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Abstract—We characterize straightness in the digital
plane using difference operators.

I. INTRODUCTION

Digital straightness will be characterized here using meth-
ods from Cartesian geometry as well as from word
combinatorics, Diophantine inequalities, and the calculus
of difference operators. While the first three methods are
not new, the use of difference operators seems to be so.
Briefly, we can state the purpose of the article as finding
discrete analogues of the differential equation F ′′ = 0,
which characterizes straight lines in the Euclidean plane.

We shall see that we can characterize refined digital
lines (equivalently: balanced binary words) with the help
of difference operators. The chord property of Rosenfeld
(1974) will also be studied and it is shown that it can be
characterized using difference operators.

The study of these discrete analogues of the differential
equation F ′′ = 0 in the function space ZZ is equivalent
to the study of straight lines in the digital plane Z2, and
therefore also to the theory of balanced words from an
alphabet of two letters. This theory is highly developed;
see, e.g., Morse & Hedlund (1940), Hung & Kasvand
(1984), Rosenfeld & Klette (2001), Lothaire (2002), Pyth-
eas Fogg (2002), Vuillon (2003), Klette & Rosenfeld
(2004), Samieinia (2007), Uscka-Wehlou (2009), Berthé
(2009; with 94 references), Samieinia (forthc.), Bédaride
et al. (forthc.). Nevertheless, the analogy with F ′′ = 0
may lead to a new, more numerical aspect of the theory,
and certain results, like Theorem 5.3 on the extension
of rectilinear segments, receive easy proofs. Viewed as
a problem in combinatorics, this theorem says that a
balanced finite binary word can be extended to a peri-
odic balanced infinite word, moreover to infinitely many
words with different periods, and with control over the
periods obtained—and also to infinitely many balanced
nonperiodic infinite words.

II. DIFFERENCE OPERATORS

Definition 2.1: Given any a ∈ R we define a differ-
ence operator Da:RR → RR by

(DaF )(x) = F (x + a)− F (x),

x ∈ R, a ∈ R, F ∈ RR.
(1)

If a ∈ N, Da operates also from RZ to RZ and from ZZ

to ZZ; we shall use the same symbol for its restrictions
to RZ and ZZ.

We combine two of these operators to obtain the Jensen
operator Ja,b,

(Ja,bF )(x) = a
a+bDbF (x + a)− b

a+bDaF (x)

= b
a+bF (x)− F (x + a) + a

a+bF (x + a + b),

x ∈ R, a, b > 0.

(2)

A function F ∈ RR is convex if and only if Ja,bF ≥ 0
for all positive real numbers a, b.

Another second-order difference operator is DbDa,
given by

(DbDaF )(x) = F (x+a+b)−F (x+b)−F (x+a)+F (x).
(3)

It is well known that a continuous function F :R → R
is convex if and only if DaDaF ≥ 0 for all real a > 0;
equivalently DbDaF ≥ 0 for all a, b > 0. We note that

DbDa = Ja,b + Jb,a. (4)

For functions in RZ, the condition D1D1f = 0 gives
easy and satisfying results. For functions in ZZ, on the
other hand, this condition yields a very narrow class of
functions. But if we relax it to |D1D1f | ≤ 1, we get
a class of functions which is much too wide to be of
interest. It turns out, perhaps surprisingly, that a simple
compromise, intermediate between the two conditions,
viz.

|DbDaf | ≤ 1, a, b ∈ Ṅ = N \ {0},

yields a class with good properties. These inequalities are
equivalent to |Ja,bf | < 1 for all a, b ∈ Ṅ.

III. DEFINING CONVEXITY

It is most convenient to define convex functions with the
help of convex sets. This also has the advantage that we
can treat functions with infinite values without difficulty.

A. Basic definitions
A subset A of Rn is said to be convex if

{a, b} ⊂ A implies [a, b] ⊂ A, (5)

where

[a, b] = {(1− t)a + tb; t ∈ R, 0 ≤ t ≤ 1}

is the segment with a and b as endpoints. A segment [a, b]
with endpoints a, b in A will be called a chord, and we
define the chord set of A as

chord(A) =
⋃

a,b∈A

[a, b] ⊂ Rn.



Thus a set is convex if and only if

chord(A) ⊂ A. (6)

The smallest convex set containing a set A is called
its convex hull and will be denoted by cvx(A); it is well
defined since any intersection of convex sets is convex.

The operation cvx is increasing, idempotent, and exten-
sive, in other words, a cleistomorphism (closure operator)
in the complete lattice of all subsets of Rn. The operation
chord, on the other hand, is increasing and extensive, but
not idempotent in dimension n ≥ 2.

