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Resumo: Tanĝantoj de plursubharmonaj funkcioj
Oni studas lokajn ecojn de plursubharmonaj funkcioj per la nocio de tanĝanto kiu
priskribas la konduton de la funkcio en ĉirkaŭâo de donita punkto. Estas montrite ke
ekzistas plursubharmonaj funkcioj kun pluraj tanĝantoj, male al konjekto de Reese
Harvey.

Abstract: Tangents of plurisubharmonic functions
Local properties of plurisubharmonic functions are studied by means of the notion
of tangent which describes the behavior of the function near a given point. We
show that there are plurisubharmonic functions with several tangents, disproving a
conjecture of Reese Harvey.

1. Introduction

Let f be a plurisubharmonic function in an open set ω in Cn; we shall write this as
f ∈ PSH (ω). If we want to study the behavior of f near a point x ∈ ω, it is natural
to consider f(x+ rz) for a small positive number r. However, if f takes the value −∞
at x, then f(x + rz) just tends to minus infinity as r → 0. So we subtract a constant
to prevent this from happening: let us define, for any point x in ω such that f is not
identically minus infinity near x, and any positive number r,

(1.1) fx,r(z) = f(x+ rz)− sup
x+rB

f, |z| < 1
r
dω(x),

and let us write fr = f0,r for brevity. Here B is the open unit ball in Cn for the
Euclidean metric, and dω(x) is the distance from x to the complement of ω. This means
that we are looking at f with a microscope magnifying 1/r times, but have adjusted the
level by an additive constant so that supB fx,r = 0. Of the properties of the operation
f 7→ fr we may note the following: (af + b)r = afr if a and b are constants with a ≥ 0,
b real; (f + g)r ≥ fr + gr; and (f ∨ g)r ≤ fr ∨ gr, where ∨ denotes the supremum.

Given any compact set K in Cn, the domain of fx,r contains K if r is small. More-
over, as we shall see, the family (fx,r)0<r<δ is bounded in L1(K) if δ is a sufficiently
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small positive number. To every sequence (fx,rj )j there is a subsequence converging in
L1(K) and even a subsequence converging in L1

loc(Cn). The limit must be a plurisub-
harmonic function. Let us agree to say that g ∈ PSH (Cn) is tangent to f at x ∈ ω
if there is a sequence rj → 0 such that fx,rj → g in L1

loc(Cn) (or, which turns out to
be the same thing, for the weak topology in D′(Cn); see Hörmander 1983, Theorem
4.1.9.b)). We shall denote by Tx(f) the set of all tangents, the tangent space of f
at x.

Example 1.1. If f is the constant −∞, then Tx(f) = Ø. For fx,r is never defined.

Example 1.2. If f is finite at x, then Tx(f) = {0}. To see this, note first that for |z| ≤ R,

fx,r(z) ≤ sup
x+rRB

f − sup
x+rB

f → 0, r → 0,

so that lim supr→0 fx,r ≤ 0 everywhere, hence g ≤ 0 for all elements g ∈ Tx(f). On the
other hand, fx,r(0) = f(x) − supx+rB f → 0 in view of the upper semicontinuity of f ,
so that g must be identically zero.

As these two examples show, the tangent space can be of possible interest only if
f takes the value −∞ at the point x but is not identically −∞ near x. The model
example is this:

Example 1.3. If f = log |h| for a holomorphic function h which has a zero of order m ≥ 1
at 0, then we can write h = P +H where P is a homogeneous polynomial of degree m
and H(z) = O(|z|m+1), z → 0. With the notation a = supB |P | > 0 we can estimate f
as follows:

sup
rB

f ≤ log |arm + Crm+1| = log a+m log r + log(1 + Cr/a),

and similarly from below

sup
rB

f ≥ log |arm − Crm+1| = log a+m log r + log(1− Cr/a),

so that, as r tends to zero,

fr(z) = f(rz)− sup
rB

f = log |P (rz) +H(rz)| − sup
rB

f =

= log |P (z) + r−mH(rz)|+m log r − sup
rB

f → log |P (z)/a|

pointwise. The convergence holds in fact also in L1
loc, i. e., fr → log |P/a| in L1

loc(Cn).
To see this, note that the convergence is uniform on compact sets which avoid the zeros
of P , and that integrals over small sets can be estimated uniformly in the parameter
r. So here T0(f) = {log |P/a|}, reflecting, as a tangent should, the main term in the
expansion of h.

