CATEGORY \mathcal{O} FOR QUANTUM GROUPS

HENNING HAAHR ANDERSEN AND VOLODYMYR MAZORCHUK

Abstract. In this paper we study the BGG-categories \mathcal{O}_q associated to quantum groups. We prove that many properties of the ordinary BGG-category \mathcal{O} for a semisimple complex Lie algebra carry over to the quantum case.

Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for \mathcal{O} and for finite dimensional U_q-modules we are able to determine all irreducible characters as well as the characters of all indecomposable tilting modules in \mathcal{O}_q.

As a consequence of these results we are able to recover also a known result, namely that the generic quantum case behaves like the classical category \mathcal{O}.

1. Introduction

Let g be a semi-simple Lie algebra over \mathbb{Q} associated to a semi-simple complex Lie algebra $g_{\mathbb{C}}$. The corresponding BGG-category \mathcal{O}, defined in [BGG], has been studied intensively over the last decades, see the recent monograph [Hu] for details.

In this paper we study similar categories for quantum groups. We let v denote an indeterminate and set U_v equal to the quantum group (or rather the quantized enveloping algebra) for g over $\mathbb{Q}(v)$. The subcategory \mathcal{O}_v of the module category for U_v is then defined in complete analogy with \mathcal{O}_{int}, the subcategory of \mathcal{O} consisting of modules with integral weights. Using Lusztig’s quantum divided power version of U_v (see below) it is possible to consider also specializations \mathcal{O}_q of \mathcal{O}_v for any $q \in \mathbb{C} \setminus \{0\}$. Our principal interest in this paper is the study of \mathcal{O}_q in the case where q is a root of unity.

In a little more detail set $A = \mathbb{Z}[v, v^{-1}] \subset \mathbb{Q}(v)$ and let U_A be the Lusztig A-form of U_v, cf. [Lu90b]. For any non-zero $q \in \mathbb{C}$ we set $U_q = U_A \otimes_A \mathbb{C}$, where \mathbb{C} is made into an A-algebra by the specialization $v \mapsto q$. Then \mathcal{O}_q is the BGG-category for U_q.

Denote by \mathcal{F}_q the subcategory of \mathcal{O}_q consisting of all finite dimensional U_q-modules of type 1. When q is not a root of unity, this category is semisimple and it has exactly the same “combinatorics” as the category of finite dimensional modules for $g_{\mathbb{C}}$, i.e. the characters
of the simple modules are given by Weyl’s character formula, see e.g. [APW91, Ja].

Suppose now \(q \) is a root of unity. Then \(\mathcal{F}_q \) has a much more complicated structure. In the present paper we assume that \(q \) is of odd order \(l \) and if \(\mathfrak{g} \) contains a summand of type \(G_2 \) we assume in addition that \(l \) is prime to 3. Then the “combinatorics” of \(\mathcal{F}_q \) has been worked out: Lusztig stated the conjecture [Lu89] that irreducible characters in \(\mathcal{F}_q \) should be given by the values at 1 of the Kazhdan-Lusztig polynomials associated to the affine Weyl group for \(\mathfrak{g} \). More specifically, the Kazhdan-Lusztig polynomials involved are the parabolic ones corresponding to affine Weyl group for the Langlands dual of \(\mathfrak{g} \) relative to its finite Weyl subgroup, cf also [So97a]. Kazhdan and Lusztig proved that the category of finite dimensional modules (of type 1) for \(U_q \) is equivalent to a category of modules for the corresponding affine Kac-Moody algebra [KL94]. This requires a weak restriction on \(l \) and in the non-simply laced case it has to be supplemented by Lusztig’s later work [Lu94]. Then Kashiwara and Tanisaki proved the corresponding conjecture for affine Kac-Moody algebras, [KT95] and [KT96]. This established the above mentioned conjecture on the irreducible characters in \(\mathcal{F}_q \). Soergel subsequently determined the characters of indecomposable tilting modules in \(\mathcal{F}_q \), see [So97b] and [So99].

We prove that several classes of fundamental modules such as simple modules, indecomposable projective modules, indecomposable injective modules, and indecomposable tilting modules in \(\mathcal{O}_q \) have a tensor product decomposition with a part which “comes from” \(\mathcal{F}_q \) and a part which is a \(q \)-Frobenius twist of a corresponding module in \(\mathcal{O}_{int} \), see Sections 3 and 4 for the precise statements. This allows us to deduce our main results: we determine all irreducible characters as well as the characters of all indecomposable tilting modules in \(\mathcal{O}_q \), see Corollaries 5.3-4.