Since the chord property of Euclid (6) is unreasonable
in a digital setting, it has been weakened by Azriel
Rosenfeld in a sense which turned out to be successful:
We shall say that a set A ⊂ R2 has the chord property
in the sense of Rosenfeld (1974) if

chord(A) ⊂ A + U, (7)

where U is the open unit ball in R2 for the l∞ norm
‖x‖∞ = max(|x1|, |x2|),

U = {x ∈ R2; ‖x‖∞ < 1}.

B. Discrete convexity

We shall now generalize the notion of convexity as
follows.

Definition 3.1: Given a subset W of Rn we shall say
that a subset A of W is W -convex (or just convex if W
is understood) if there exists a convex subset C of Rn

such that A = C ∩W .

When W = Rn we get usual convexity. Of interest in
this paper are the cases W = Zn and W = Zn−1 ×R.

Since we always have A ⊂ cvx(A)∩W , W -convexity
of A is equivalent to the inclusion

cvx(A) ∩W ⊂ A. (8)

Kim & Rosenfeld (1982) established a perfect digital
analogue in Z2 of the Euclidean definition of convexity
(5): they proved that a subset of Z2 is Z2-convex if and
only if any two of its points can be connected by a digital
straight line segment in the sense of Rosenfeld (1974).

Proposition 3.2: For subsets of Z2, the chord property
(7) in the sense of Rosenfeld implies Z2-convexity. The
converse implication does not hold.

Definition 3.3: Given a subset X of Rn, a subset Y of
R, and a subset W of X×Y , we shall say that a function
f :X → Y ∪ {−∞,+∞} is W -convex (or just convex if
W is understood) if its finite epigraph

epiF(f) = {(x, y) ∈ X × Y ; f(x) ≤ y}

is a W -convex set in the sense of Definition 3.1.

Thus f is W -convex if and only if cvx(epiF(f))∩W ⊂
epi(f).

When X is all of Rn, Y is all of R, and W = Rn×R,
thus for (Rn ×R)-convexity, we get usual convexity for
functions F ∈ (R ∪ {−∞,+∞})Rn

.

IV. CHARACTERIZATIONS OF STRAIGHTNESS

A. Rosenfeld: the chord property

In order to characterize straightness of finite subsets
of Z2, Azriel Rosenfeld (1974) introduced the chord
property already mentioned in (7).

We may define the P -digitization of a subset M of Rn

as the set

digP (M) = (M + P ) ∩ Zn, M ⊂ Rn.

Here P is a pixel or voxel located at the origin—it may
in fact be any subset of Rn. The role of P is to fatten
M before intersecting it with the grid Zn.

Rosenfeld took P as the cross

R =
([
− 1

2 , 1
2

[
× {0}

)
∪

(
{0} ×

[
− 1

2 , 1
2

[)
⊂ R2.

Then the straight line L in R2 defined by an equation
x2 = F (x1) = αx1 + β with |α| < 1 gives rise to a
function f :Z → Z. Indeed, for such a line, given z1 ∈ Z,
there is one and only one z2 such that (z1, z2) belongs
to L + R. Actually, f(z1) = dαz1 + β − 1

2e, so that this
digitization of the real line with equation x2 = F (x1) has
the equation z2 = dαz1 + β − 1

2e.
Rosenfeld proved that a finite digital arc, in particular

the graph of a function f : [c, d]Z → Z with |D1f | ≤ 1,
has the chord property if and only if A = digR(L) for
some rectilinear segment L = [p, q] in R2.

Theorem 4.1: Let f :Z → Z be a function with integer
values. Then its graph has the chord property if and only
if |D1f(x)| ≤ 1 and |Ja,bf(x)| < 1 for all (x, a, b) ∈
Z × Ṅ × Ṅ. The corresponding result holds also for a
function defined on an interval [c, d]Z or [c,+∞[Z or
]−∞, d]Z of Z.

We shall also establish a partial converse to Proposition
3.2:

Theorem 4.2: The graph of an integer-valued function
defined on an interval of Z and satisfying |D1f | ≤ 1 is
Z2-convex if and only if it possesses the chord property.

B. Characterizations by means of balanced words

Theorem 4.3: A function f ∈ ZZ with 0 ≤ D1f ≤ 1
satisfies

|DbDaf(x)| ≤ 1, x ∈ Z, a, b ∈ Ṅ, (9)

if and only if the binary word D1f is balanced.

For the proof we recall some notions from word theory.
By a word we understand here a doubly infinite sequence
(wj)j∈Z of letters wj ; it is binary if there are only two
letters; we shall then take them as 0 and 1.

A factor w′ = (wj)
q
j=p of a word w is said to have

length q − p + 1:

length(w′) = q − p + 1.

If w is binary, the number of ones in a factor w′ =
(wj)

q
j=p is called its height:

height(w′) =
q∑

j=p

wj .



A function f ∈ ZZ is said to have chain code c =
c(f) = (cj)j∈Z, where

cj = f(j + 1)− f(j) = D1f(j), j ∈ Z.