Example 1.4. If f ∈ PSH (Cn) satisfies a homogeneity property

f(tz) = C log t+ f(z), t > 0, z ∈ Cn,

and if supB f = 0, then fr = f for all r > 0 so that f is an eigenfunction for all
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operations f 7→ fr. In this case the tangent space at the origin is T0(f) = {f}. The
homogeneity property mentioned is equivalent to the formally stronger

f(tz) = C log |t|+ f(z), t ∈ C \ {0}, z ∈ Cn;

see the proof of Proposition 3.1. Conversely it can be shown that these functions are
the only ones that are eigenfunctions simultaneously for all r > 0.

The notion of a tangent has been defined in a more general setting. If T is a
current we can define its push-forward (1/r)∗T under the mapping x 7→ x/r. The
current limr→0(1/r)∗T , if this limit exists in a suitable topology, is called the tangent
cone to T at 0; see Harvey 1977:332. To a plurisubharmonic function f we associate
the current i∂∂̄f of type (1, 1) and bidimension (n− 1, n− 1); it is closed and (strongly
and weakly) positive. Then (1/r)∗(i∂∂̄f) = i∂∂̄fr. Therefore the tangent cone to the
positive closed current i∂∂̄f exists at 0 if and only if the tangent space T0(f) of f is a
singleton.

Harvey formulates as a conjecture that the tangent cone to a strongly positive
closed current always exists (1977:332, Conjecture 1.32). This was so in Examples 1.2,
1.3 and 1.4. We shall see, however, that a plurisubharmonic function may have infinitely
many tangents if n ≥ 2.

The tangent space Tx(f) is analogous to the limit set of a plurisubharmonic function
of finite order studied by Sigurd−sson 1986. Actually it is in many ways simpler, since
the behavior of a plurisubharmonic function is more restricted near a point than at
infinity. To give but one example, the logarithmic homogeneity is automatic here (see
Proposition 3.1), whereas homogeneity of degree ρ has to be imposed as an extra and
very restrictive condition in the case of limit sets of plurisubharmonic functions of finite
order.

I am grateful to Ragnar Sigurd−sson and Eric Bedford for helpful comments on an
earlier version of this paper. And my most sincere thanks go to Chin-Huei Chang,
Hsuan-Pei Lee and Jean-Pierre Demailly who saved me from publishing an erroneous
lemma!

2. Basic estimates

If f is a plurisubharmonic function in an open subset ω of Cn and x is an arbitrary
point of ω, we shall use two functions, u and U , to describe its behavior near x. We
define for x ∈ ω, t < log dω(x),

u(x, t) = uf (x, t) =
∫
!

z∈S

f(x+ etz)

and
U(x, t) = Uf (x, t) = sup

z∈S
f(x+ etz).

Here S is the Euclidean unit sphere, and the barred integral sign indicates the mean
value: in general
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!

A

f =
∫
A

f

/∫
A

1 provided 0 <
∫
A

1 < +∞.

So u(x, t) is the mean value of f over the sphere x+etS, and U(x, t) is the supremum of
f over the same sphere; therefore obviously u ≤ U . To get an estimate in the opposite
direction we shall use Harnack’s inequality which has the form

1 + |x|/r
(1− |x|/r)m−1

h(0) ≤ h(x) ≤ 1− |x|/r
(1 + |x|/r)m−1

h(0)

for harmonic functions which satisfy h ≤ 0 in the ball of radius r in Rm. If f is
subharmonic in a neighborhood of the ball esB̄ in Cn we can consider its harmonic
majorant h there, which satsfies f(x) ≤ h(x) and

h(0) =
∫
!

z∈S

h(esz) =
∫
!

z∈S

f(esz) = u(0, s).

Therefore

U(0, t) = sup
etS

f ≤ sup
etS

h ≤ 1− et−s

(1 + et−s)2n−1
u(0, s), t < s,

provided only f ≤ 0 in esB. If we apply this inequality to the function f−U(0, s) which
is ≤ 0 in esB, we get, writing U(t) instead of U(0, t) for simplicity:

U(t)− U(s) ≤ 1− et−s

(1 + et−s)2n−1

(
u(s)− U(s)

)
,

i. e.,

(2.1) U(t) ≤ (1− λs−t)U(s) + λs−tu(s), t < s,

where λs is defined for s > 0 as

λs =
1− e−s

(1 + e−s)2n−1
.