In the process of establishing these results we prove that many of the properties of \(\mathcal{O} \), e.g. finite length of all modules, the existence of enough projectives and injectives, existence of tilting modules, and Ringel self-duality all carry over to \(\mathcal{O}_q \).

One of the main features of \(\mathcal{O}_q \) is that it contains a copy of \(\mathcal{O}_{int} \), namely we may identify \(\mathcal{O}_{int} \) with the direct sum of all “special blocks” in \(\mathcal{O}_q \), see Theorem 3.11 below. Once we have established this and the above mentioned properties of \(\mathcal{O}_q \) we return to the generic category \(\mathcal{O}_v \). Using specialization of \(v \) at 1 on the one hand and at large order roots of unity \(q \) on the other hand we are able to identify the combinatorics (i.e. the composition factor multiplicities of simple modules in Verma modules, and the multiplicities of Verma modules in Verma flags of indecomposable tilting modules) in \(\mathcal{O}_v \) with that of \(\mathcal{O}_{int} \). As was pointed out to us by D. Kazhdan, in the simply laced case there is
a stronger result, proved by M. Finkelberg in his thesis [Fi] from 1993, which establishes a category equivalence between O_q and O_{int} in the case when q is a non-zero non-root of unity. G. Lusztig made us aware of the paper [EK] where a generic equivalence is proved more generally for symmetrizable Kac-Moody algebras, see [EK, Theorem 4.2]. Our proof via the root of unity case is completely different.

The paper is organized as follows. In Section 2 we recall some basic facts about quantum groups at roots of unity. Then in Sections 3-4 we establish the results about O_q mentioned above. In particular, the tensor decompositions of simple modules, indecomposable projective or injective modules, and tilting modules are found in Theorem 3.1, Theorem 3.15, Theorem 3.18, and Corollary 4.8, respectively. Then we deduce in Section 5 the combinatorics of O_q before we conclude the paper in Section 6 by proving that in the generic case the combinatorics of O_v is the same as that of O_{int}. We complete the paper with a section which provides a parallel with the category O for Lie superalgebras.

Acknowledgements. A major part of the research presented in the paper was done during the visit of the second author to the Center for Quantum Geometry of Moduli Spaces, Aarhus University. The financial support and hospitality of the Center are gratefully acknowledged. The second author was partially supported by the Royal Swedish Academy of Sciences and the Swedish Research Council.

We thank David Kazhdan and George Lusztig for calling our attention to related results already available in the literature. We also thank Jim Humphreys and the referee for very helpful comments. We thank Eric Vasserot who made us aware of a mistake in the original formulation of Corollary 5.3.

2. Preliminaries on quantum groups

2.1. Quantum groups at roots of 1. For an indeterminate v denote by U_v the quantum group over $\mathbb{Q}(v)$ corresponding to a complex simple Lie algebra \mathfrak{g}. This is the $\mathbb{Q}(v)$-algebra with generators $E_i, F_i, K_i^{\pm 1}$, $i = 1, 2, \ldots, n = \text{rank}(\mathfrak{g})$ and relations as given in [Ja, Chapter 5].

Set $A = \mathbb{Z}[v, v^{-1}]$. Then A contains the quantum numbers $[r]_d = \frac{v^{dr} - v^{-dr}}{v^d - v^{-d}}$ for any $r, d \in \mathbb{Z}$, $d \neq 0$ as well as the corresponding q binomials $\begin{bmatrix} m \end{bmatrix}_d$, $m \in \mathbb{Z}, t \in \mathbb{N}$. When $r \geq 0$ we set $[r]_d! = [r]_d[r - 1]_d \cdots [1]_d$. In the following we will often need these elements for $d = 1$ in which case we will omit it from the notation.

Let C be the Cartan matrix associated with \mathfrak{g}. We denote by D a diagonal matrix whose entries are relatively prime natural numbers d_i with the property that DC is symmetric. Then we set $E_i^{(r)} = E_i^r/[r]_{d_i}!$. With a similar expression for $F_i^{(r)}$ we define now the A-form U_A of U_v.

to be the A-subalgebra of U_v generated by the elements $E_i^{(r)}, F_i^{(r)}, K_i^{\pm 1}$, $i = 1, \ldots, n$, $r \geq 0$. This is the Lusztig divided power quantum group.

