Problem set 1

Algebra for PhD students

Solutions should contain detailed arguments for all statements made. The total amount of points for this set is 100 . Hand in before March 27.

Problem 1. (10 credits) Let $\left(\mathbb{Q}_{>0}, \cdot\right)$ be the group of positive rational numbers with multiplication and $(\mathbb{Z}[x],+)$ be the group of polynomials in one variable x with integer coefficients. Show that $\left(\mathbb{Q}_{>0}, \cdot\right)$ is isomorphic to $(\mathbb{Z}[x],+)$.

Problem 2. (10 credits) Let G be a group. Consider a collection of formal generators x_{g} indexed by $g \in G$. Prove that G is isomorphic to $\left\langle x_{g} \mid x_{g} x_{h}=x_{g h}, g, h \in G\right\rangle$.

Problem 3. (10 credits) Let \mathcal{M} be the category of monoids. Show that for each $N \in \mathcal{M}$ the assingment $M \mapsto M \times N$ can be extended to a functor $F_{N}: \mathcal{M} \rightarrow \mathcal{M}$ (i.e. define F_{N} on morphisms) in such a way that each monoid morphism $\phi: N \rightarrow N^{\prime}$ defines a natural transformation $F_{N} \rightarrow F_{N^{\prime}}$.

Problem 4. (10 credits) Let G be the cyclic group of order n, i.e., $G=\left\langle g \mid g^{n}=1\right\rangle$. Describe all irreducible complex representations of $G \times G$.

Problem 5. (20 credits) A semiring is an algebraic structure $(S,+, \cdot)$ such that $(S,+)$ is a commutative monoid with identity element 0 and (S, \cdot) is a monoid with identity element 1 such that

- $a(b+c)=a b+a c$
- $(a+b) c=a c+b c$
- $0 \cdot a=0=a \cdot 0$
(a) Show that the set $M_{n \times n}(S)$ of $(n \times n)$-matrices with elements in some semiring S is a semiring with the usual operations of matrix multiplication and addition.
(b) Let $B=\{0,1\}$ with operations defined by $0+0=0,1+0=0+1=1+1=1$, $1 \cdot 0=0 \cdot 1=0 \cdot 0=0$ and $1 \cdot 1=1$. Show that B is a semiring. This is called the Boolean semiring with two elements.
(c) Show that the monoid $\left(M_{n \times n}(B), \cdot\right)$ is isomorphic to the monoid B_{n} of binary relations on the set $\{1, \ldots, n\}$.

Problem 6. (20 credits)
(a) Show that the only ring endomorphism of \mathbb{Q} is the identity.
(b) Show that the only ring endomorphism of \mathbb{R} is the identity.

Problem 7. (20 credits) Describe all morphisms of \mathbb{C}-algebras from $M_{2 \times 2}(\mathbb{C})$ to $M_{3 \times 3}(\mathbb{C})$.