As a consequence of the maximum principle, u(x, t) and U(x, t) are increasing in
t; by Hadamard’s three-circle theorem, they are convex functions of t. Therefore their
slopes at −∞ exist:

(2.2) νf (x) = lim
t→−∞

u(x, t)
t

and Nf (x) = lim
t→−∞

U(x, t)
t

both exist. This follows from the fact that the slopes

u(x, t)− u(x, t0)
t− t0

and
U(x, t)− U(x, t0)

t− t0
are increasing in t. The first limit νf (x) is the Lelong number of f at x. The
Lelong number is usually defined as a density of a measure (in the present case the
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(2n− 2)-dimensional density of the measure (2π)−14f at x). See e. g. Kiselman 1979
for the equivalence of the two definitions. The two limits in (2.2) are equal. In fact,
since u ≤ U we immediately get νf (x) ≥ Nf (x). In the other direction it follows from
(2.1), taking s = t+ 1, that

U(t) ≤ (1− λ1)U(t+ 1) + λ1u(t+ 1),

whence
U(t)
t
≥ (1− λ1)

U(t+ 1)
t

+ λ1
u(t+ 1)

t
, t < 0.

Letting t tend to −∞ we see that Nf (x) ≥ νf (x).

Lemma 2.1. Let f ∈ PSH (ω) be plurisubharmonic in an open set in Cn, let x ∈ ω be
such that f is not identically minus infinity near x, and define fx,r by (1.1). Let R be
a positive number. Then the family (fx,r)0<r<δ is bounded in L1(RB) for some δ > 0.

Proof. We may assume without loss of generality that x = 0 and that f is defined and
plurisubharmonic in a neighborhood of the closed unit ball in Cn. The function U ,
being convex and increasing, satisfies

(2.3) νf (0)(s− t) ≤ U(s)− U(t) ≤ C(s− t), t ≤ s ≤ 0,

for some constant C; when t ≤ s� 0 we even get

(2.4) U(s)− U(t) ≤ (νf (0) + ε)(s− t)

for any preassigned ε > 0.
We can now estimate fr from above in the ball RB as follows, using (2.3):

sup
RB

fr = Uf (logR+ log r)− Uf (log r) ≤ C log+R

for 0 < r ≤ min(1/R, 1). Hence (fr)0<r<δ is bounded from above in RB by a constant
if only δ ≤ min(1/R, 1).

There need of course not exist a pointwise bound from below, but we can estimate
the mean value of fr over a sphere. We note that (2.1) can be written

u(s)− U(s) ≥ 1
λs−t

(
U(t)− U(s)

)
, t < s,

so that, using (2.3) with s− t = 1, we get

u(s)− U(s) ≥ −C(s− t)
λs−t

= − C
λ1
, s ≤ 0.

This shows that the mean value of fr over etS is

ufr (t) = uf (t+ log r)− Uf (log r) ≥ Uf (t+ log r)− Uf (log r)− C

λ1
≥ −Ct− − C

λ1

for 0 < r ≤ min(e−t, 1); the last inequality holds in view of (2.3). Hence (fr)0<r<δ is
bounded from below in L1(RS) when δ ≤ min(1/R, 1). The integral over RB is
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RB

fr dλ = A2n−1

∫ R

0

ufr (log ρ)ρ2n−1 dρ = A2n−1

∫ logR

−∞
ufr (t)e

2nt dt ≥

≥ A2n−1

∫ logR

−∞
(−Ct− − C/λ1)e2nt dt = −CR;

here dλ is Lebesgue measure in Cn and A2n−1 is the area of the unit sphere S in Cn.
The norm in L1(RB), finally, is bounded since |fr| ≤ 2 sup fr − fr, so that∫

RB

|fr| dλ ≤ 2 sup
RB

fr

∫
RB

1 dλ−
∫
RB

fr dλ ≤ 2C log+R

∫
RB

1 dλ+ CR.

Proposition 2.2. Let f ∈ PSH (ω) be plurisubharmonic in an open set in Cn, assume
that f is not identically minus infinity near a given point x ∈ ω, and define fx,r by
(1.1). Let R be a positive number. Then the family (fx,r)0<r<δ is relatively compact in
L1(RB) for some positive number δ. The tangent space Tx(f) is connected and compact
in L1

loc(Cn).