In this paper we fix throughout a primitive root of unity $q \in \mathbb{C}$ of odd order l. We assume that l is prime to 3 if g has type G_2. The corresponding quantum group is then the specialization $U_q = U_A \otimes_A \mathbb{C}$ where \mathbb{C} is considered as an A-module via $v \mapsto q$, cf. [Lu90a], [Lu90b]. We abuse notation and write $E_i^{(r)}$ also for the element $E_i^{(r)} \otimes 1 \in U_q$ and similarly for $F_i^{(r)}$.

We have a triangular decomposition $U_q = U_q^- U_q^0 U_q^+$ with U_q^- and U_q^+ being the subalgebra generated by $F_i^{(r)}$ or $E_i^{(r)}$, $i = 1, \ldots, n$, $r \geq 0$, respectively. The “Cartan part” U_q^0 is the subalgebra generated by $K_i^{\pm 1}$ and $[K_i^t]$, $i = 1, \ldots, n$, $t \geq 0$, where

$$[K_i^t] = \prod_{j=1}^t \frac{K_i v^{d_i(1-j)} - K_i v^{-d_i(1-j)}}{v^{d_i j} - v^{-d_i j}}.$$

We denote the “Borel subalgebra” $U_q^0 U_q^+$ by B_q.

Recall that U_v is a Hopf algebra with comultiplication Δ, counit ϵ and antipode S, see [Ja, 4.11]. It is easy to see that their restrictions give U_A the structure of a Hopf algebra over A. Then U_q also gets an induced Hopf algebra structure.

2.2. The small quantum group. We also have the small quantum group $u_q \subset U_q$, defined as the subalgebra of U_q generated by $E_i, F_i, K_i^{\pm 1}$, $i = 1, \ldots, n$. It is also a Hopf subalgebra. Note that U_q is generated by u_q and $E_i^{(l)}, F_i^{(l)}$, $i = 1, \ldots, n$, as follows from [Lu89, Proposition 3.2(a)].

The small quantum group also has a triangular decomposition $u_q = u_q^- u_q^0 u_q^+$ with the obvious definitions of the three parts. We write $b_q = u_q^0 u_q^+$. Note that u_q^- and u_q^+ are finite dimensional. In fact, the PBW basis for U_q^- (resp. U_q^+) leads to a basis for u_q^- (resp. u_q^+): we just have to take PBW-monomials where each “root vector” has degree at most l, [Lu90b, Theorem 8.3]. Also u_q^0 is finite dimensional. In fact, $K_i^{2l} = 1$ for all i, see [Lu90a, 5.7].

2.3. The quantum Frobenius homomorphism. Let $U_\mathbb{C}$ denote the enveloping algebra of g. It has generators e_i, f_i, and h_i, $i = 1, \ldots, n$. Lusztig has then defined in [Lu90b, Section 8], see also [Lu, Part V], a quantum Frobenius homomorphism $Fr_q : U_q \to U_\mathbb{C}$ by
Here \((h_i) = \prod_{i=1}^{t} \frac{(h_i-s+1)}{s} \).

2.4. Representations of \(U_q \). Set \(X = \mathbb{Z}^n \). Then for \(\lambda \in \mathbb{Z}^n \) we define \(\chi_\lambda : U_q^0 \to \mathbb{C} \) by \(\chi_\lambda (K_i^{\pm 1}) = q^{\pm d_i \lambda_i} \) and \(\chi_\lambda (\frac{[K_i]}{t}) = \frac{[\lambda_i]}{t_i} \). This is a well-defined character of \(U_q^0 \) (see e.g. [APW91, Lemma 1.1]) and it extends to \(B_q \) by mapping \(E_i^{(r)} \) to 0 for all \(r > 0, i = 1, \ldots, n \).

If \(M \) is a \(U_q^0 \)-module, then the weight space of \(M \) is defined as follows:

\[
M_\lambda = \{ m \in M \mid um = \chi_\lambda (u)m \text{ for all } u \in U_q^0 \}.
\]

The module \(M \) is called a weight module of type 1 provided that \(M \) decomposes into a direct sum of weight spaces of the form (2.1). In this paper we consider only weight modules of type 1 and will simply call them weight modules.

If \(N \) is a \(U_C \)-module then we may consider \(N \) also as a \(U_q \)-module via \(F r_q \). To distinguish it from \(N \) we denote this \(U_q \)-module by \(N^0 \) and call it the \((q\)-Frobenius\) twist of \(N \). Note that \(u_q \) acts trivially on \(N^0 \). Conversely, if \(M \) is a weight \(U_q \)-module on which \(u_q \) acts trivially, then there exists a \(U_C \)-module \(N \) such that \(M = N^0 \), [Lu90b, 8.16]. In this case we also write \(N = M^0 \). Note that \(N = M \) as \(\mathbb{C} \)-spaces and the action of \(e_i \) (resp. \(f_i \)) on a vector \(v \in N \) is given by \(e_i v = E_i^{(t)} v \) (resp. \(f_i v = F_i^{(t)} v \)).

