
s1/n, s→ +∞,

is equivalent to

Hε

(
A D
K , AC(K)

)
=
(
τ + o(1)

)
(− log ε)n+1, ε→ 0,

where τ = 2σ−n/(n + 1). Levin and Tihomirov (1968), using results of Mitjagin
(1961), proved this fact for the one-dimensional case; Zakharyuta pointed out that
their methods can be extended to the case of several variables in his Doctor of
Science Thesis presented at Rostov on Don (1984).

7. Kolmogorov’s question

Andrĕı Nikolaevič Kolmogorov (1903–1987) raised a question in 1955:

Given an open set D in Cn and a compact subset K of D, does there exist a constant
τ such that

Hε

(
A D
K , AC(K)

)
= (τ + o(1))(− log ε)n+1, ε→ 0

at least if D and K are nice enough? Moreover, for n = 1, he conjectured that the
constant τ is equal to the Green capacity C1(K,D)/(2π) of the condenser (K,D).

As we have seen above, the question can equivalently be formulated as follows.
Is it true that

(7.1) − log ds
(
A D
K , AC(K)

)
=
(
σ + o(1)

)
s1/n, s→ +∞

for some constant σ?
For more than one variable, this question could not yet be formulated in terms of a
capacity. Considerably later, a theory of capacities was developed also for several
variables, as we shall now try to describe.

8. Capacities defined by the relative extremal function

Eric Bedford and Al Taylor defined in their fundamental paper (1982) a capacity

(8.1) Cn(K,Ω) = sup
u

[∫
K

(ddcu)n; u ∈ PSH(Ω), 0 < u < 1
]
.

Here (ddc)n is the complex Monge–Ampère operator, which the authors defined for
all locally bounded plurisubharmonic functions.
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Just as in the case of the global extremal function, the relative extremal function
can serve to define a capacity. Bedford (1980a, 1980b) expressed the functional Cn
defined in (8.1) in terms of the relative extremal function and proved that actually

Cn(K,Ω) =
∫

Ω

(ddcU∗K,Ω)n

for a compact subset K of Ω, a strongly pseudoconvex domain in a Stein manifold,
where UK,Ω is the relative extremal function defined by (4.1).

Bedford and Taylor proved (1982:32) that the measure (ddcU∗K,Ω)n is supported
by K. Actually Cn plays the role of an inner capacity, so they defined

(8.2) Cn(E,Ω) = sup
K

(
Cn(K,Ω); K is a compact set contained in E

)
for any subset E of Ω, and an outer capacity

C∗n(E,Ω) = inf
U

(
Cn(U,Ω); U is an open set containing E

)
.

They proved (1982:23) that C∗n satisfies Choquet’s axioms (3.2); it follows that, for
any compact set K, C∗n(K,Ω) = Cn(K,Ω) as defined by (8.1). Thus the functional
many authors had called a “capacity” was proved to actually be a Choquet capacity.
Alexander and Taylor (1984) proved sharp inequalities between the relative capacity
Cn of (8.1), (8.2) and the capacity c defined in (3.1). In particular, for a relatively
compact subset E of Ω, Cn(E,Ω) = 0 if and only if c(E) = 0.

As Zakharyuta’s result (4.2) showed, it is natural to think of the sublevel sets Ωα
and Kα as a kind of interpolation between K and Ω. In particular, if both Ω and K
are convex, one would expect the sublevel sets to be convex, too. This is, however,
a highly nontrivial result and was proved by Finnur Lárusson, Patrice Lassère and
Ragnar Sigurdsson (1998) using Evgeny Poletsky’s theory of holomorphic currents
(1993).

These ideas can be developed also on a compact Kähler manifold M . One then
defines a function to be quasiplurisubharmonic with respect to a Kähler form ω on
M if it is upper semicontinuous and ddcu+ ω is a positive current. This definition
depends on the choice of ω; the class will be written PSH(M,ω).

Many notions from pluripotential theory in strictly pseudoconvex domains
prove to be useful on Kähler manifolds. Guedj and Zeriahi (2005) defined the
relative extremal function of a Borel subset E of the manifold

UE,M,ω(z) = sup (u(z); u ∈ PSH(M,ω), u 6 0, u 6 −1 on E)

and showed that it is related to the Monge–Ampère capacity

Cω(E,M) = sup
[∫

E

(ω + ddcu)n; u ∈ PSH(M,ω), 0 ≤ u ≤ 1
]
,

where n is the dimension of M , by the formula

C∗ω(E,M) =
∫
M

(
−U∗E,M,ω

) (
ω + ddcU∗E,M,ω

)n
.

This capacity was first introduced by Ko lodziej (2003) and corresponds to the
relative capacity of Bedford and Taylor (1982). The global extremal function is
also defined:

VE,M,ω(z) = sup
(
u(z); u ∈ PSH(M,ω), u 6 0 on E

)
.
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This is an analogue of the Siciak–Zakharyuta extremal function in Cn, and the
capacity defined in terms of this function, viz.

Tω(E) = exp
(
− supM V ∗E,M,ω

)
is named after Herbert J. Alexander (1940–1999). Guedj and Zeriahi show that
this capacity T can be expressed also with the use of Chebyshev constants related
to sections of a positive vector bundle on M with ω being the curvature form
of the given metric. It is proved that the two capacities obey the inequalities of
Alexander and Taylor (1984) and this is applied to show that locally pluripolar sets
are globally pluripolar on compact Kähler manifolds, thus generalizing Josefson’s
theorem (1978).