Proof. We know from Lemma 2.1 that ‖fx,r‖L1(RB) is bounded. We can apply Theorem
4.1.9.a) of Hörmander 1983 to deduce that every sequence (fx,rj ) has a subsequence
which converges in L1(RB). Repeating this for every natural number R and taking a
diagonal subsequence we get convergence in L1

loc(Cn). The set of all limits obtained
in this way must of course be closed, and the connectedness follows as for limit sets in
Sigurd−sson 1986:241.

3. Properties of tangent functions

Proposition 3.1. Let f ∈ PSH (ω), ω an open subset of Cn. Assume that f is not
identically minus infinity near a point x of ω. Then every tangent function g ∈ Tx(f)
satisfies the homogeneity relation

g(tz) = νf (x) log |t|+ g(z), t ∈ C, z ∈ Cn,

where νf (x) is the Lelong number of f at x. In particular, g is a plurisubharmonic
function of minimal growth.

Corollary 3.2. In one dimension, Tx(f) is a singleton with the only function g(z) =
νf (x) log |z| as element.

Proof of Proposition 3.1. We take x = 0 and write U(t) for U(0, t). From (2.4) we get

Ufr (t) = Uf (t+ log r)− Uf (log r) ≤ (νf (0) + ε)t, t ≥ 0, r < rεe
−t.

Using a sequence (rj) such that frj → g, we see that Ug(t) ≤ (νf (0) + ε)t for every
t ≥ 0, and, since ε is arbitrary, Ug(t) ≤ νf (0)t for t ≥ 0. We may write this as

(3.1) g(z) ≤ νf (0) log |z|

for |z| ≥ 1. Similarly,
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Ufr (t) = Uf (t+ log r)− Uf (log r) ≤ νf (0)t, t ≤ 0,

for all sufficiently small r, and therefore Ug(t) ≤ νf (0)t for t ≤ 0, i. e., (3.1) holds
also for |z| ≤ 1. Now fix z ∈ Cn. Since g is plurisubharmonic, the function hz(t) =
g(tz) − νf (0) log |t| is subharmonic in C \ {0}. But hz is bounded from above in view
of (3.1), so it can be extended to a subharmonic function in all of C. Moreover it is
constant by Liouville’s theorem:

hz(t) = g(tz)− νf (0) log |t| = hz(1) = g(z).

This proves the proposition.

Knowing g is equivalent to knowing the open set Ω = {z ∈ Cn; g(z) < 0} and the
number νf (0).

4. Plurisubharmonic functions with prescribed tangents

Theorem 4.1. Let M be a subset of PSH (Cn). Then M is the tangent space Tx(f)
of some plurisubharmonic function f defined in a neighborhood of x if and only if the
following four conditions hold:

1. Every element g ∈M is homogeneous:

(4.1) g(tz) = C log |t|+ g(z), t ∈ C, z ∈ Cn,

the constant C being equal to νf (x) by necessity;

2. Every element g ∈M satisfies

(4.2) sup
B
g = 0;

3. M is closed in L1
loc(Cn); and

4. M is connected for the topology induced by L1
loc(Cn).

Proof. First let f be a given plurisubharmonic function and denote its tangent space at
a point x by M = Tx(f). Property 1 was proved in Proposition 3.1, and property 2 is
an easy consequence of the fact that every function fx,r satisfies (4.2). Properties 3 and
4 were noted above in Proposition 2.2.

Now let M be a given set of plurisubharmonic functions satisfying the four prop-
erties. If M = Ø we take f as the constant −∞. If M is non-empty and C = 0, then
M = {0} and we can take f as any finite constant or more generally as any plurisubhar-
monic function with νf (x) = 0. For the rest of the proof we shall suppose that M 6= Ø
and that C is positive. We shall construct f very much like Sigurd−sson 1986: Theorem
1.2.1, ii). There is only a small difference in the proof due to a glueing procedure of a
different kind.