Note that \(F r_q \) restricts to homomorphisms \(U_q^0 \to U_C^0 \) and \(B_q \to B_C \), where \(U_C^0 \) is the enveloping algebra of the Cartan subalgebra \(\mathfrak{h} \) in \(\mathfrak{g} \) generated by the \(h_i \)'s and \(B_C \) is the enveloping algebra of the Borel subalgebra of \(\mathfrak{g} \) generated by the \(h_i \)'s and \(e_i \)'s. We also denote these homomorphisms by \(F r_q \). Using them we can twist \(U_C^0 \) as well as \(B_C \)-modules. For instance, the 1-dimensional \(U_q^0 \) (or \(B_q \)) module \(\mathbb{C} \lambda \) is the twist of the 1-dimensional \(U_C^0 \) (or \(B_C \)) module \(\mathbb{C} \lambda \) determined by \(\lambda \in X \) (we identify \(X \) with the set of integral weights in \(\mathfrak{h}^* \) in the usual way).

3. The category \(\mathcal{O}_q \)

3.1. Definition. Similarly to [BGG] we define the category \(\mathcal{O}_q \) as the full subcategory of \(U_q \)-mod consisting of those \(U_q \)-modules \(M \) which satisfy the following conditions:

\(M \) is finitely generated as a \(U_q \)-module,
(II) M is a weight module,
(III) $\dim U_q^+ m < \infty$ for all $m \in M$.

Remark. Let O_{int} denote the integral subcategory (i.e. the direct sum of all integral blocks) of the usual BGG category O for \mathfrak{g} (see [BGG]). If $M \in O_{\text{int}}$ then $M[\ell] \in O_q$.

For $\lambda \in X$ the Verma U_q-module with highest weight λ is given by the usual recipe:

$$\Delta_q(\lambda) = U_q \otimes_{B_q} C_{\lambda}.$$

The standard arguments (see e.g. [Di, Chapter 7]) show that $\Delta_q(\lambda)$ has the following universal property:

$$\text{Hom}_{O_q}(\Delta_q(\lambda), M) = \{ m \in M_\lambda \mid E_i^{(r)} m = 0 \text{ for all } r > 0, i = 1, \ldots, n \}.$$

Moreover, it is easily seen that $\Delta_q(\lambda)$ has a unique maximal proper submodule. The corresponding simple quotient is denoted $L_q(\lambda)$. Then the set $\{L_q(\lambda) : \lambda \in X\}$ is a complete and irredundant set of representatives of isomorphism classes of simple modules in O_q.

3.2. Infinitesimal modules.

Replacing U_q by the small quantum group u_q we get *baby Verma modules* defined by:

$$\tilde{\Delta}_q(\lambda) = u_q \otimes_{b_q} C_{\lambda}, \quad \lambda \in X.$$

If we replace here u_q by the subalgebra $u_q U_q^0$ of U_q and b_q by $U_q^0 b_q = U_q^0 u_q^+$, then we have similarly

$$\tilde{\Delta}_q(\lambda) = u_q U_q^0 \otimes_{U_q^0 b_q} C_{\lambda}.$$

The module $\tilde{\Delta}_q(\lambda)$ restricted to u_q coincides with $\Delta_q(\lambda)$ and is a finite dimensional module. It has dimension l^N where N is the number of positive roots (because as a vector space we may identify it with u_q^-).

The module $\tilde{\Delta}_q(\lambda)$ has a universal property similar to the one enjoyed by $\Delta_q(\lambda)$ and it has a unique simple quotient which we denote $\tilde{L}_q(\lambda)$.

Set now $X_l = \{ \lambda \in X \mid 0 \leq \lambda_i < l, i = 1, \ldots, n \}$. Then each $\lambda \in X$ has an “l-adic expansion” $\lambda = \lambda^0 + l \lambda^1$ with $\lambda^0 \in X_l$, $\lambda^1 \in X$. In the following upper indices 0 and 1 on a weight will always refer to the components of the weight in this expansion.

We set $X^+ = \{ \lambda \in X \mid \langle \lambda, \alpha^\vee \rangle \geq 0 \text{ for all positive roots } \alpha \}$. The elements of X^+ are called the *dominant weights*. An *antidominant* weight is a $\lambda \in X$ for which $\lambda + \rho \in -X^+$.