A binary word w is said to be balanced if for any two
factors w′ and w′′ of w we have

length(w′) = length(w′′) implies
|height(w′)− height(w′′)| ≤ 1.

(10)

Let now w′ = (wj)
q′

j=p′ , w′′ = (wj)
q′′

j=p′′ be two factors
of the same binary word w. That they have the same
length means that q′−p′+1 = q′′−p′′+1. Their heights
are

height(w′) =
q′∑

j=p′

wj , height(w′′) =
q′′∑

j=p′′

wj .

Now, writing wj = D1f(j), we obtain

height(w′) =
q′∑

j=p′

D1f(j) = Daf(p′),

where a = q′ − p′ + 1.
Proof of Theorem 4.3. Given f , let w′ = (wj)

q′

j=p′ and
w′′ = (wj)

q′′

j=p′′ be two factors of the same length of
the binary word w = D1f . For reasons of symmetry we
may assume that p′ ≤ p′′. Define x = p′, a = q′ − p′ +
1 = q′′ − p′′ + 1, the common length of the intervals,
and b = p′′ − p′ = q′′ − q′, the distance between their
left endpoints. Then x + a = q′ + 1, x + b = p′′, and
x + a + b = q′′ + 1, so that

height(w′′)− height(w′) = Daf(p′′)−Daf(p′)

= DbDaf(p′) = DaDbf(p′).

We see that condition (9) translates directly to condition
(10).

Thus the equality D1D1f = 0 for functions in RZ is
replaced by the inequality (9) for functions in ZZ, which
we can understand as a kind of approximate equality.

C. Hyperplanes in the sense of Reveillès

Jean-Pierre Reveillès (1991:45) introduced digital lines
in the digital plane as solutions to a double Diophantine
inequality: he considered sets of the form

{(x, y) ∈ Z2; γ ≤ αx + βy < γ ′}, (11)

where α and β are real numbers, not both of them zero,
and γ and γ ′ are real numbers. We shall refer to such a
set as a digital straight line in the sense of Reveillès. The
definition is easy to generalize to hyperplanes in Zn.

D. Refined digital hyperplanes

In Kiselman (2004:456) we generalized the notion
of digital hyperplanes to the following. Let us denote
by πk:Zn → Zn−1 the projection which forgets the
coordinate xk, k = 1, . . . , n. A set D is a refined
digital hyperplane if D is Zn-convex, if the strict slab

{x ∈ Zn; β < α · x < γ} is contained in D, which in
turn is contained in the non-strict slab

{x ∈ Zn; β ≤ α · x ≤ γ}

for some choice of α ∈ Rn \ {0} and β, γ ∈ R, and if
in addition, for some k, the sets

πk(D ∩ T 0) and πk(D ∩ T 1)

are disjoint and together fill all of πk(T 0 ∪ T 1), where
T 0 = {x ∈ Zn; αx = β} and T 1 = {x ∈ Zn; αx = γ}.

In two dimensions this definition can be expressed in
a simple way. We take n = 2, (α1, α2) = (−α, 1) and
define strips in R2 as follows.

S(α, β, γ) = {(x, y) ∈ R2; β ≤ y − αx ≤ γ},

S∗(α, β, γ) = {(x, y) ∈ R2; β ≤ y − αx < γ},

S∗(α, β, γ) = {(x, y) ∈ R2; β < y − αx ≤ γ},

S∗∗(α, β, γ) = {(x, y) ∈ R2; β < y − αx < γ}.
(12)

Then a straight line in Z2 in the sense of Reveillès is,
possibly after a permutation of the coordinates, equal to
the intersection S∗(α, β, γ)∩Z2, for some α, β, γ, |α| ≤
1.

A refined digital line with |α| ≤ 1 and γ = β + 1 is
either a digital line in the sense of Reveillès or, possibly
after a reflection, of the form

D(α, β, p) = {(x, y) ∈ Z2 ∩ S∗(α, β, β + 1); x < p}

∪ {(x, y) ∈ Z2 ∩ S∗(α, β, β + 1); x ≥ p}
for some α, β ∈ R and some p ∈ Z. This is because
the only pairs of Z-convex complementary subsets of
the digital line are (Z, ∅) and (]−∞, p[Z , [p, +∞[Z),
p ∈ Z.

Theorem 4.4: Every digital line in the sense of
Reveillès is a refined digital line.