Let (gj) be a sequence of functions in M which is dense for the topology in L1(B).
Next let hj be plurisubharmonic functions which are continuous on Cn \ {0} and sat-
isfy (4.1) and (4.2) with the same constant C, and such that ‖hj − gj‖L1(B) → 0. We
can obtain such functions hj by convolving over the space of matrices as in Sigurd−sson
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1986:244, or over the unitary group as in Kiselman 1967:10 (such a convolution, as
opposed to the usual smoothing by convolution on Cn, preserves the homogeneity (4.1)),
and then adjust by a constant to satisfy (4.2). Therefore also the functions hj are
eigenfunctions for the operation (1.1): they satisfy (hj)r = hj . We shall define the
function f as

(4.3) f = sup
j

(cjhj + nj),

where nj are constants to be determined, and where cj are numbers tending to 1 and
satisfying cj > cj+1 > 1. These strict inequalities are essential for our construction. To
be precise we shall choose (cj) tending to one so fast that

‖ckhk − hk‖L1(kB) = (ck − 1)‖hk‖L1(kB) → 0.

The idea is to choose the level constants nj in such a way that in certain shells
sk/k ≤ |z| ≤ ksk, the term of index k dominates the others: f = ckhk + nk there. To
be specific, let Zk be the set where ckhk + nk = f . Then Zk shall be so wide that it
contains the spherical shell sk/k ≤ |z| ≤ ksk. If this is so, then we can perform the
operation f 7→ fsk on (4.3) (see (1.1) for the definition) to obtain

(4.4) fsk = (ckhk + nk)sk = (ckhk)sk = ckhk for
1
k
≤ |z| ≤ k.

To determine the constants nj , first choose n1 = 0 and s1 = 1. Next assume that nj
and sj have been chosen for j = 1, 2, ..., k − 1. We then choose nk so that

ckhk(z) + nk ≤ ck−1hk−1(z) + nk−1 when |z| = sk−1

k − 1
.

This is possible since hk and hk−1 are bounded on that sphere. We note that the term
of index k will not influence f where |z| ≥ sk−1/(k − 1). Next choose sk so that

ckhk(z) + nk ≥ ck−1hk−1(z) + nk−1 when |z| = ksk.

This is possible since ckhk and ck−1hk−1 are homogeneous of different degrees: 0 <
ckC < ck−1C. As a consequence the term of index k − 1 in (4.3) will not influence f
where |z| ≤ ksk.

This procedure will define a function f satisfying (4.4): fsk = ckhk in kB \ k−1B.
Therefore the norm of fsk − ckhk in L1(kB) is equal to its norm in L1(k−1B):

‖fsk − ckhk‖L1(kB) = ‖fsk − ckhk‖L1(k−1B).

This last quantity evidently tends to zero. Moreover, by the choice of ck, we know that
‖ckhk − hk‖L1(kB) → 0, so ‖fsk − hk‖L1(kB) → 0, which implies that fsk − hk → 0 in
L1

loc(Cn). To every given g ∈M there is a subsequence of (hk) which tends to g, so the
corresponding subsequence of (fsk) tends to the same limit. Therefore g is tangent to
f , and we have proved that T0(f) contains M .

Example 4.2. To get a specific example of a function whose tangent space is not a sin-
gleton we can now take gj equal to log |z| for j odd, and equal to log |z1| ∨ · · · ∨ log |zn|
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for j even—these functions are different if n ≥ 2. In the construction above we can take
hj = gj , and it will yield a function whose tangent space contains both g0 and g1. But
it will also contain every function

Ga(z) = log |z1| ∨ · · · ∨ log |zn| ∨ (a+ log |z|),

where a is a constant satisfying − log
√
n < a < 0. We note that Ga = g0 if a ≤ − log

√
n

and that Ga = g1 if a = 0, so Ga describes, as a moves from − log
√
n to 0, a curve in

PSH (Cn) connecting g0 to g1. The tangent space in this case is precisely this curve.

Example 4.3. If we take gj(z) = log |z1| for j odd and gj(z) = log |z2| for j even we get
a function whose tangent space contains all functions

Ga,b(z) = (log |z1|+ a) ∨ (log |z2|+ b),

where −∞ ≤ a, b ≤ 0 and a∨ b = 0. Here G0,b describes a curve from g1 to g1 ∨ g2 as b
moves from −∞ to 0, and then Ga,0 goes from g1 ∨ g2 to g2 as a moves from 0 to −∞.
This time it is not possible to take hj = gj , at least if we want suprema of the type
(4.3) which are locally finite in Cn \ {0}.