We have the following remarkable fact about these infinitesimal simple modules, see [AW, Theorem 1.9].

$$\tilde{L}_q(\lambda) \simeq L_q(\lambda^0) \otimes C_{\lambda^1}^\ell.$$

The most “special” infinitesimal simple module is the one with highest weight $(l-1)\rho$. Here, as usual, ρ is the half of the sum of all positive
roots. We call this module the quantum Steinberg module and denote it by \(St_l \). Note that by (3.1) it is in fact a simple \(U_q \)-module, moreover, we have

\[
St_l = \hat{L}_q((l-1)\rho) = \hat{\Delta}_q((l-1)\rho) = L_q((l-1)\rho).
\]

Remark. Above we could also replace \(u_q \) by \(u_q B_q \). Then we get baby Verma modules for \(u_q B_q \) defined by \(\tilde{\Delta}_q(\lambda) = u_q B_q \otimes_{B_q} \mathbb{C}_\lambda \) with simple quotient \(\hat{L}_q(\lambda) \) and \(\hat{L}_q(\lambda) \), respectively. Note, in particular, that the Steinberg module \(St_l \) is also a simple \(u_q B_q \)-module as it extends, in fact, to \(U_q \).

The composition factor multiplicities of \(\tilde{\Delta}_q(\lambda) \) as well as the multiplicities with which \(\tilde{\Delta}_q(\lambda) \) occurs in a baby Verma filtration of an indecomposable projective \(u_q B_q \)-module coincide with the corresponding numbers for the Weyl module in \(\mathcal{F}_q \) with highest weight \(\lambda \) when \(\lambda \) is sufficiently dominant. This follows from (3.1), cf. [APW92, Theorem 4.6]. This fact allows us to apply the combinatorics of \(\mathcal{F}_q \) mentioned in the introduction to the category of \(u_q B_q \)-modules.

3.3. Tensor product formula for simple modules in \(\mathcal{O}_q \)

Recall that \(U_q \) is a Hopf algebra. In particular, its comultiplication allows us to make the tensor product (over \(\mathbb{C} \)) of two modules for \(U_q \) into a \(U_q \)-module. We write \(\otimes \) for \(\otimes_{\mathbb{C}} \). Note that \(\mathcal{O}_q \) is stable under tensoring with finite dimensional modules (of type 1).

Let \(M, N \in \mathcal{O}_q \). Then we consider \(\text{Hom}_\mathbb{C}(M, N) \) as a \(U_q \)-module in the usual way, see e.g. [APW91, Section 2.9]. The \(u_q \)-fixed points \(\text{Hom}_{u_q}(M, N) \) then form a \(U_q \)-submodule on which \(u_q \) acts trivially, cf. [APW92, Section 3.2]. Hence by Section 2.4 there exists a \(U_\mathcal{O} \)-module \(P = \text{Hom}_{u_q}(M, N)[^l] \) with \(P[^l] = \text{Hom}_{u_q}(M, N) \).

Let us also record the following adjointness valid whenever in addition to \(M, N \in \mathcal{O}_q \) we have a module \(Q \in \mathcal{O} \)

\[
\text{Hom}_\mathcal{O}(Q[^l] \otimes M, N) \simeq \text{Hom}_\mathcal{O}(Q, \text{Hom}_{u_q}(M, N)[^l]).
\]

We now have the following theorem first proved by G. Lusztig in [Lu89, Theorem 7.4]:

Theorem 3.1. Let \(\lambda \in X \). Then \(L_q(\lambda) \simeq L_\mathcal{C}(\lambda^1[^l] \otimes L_q(\lambda^0) \).

Proof. Let \(L \) be any simple \(u_q \)-module (of type 1). Recall from the previous subsection that \(L \) is the restriction of a simple \(U_q \)-module (which we also denote by \(L \)). Then for any \(M \in \mathcal{O}_q \) the natural map \(\text{Hom}_{u_q}(L, M) \otimes L \rightarrow M \) which takes \(f \otimes m \) to \(f(m) \) is a \(U_q \)-homomorphism. It is in fact an injection which identifies \(\text{Hom}_{u_q}(L, M) \otimes L \) with the \(L \)-isotypic component of the \(u_q \)-socle of \(M \). By the above this \(U_q \)-module is equal to \(N[^l] \) for some \(N \in \mathcal{O}_{\text{int}} \).
Applying these observations to $M = L_q(\lambda)$ we get therefore $L_q(\lambda) \simeq \text{Hom}_{u_q}(L, L_q(\lambda)) \otimes L$ for some such L, i.e. $L_q(\lambda) \simeq L_1^\ell \otimes L$ with $L_1 \in \mathcal{O}$. Clearly L_1 must be irreducible, i.e. $L_1 = L_{C}(\mu)$ for some $\mu \in X$. By Section 3.2 we have $L \simeq L_q(\nu)$ for some $\nu \in X_l$. By weight considerations and the uniqueness of the l-adic expansion of λ we get $\mu = \lambda^1$ and $\nu = \lambda^0$. \hfill \square