Conversely, given |α| ≤ 1 and β real, we consider four
cases for the set

D = S(α, β, β + 1) ∩ Z2,

defining Dj = {(x, y) ∈ D; y − αx = β + j}, j = 0, 1:
(A). The slope α is rational and β ∈ Z + αZ. Then D0

and D1 contain infinitely many points and D is not a
refined digital line. For any integer p, the set D(α, β, p),
obtained by removing from D certain points in D0 ∪D1,
is a refined digital line. The sets D \D0 and D \D1 are
digital lines in the sense of Reveillès.
(B). The slope α is rational and β /∈ Z+αZ (for instance
when β is irrational). Then D0 and D1 are empty, so that
D = S∗∗(α, β, β +1)∩Z2 and D is a digital straight line
in the sense of Reveillès.
(C). The slope α is irrational and D0 is empty. Then
D = S(α, β, β + 1) ∩ Z2 = S∗∗(α, β, β + 1) ∩ Z2 is a
digital straight line in the sense of Reveillès.
(D). The slope α is irrational and D0 is a singleton set.
Then D1 is also a singleton set, and D is not a refined
digital line. But D \D0 and D \D1 are digital straight
lines in the sense of Reveillès.



V. EXTENDING RECTILINEAR SEGMENTS

Let us consider functions defined on an interval: let c and
d be two integers and consider functions f : [c, d]Z → Z.
We can then form DbDaf(x) only for c ≤ x ≤
d − a − b, a, b ∈ Ṅ. A natural question is whether
the conditions |DbDaf(x)| ≤ 1 for these finitely many
a, b, x are sufficient to ensure that f represents a straight
line segment; in other words, whether we can find an
extension g to all of Z of the function f which satisfies the
conditions everywhere. The answer is in the affirmative,
but the extension is never unique.

Theorem 5.1: If f : [c, d]Z → Z satisfies
|DbDaf(x)| ≤ 1 for all x, a, b for which the expression
is defined, then its graph is contained in an open strip
S∗∗(α, β, γ) with rational α and of height γ − β < 1. If
a function f :Z → Z defined on the whole integer axis
satisfies |DbDaf | ≤ 1, its graph is contained in a closed
strip S(α, β, β + 1) of height 1.

Theorem 5.2: If the graph of a function f :Z → Z
or f : [c, d]Z → Z is contained in a half-open strip
S∗(α, β, β+1) or S∗(α, β, β+1), then |(DbDaf)(x)| ≤ 1
for all x and a, b ∈ Ṅ for which the expression is defined.

Theorem 5.3: Let f : [c, d]Z → Z be given such that
|DbDaf(x)| ≤ 1 for all a, b, x for which the expression
is defined, i.e., for c ≤ x ≤ d − a − b, a, b ∈ Ṅ. Then
f can be extended to a function g:Z → Z such that
|DbDag(x)| ≤ 1 for all x ∈ Z and all a, b ∈ Ṅ.

If we look at this as a combinatorial problem for chain
codes, i.e., for binary words, the theorem says, in case
0 ≤ D1f ≤ 1, that a balanced finite binary word can be
extended to a periodic balanced infinite word, moreover
to infinitely many words with different periods—and also
to infinitely many balanced nonperiodic infinite words.

VI. DIGITAL STRAIGHTNESS

Combining what we have learned about digital straight-
ness so far we obtain the following result.

Theorem 6.1: Let f ∈ ZZ, assume that 0 ≤ D1f ≤ 1,
and consider the following properties.
(A). The graph of f has the chord property;
(B). Both f and −f are convex;
(C). The graph of f is a Z2-convex set;
(D). The inequality |(DbDaf)(x)| ≤ 1 holds for all
(x, a, b) ∈ Z× Ṅ× Ṅ;
(E). The inequality |(Ja,bf)(x)| < 1 holds for all
(x, a, b) ∈ Z× Ṅ× Ṅ;
(F). The binary word D1f :Z → Z is balanced.
(G). The function f defines a refined digital hyperplane
in Z2 in the sense of Kiselman (2004);
(H). The function f defines a digital straight line in the
sense of Reveillès (1991).
All conditions (A), (B), (C), (D), (E), (F) and (G) are
equivalent, and they are implied by (H).

Remark 6.2: Some of the equivalences in this theorem
have a long history. Morse & Hedlund (1940) proved that

Sturmian words (aperiodic words of minimal complexity)
are balanced, and conversely. That balance of a binary
word is equivalent to the property of being a mechanical
word is proved in the case of irrational slope in Lothaire
(2002: Theorem 2.1.13).

We also note the following result on locality of the various
properties. Let us say that a property of functions f ∈
(Z ∪ {−∞,+∞})A, where A is an arbitrary subinterval
of Z, is local if it is true that it has the property if and
only if all its restrictions f |[c,d]Z to finite intervals [c, d]Z
have the property.

Proposition 6.3: The properties (A), (B), (C), (D), (E),
(F) and (G) of Theorem 6.1, understood respectively for
functions defined on Z and on subintervals of Z, are local
properties. The property (H) is not local.

VII. CONCLUSION

We have found a set of difference operators that can
be used to give a convenient characterization of digital
straightness. This makes the theory of straightness more
like differential calculus and the study of the differential
equation F ′′ = 0.
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