To complete the proof we must be a bit more careful to get T0(f) as a subset of M .
The technique to achieve this will be as in Sigurd−sson 1986; specifically we shall use his
Lemma 1.2.5 which we quote for reference:

Lemma 4.4. Let X be a compact connected metric space with metric d. Then there
exists a sequence (xk) in X such that its elements form a dense subset and d(xk+1, xk)
tends (decreasingly) to zero.

In the given set M we shall use the metric induced by L1
loc(Cn), which we can take as

d(f, g) =
∞∑
j=1

2−j min(1, ‖f − g‖L1(jB)).

Then ‖f − g‖L1(jB) < 1/j when d(f, g) < 2−j/j. Using the lemma we can arrange that
d(hk+1, hk) tends to zero, so that

‖hk+1 − hk‖L1(jB) < 1/j

if k ≥ kj for suitable indices kj . We may assume kj ≥ j. Defining Rk = j for
kj ≤ k < kj+1, we may rewrite this as

(4.5) ‖hk+1 − hk‖L1(RkB) < 1/Rk for k ≥ k1.

We note that Rk ≤ k. Moreover Rk → +∞ as k → +∞, so that convergence with
respect to all the seminorms ‖ · ‖L1(RkB) is equivalent to convergence in the metric of
L1

loc(Cn).
We have to prove that if (rj) is a sequence tending to zero and such that (frj )

converges, then the limit of the latter sequence is in M . The construction gives us full
control over (frj ) if rj = sj , the special radii selected above. We need to study the
behavior of fr for intermediate values of r. Then more than one term in (4.3) must
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be taken into account. However, since the sj tend to zero faster than any geometric
progression, it will not be necessary to consider more than two terms.

Let us study the function f in a spherical shell sk+1/(k+1) ≤ |z| ≤ ksk where only
two terms may be of influence:

f = (ck+1hk+1 + nk+1) ∨ (ckhk + nk).

Performing the operation f 7→ fr for an r such that sk+1 ≤ r ≤ sk we get

(4.6) fr = (ck+1hk+1 + a) ∨ (ckhk + b)

in the shell
sk+1

(k + 1)r
≤ |z| ≤ ksk

r
,

where a and b are certain constants which must satisfy a ∨ b = 0 since supB fr = 0 by
definition.

The shell where (4.6) holds contains kB \ (k+ 1)−1B, for the outer and inner radii
of the former are, respectively,

ksk
r
≥ k, and

sk+1

(k + 1)r
≤ 1
k + 1

.

Therefore the norm in L1(kB) of the difference between the two sides in (4.6) is equal
to the norm in L1((k + 1)−1B) which tends to zero.

It remains to estimate the distance from the right-hand side of (4.6) to M . To do
so we shall use the inequality

‖F ∨ (G+H)− F‖L1(A) ≤ ‖G− F‖L1(A) + ‖H ∨ 0‖L1(A)

which holds for arbitrary functions F,G,H ∈ L1(A). We apply it to the supremum in
(4.6), putting

A = A(k) = RkB \ (k + 1)−1B ⊂ kB,

where Rk is the radius occurring in (4.5),

F = ckhk, G = ck+1hk+1, H = a ≤ 0 if b = 0,

and
F = ck+1hk+1, G = ckhk, H = b ≤ 0 if a = 0.

We then get fr = F ∨ (G+H) and H ∨ 0 = 0 in both cases, so

(4.7) ‖fr − cphp‖L1(A(k)) ≤ ‖ck+1hk+1 − ckhk‖L1(A(k))

for p = k or p = k + 1. Given any sequence (rj) tending to zero we can choose kj such
that skj+1 ≤ rj ≤ skj . Then (4.7) shows that

‖frj − cphp‖L1(A(kj)) ≤ ‖ckj+1hkj+1 − ckjhkj‖L1(A(kj))

for p = kj or p = kj + 1. We recall that, by our choice of ck,
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‖ckhk − hk‖L1(RkB) ≤ ‖ckhk − hk‖L1(kB) → 0

and that, by (4.5), the quantity ‖hk+1−hk‖L1(RkB) tends to zero. This proves that frj
is as close as we wish to either hkj or hkj+1 in the metric of L1

loc(Cn), and therefore
tends to an element of M : we have proved that T0(f) is contained in M .
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