3.4. Verma modules in \mathcal{O}_q. We now want to study the composition factors of Verma modules. If $M \in \mathcal{O}_q$ and $\mu \in X$, we denote by $[M : L_q(\mu)]$ the multiplicity of $L_q(\mu)$ as a composition factor of M. We use similar notation for modules in \mathcal{O} and for u_qB_q-modules.

Lemma 3.2. Let M be a B_C-module. Then the map

$$u \otimes m \mapsto Fr_q(u) \otimes m, \quad u \in U_q, \quad m \in M$$

is an isomorphism of U_q-modules

$$U_q \otimes_{u_qB_q} M[\ell] \simeq (U_C \otimes_{B_C} M)[\ell].$$

Proof. The map is clearly both well defined and a U_q-homomorphism. Note that $u_qB_q = u_q^{-1}B_q$ and that the restriction of Fr_q to U_q^{-1} is a surjection onto U_C^{-1} with kernel generated by the augmentation ideal of u_q^{-1}. It follows that the two modules in question are both isomorphic as \mathbb{C}-spaces to $U_C^{-1} \otimes M$ with the claimed map identifying the two. \hfill \square

Proposition 3.3. For $\lambda \in X$ the Verma module $\tilde{\Delta}_q(\lambda)$ has a filtration in \mathcal{O}_q with quotients of the form $\Delta_C(\mu^1)[\ell] \otimes L_q(\mu^0)$, $\mu \in X$. Each quotient $\Delta_C(\mu^1)[\ell] \otimes L_q(\mu^0)$ occurs $[\tilde{\Delta}_q(\lambda) : L_q(\mu)]$ times.

Proof. Consider a composition series of $\tilde{\Delta}_q(\lambda)$

$$0 = F^r \subset F^{r-1} \subset \cdots \subset F^0 = \tilde{\Delta}_q(\lambda)$$

with quotients $F^{i-1}/F^i \simeq \tilde{L}_q(\mu_i)$. When we apply the exact functor $U_q \otimes_{u_qB_q}$ we obtain the filtration

$$0 = U_q \otimes_{u_qB_q} F^r \subset U_q \otimes_{u_qB_q} F^{r-1} \subset \cdots \subset U_q \otimes_{u_qB_q} F^0$$

of $U_q \otimes_{u_qB_q} \tilde{\Delta}_q(\lambda) \simeq \Delta_q(\lambda)$ with quotients $U_q \otimes_{u_qB_q} \tilde{L}_q(\mu_i)$. Now we recall from Section 3.2 that for any $\mu \in X$ we have $\tilde{L}_q(\mu) \simeq \mathbb{C}_{\mu^1} \otimes L_q(\mu^0)$. By the tensor identity we have

$$U_q \otimes_{u_qB_q} \tilde{L}_q(\mu) \simeq (U_q \otimes_{u_qB_q} \mathbb{C}_{\mu^1}) \otimes L_q(\mu^0).$$

Finally, Lemma 3.2 shows that $U_q \otimes_{u_qB_q} \mathbb{C}_{\mu^1} \simeq \Delta_C(\mu^1)[\ell]$ and the proposition follows. \hfill \square

Recall that modules in \mathcal{O} have finite composition series (see [Di, Chapter 7]). Moreover, by Proposition 3.1 the composition factors of $\Delta_C(\mu^1)[\ell] \otimes L_q(\mu^0)$ are $L_C(\nu^1)[\ell] \otimes L_q(\mu^0) \simeq L_q(l\nu^1 + \mu^0)$ (occurring $[\Delta_C(\mu^1) : L_C(\nu^1)]$ times). We thus have
Corollary 3.4. For every $\lambda \in X$ the Verma module $\Delta_q(\lambda)$ has finite length. Moreover, for $\mu \in X$ we have

$$[\Delta_q(\lambda) : L_q(\mu)] = \sum_{\nu \geq \mu^1} [\Delta_q(\lambda) : \tilde{L}_q(t\nu + \mu^0)] [\Delta_C(\nu) : L_C(\mu^1)].$$

Corollary 3.5. All modules in O_q have finite length.