9. Zakharyuta’s first conjecture

Zakharyuta made Kolmogorov’s question more precise by relating it to the notion
of capacity also in several variables.

Given an open set D in Cn and a compact subset K of D, Zakharyuta conjectured
that

Hε

(
A D
K , AC(K)

)
= (τ + o(1))(− log ε)n+1, ε→ 0

for some constant τ . He also conjectured that

τ =
2Cn(K,D)

(n+ 1)!(2π)n
,

thus generalizing Kolmogorov’s conjecture about the constant from n = 1 to arbi-
trary n.

Equivalently,

(9.1) − log ds
(
A D
K , AC(K)

)
=
(
σ + o(1)

)
s1/n, s→ +∞,

for a constant σ, and

σ =
(

2
(n+ 1)τ

)1/n

= 2π
(

n!
Cn(K,D)

)1/n

.

In special cases, the asympotics of ds
(
A D
K , AC(K)

)
in (9.1) is known, e.g., when

the D and K are Reinhardt domains (Aytuna, Rashkovskii and Zakharyuta 2002).

10. The pluricomplex Green function with several poles

The classical Green function in a domain in one complex variable is zero on the
boundary of the domain and has a logarithmic pole at a given point. Lempert
(1981, 1983) introduced an analogous function in a strictly convex domain in several
complex variables. It is plurisubharmonic in the domain and has a logarithmic pole
at a given point a ∈ Ω. It solves the homogeneous complex Monge–Ampère equation
in Ω r {a} and is therefore a maximal plurisubharmonic function in that open set
(Lempert 1981:430).

Zakharyuta in his Doctor of Science Thesis (1984) and independently Klimek
(1985) replaced Lempert’s construction by a Perron–Bremermann approach: they
took the supremum GΩ(z, a) of u(z) when u varies in the set of all negative plurisub-
harmonic functions in Ω with a logarithmic singularity at a given point a, thus with
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u(z) 6 log ‖z − a‖ plus some constant near a. This function was defined using an-
alytic disks by Poletsky and Shabat (1986). Demailly (1987) gave several precise
results, including the continuity of the function expGΩ in Ω× Ω (1987:534).

More generally, given a plurisubharmonic function ϕ in Ω, Zakharyuta consid-
ered in his Doctor of Science Thesis (1984) the supremum Gϕ,Ω of the family of all
functions u ∈ PSH(Ω) such that u 6 0 in Ω and such that, near every point a ∈ Ω
with ϕ(a) = −∞, we have

u(z) 6 ϕ(z) + some constant.

In this definition, the polar set of ϕ, i.e., the set

P (ϕ) = {z ∈ Ω; ϕ(z) = −∞},

may be large, for example ϕ may have several poles; in particular any finite number
of logarithmic poles.

Zakharyuta assumed ϕ to be maximal outside its polar set and the real-valued
function eϕ to be continuous, and he proved that the Green function Gϕ,Ω in a hy-
perconvex Stein manifold Ω and with any prescribed finite set of singularities is a
maximal plurisubharmonic function in ΩrP (ϕ) and that, near any point a ∈ P (ϕ),
Gϕ,Ω(z) 6 ϕ(z) + some constant. In a paper on relative types of plurisubhar-
monic functions, Rashkovskii (2006) removed the hypothesis of continuity made by
Zakharyuta in (1984).

Also Lelong (1987, 1989) studied these functions—as I believe independently
of Zakharyuta.

The pluricomplex Green function has since then been generalized to other situ-
ations, e.g., by Lárusson and Sigurdsson (1999) and by Rashkovskii and Sigurdsson
(2005a, 2005b) to functions with singularities along a closed analytic subspace.

11. Zakharyuta’s second conjecture

Zakharyuta reduced his first rather abstract conjecture to a more concrete question
concerning the new class of pluricomplex Green functions:

Given a compact holomorphically convex subset K of a pseudoconvex domain D
in Cn, the relative extremal function U∗K,D can be uniformly approximated on any
compact subset of D r K by pluricomplex Green functions on D with logarithmic
poles contained in K.

Zakharyuta proved that a positive answer to the second conjecture would imply an
answer in the affirmative to his first conjecture.

Stéphanie Nivoche (2001, 2004) and Poletsky (2003) proved Zakharyuta’s sec-
ond conjecture. Their proofs were based on ideas that they had developed in
cooperation. Thus the first conjecture as well as Kolmogorov’s question now have
affirmative answers.

In a recent manuscript (2007), Vyacheslav Zakharyuta reviews all these ques-
tions and proves new results. He also gives some examples where (9.1) cannot hold
with the constant σ mentioned, but might be true with some larger constant.

It is with sincere admiration that I conclude this short account of a marvelous
research effort.
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Sci. Math. 107, 81–91.
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Sabancı Üniversitesi. 30 pp.
Zakharyuta, V. P.; Skiba, N. I. 1976. Estimates of the n-widths of certain classes of functions

that are analytic on Riemann surfaces. [Russian.] Mat. Zametki 19, No. 6, 899–911.

Zeriahi, Ahmed. 1996. Approximation polynomiale et extension holomorphe avec croissance sur
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