Proof. By Condition (I) of O_q it is enough to establish this for cyclic modules M, i.e. we assume $M = U_qm$ for some $m \in M$. By Conditions (II) and (III), m is contained in a finite dimensional B_q-submodule $E \subset M$. This means that M is a quotient of $U_q \otimes_{B_q} E$ which has a finite Verma filtration (take a B_q-filtration of E with 1-dimensional quotients and apply the exact functor $U_q \otimes_{B_q} -$). It is therefore enough to check that Verma modules in O_q have finite length. We did this in Corollary 3.4.

For later use we record the following consequence of Corollary 3.4

Corollary 3.6. Let $\lambda, \mu \in X$. Then for $l \gg 0$ we have

$$[\Delta_q(\lambda) : L_q(\mu)] = [\tilde{\Delta}_q(\lambda) : \tilde{L}_q(\mu)].$$

Proof. Choose l so big that $\lambda - \mu \not\geq l\nu$ for any $\nu > 0$. Then the sum on the right hand side of the formula in Corollary 3.4 contains only one term, namely the term with $\nu = \mu^1$.

3.5. Special modules in O_q.

Proposition 3.7. Let $\lambda \in X$. Then $\Delta_q(l\lambda + (l-1)\rho) \simeq \Delta_C(\lambda)^{[l]} \otimes St_l$.

Proof. We have $\tilde{\Delta}_q((l-1)\rho) \simeq St_l$, see [APW92, Lemma 2.6]. Just as in the proof of Proposition 3.3 we then get

$$\Delta_q(l\lambda + (l-1)\rho) \simeq U_q \otimes_{u_qB_q} \tilde{\Delta}_q(l\lambda + (l-1)\rho) \simeq (U_q \otimes_{u_qB_q} \otimes C_{l\lambda}) \otimes St_l \simeq \Delta_C(\lambda)^{[l]} \otimes St_l.$$

Corollary 3.8. If λ is antidominant then $\Delta_q(l\lambda + (l-1)\rho)$ is simple. In particular, $\Delta_q(-\rho)$ is simple.

Proof. It is well known (see e.g. [Di, Chapter 7] or [Hu, Theorem 4.4]) that $\Delta_C(\lambda)$ is simple in O when λ is antidominant.
3.6. **The special block in \(O_q \).** The considerations at the beginning of Section 3.3 allow us to define a functor \(F : O_q \to O_{\text{int}} \) by

\[
FN = \text{Hom}_{u_q}(St_l, N)^{-l}.
\]

Since \(St_l \) is projective as a \(u_q \)-module \(F \) is exact.

Note that the map \(f \otimes s \mapsto f(s) \) is a homomorphism and in fact an inclusion \((FN)^{[l]} \otimes St_l \to N \). The considerations in Section 3.3 prove the following:

Proposition 3.9. Let \(\lambda \in X \). Then

\[
FL_q(\lambda) \simeq \begin{cases}
L_C(\lambda^1), & \text{if } \lambda = l\lambda^1 + (l - 1)\rho; \\
0, & \text{if } l \text{ does not divide } \lambda + \rho.
\end{cases}
\]

This is a key ingredient in the following:

Proposition 3.10. Let \(\lambda, \mu \in X \). Suppose \(\lambda^0 = (l - 1)\rho \neq \mu^0 \). Then \(\text{Ext}^i_{O_q}(L_q(\lambda), L_q(\mu)) = 0 \) for all \(i \).

Proof. As \(L_q(\lambda) = L_C(\lambda^1)^{[l]} \otimes St_l \) and \(St_l \) is projective as a \(u_q \)-module, for any \(M \in O_q \) we get via (3.2)

\[
\text{Ext}^i_{O_q}(L_q(\lambda), M) \simeq \text{Ext}^i_{O_q}(L_C(\lambda^1), FM).
\]

When \(M = L_q(\mu) \) we have \(FM = 0 \) by Proposition 3.9 and the desired vanishing follows. \(\square \)

Proposition 3.10 allows us to define \(O_q^{\text{spec}} \) to be the block in \(O_q \) consisting of those \(M \in O_q \) whose composition factors all belong to \(lX + (l - 1)\rho \). We call this the **special block** in \(O_q \) and its objects **special modules** in \(O_q \).

Define the functor \(G : O \to O_q^{\text{spec}} \) by

\[
GN = N^{[l]} \otimes St_l.
\]

Note that for \(N \in O \) we have indeed that \(GN \) is a special module in \(O_q^{\text{spec}} \).

Clearly, \(G \) is exact and is in fact adjoint (left and right) to \(F \). It is also immediate that \(F \circ G \) is isomorphic to the identity functor on \(O \). Moreover, by Theorem 3.1 we have that \(G \circ F \) is naturally isomorphic to the identity on simple modules and hence on \(O_q^{\text{spec}} \). We have thus proved the following:

Theorem 3.11. There is an equivalence of categories \(O_{\text{int}} \simeq O_q^{\text{spec}} \) given by the mutually inverse functors \(F \) and \(G \).
3.7. Projective modules in \(\mathcal{O}_q \). Recall that in \(\mathcal{O}_{md} \) the Verma module \(\Delta_C(\lambda) \) is projective whenever \(\lambda + \rho \) is dominant, cf. [Hu, Proposition 3.8]. Hence Theorem 3.11 gives

Corollary 3.12. If \(\lambda + \rho \) is dominant, then \(\Delta_q((\lambda + (l-1)\rho) \) is projective in \(\mathcal{O}_q \). In particular, \(\Delta_q(-\rho) \) is projective.

More generally, let \(\mu \in X \) and denote by \(P_C(\mu) \in \mathcal{O} \) a projective cover of \(L_C(\mu) \). Then Theorem 3.11 gives the following:

Proposition 3.13. For each \(\lambda \in X \) the module \(P_C(\lambda)_l \otimes \text{St}_l \) is a projective cover of \(L_q(\lambda + (l-1)\rho) \) in \(\mathcal{O}_q \).

Having these projectives allows us to deduce the following:

Theorem 3.14. The category \(\mathcal{O}_q \) has enough projectives.

Proof. This is a standard argument, cf. [Hu, 3.8]: By induction with respect to length we reduce the problem to proving that each simple module can be covered by a projective. Given \(\lambda \in X \), we set \(\nu = w_0\lambda^0 + (l-1)\rho \) where \(w_0 \) denotes the longest element in the Weyl group \(W \) for \(g \). Then \(w_0\nu = \lambda^0 - (l-1)\rho \) is the lowest weight of the finite dimensional simple module \(L_q(\nu) \). Therefore \(\Delta_q((\lambda^1 + (l-1)\rho) \otimes L_q(\nu) \) surjects onto \(\Delta_q((\lambda^1 + (l-1)\rho + w_0\nu) = \Delta_q(\lambda) \). Now it is an easy consequence of Proposition 3.13 that \(P_{C}(\lambda^1)_l \otimes \text{St}_l \) surjects onto \(\Delta_q((\lambda^1 + (l-1)\rho) \otimes \text{St}_l \otimes L_q(\nu) \) surjects onto \(L_q(\lambda) \).

Define \(P_q(\lambda) \in \mathcal{O}_q \) as the projective cover of \(L_q(\lambda) \). Then Corollary 3.12 says that \(P_q(\lambda) = \Delta_q(\lambda) \) for all \(\lambda \) such that \(\lambda + \rho \subseteq X + lX \). Moreover, Proposition 3.13 says that \(P_q((\lambda + (l-1)\rho) \simeq P_C(\lambda)_l \otimes \text{St}_l \) for all \(\lambda \in X \). We shall now generalize this by showing that all indecomposable projectives in \(\mathcal{O}_q \) have a tensor factorization.

Recall that the subcategory \(\mathcal{F}_q \) consisting of all finite dimensional modules in \(\mathcal{O}_q \) also has enough projectives, see [APW92, Section 4]. Let us denote by \(Q_q(\mu) \in \mathcal{F}_q \) the projective cover of \(L_q(\mu) \) for \(\mu \in X^+ \).

Theorem 3.15. For any \(\lambda \in X \) we have \(P_q(\lambda) \simeq P_C(\lambda^1)_l \otimes Q_q(\lambda^0) \).

Proof. By [APW92, Theorem 4.6] the restriction to \(u_q \) of \(Q_q(\lambda^0) \) is the projective cover of \(L_q(\lambda^0) \), i.e. for \(\mu \in X_l \) we have

\[
\text{Hom}_{u_q}(Q(\lambda^0), L_q(\mu)) = \begin{cases}
\mathbb{C} & \text{if } \mu = \lambda^0; \\
0 & \text{otherwise.}
\end{cases}
\]
Hence, using 3.2 and Theorem 3.1, for any $\mu \in X$ we get

$$\text{Ext}^i_{O_q}(P(\lambda^1)[l] \otimes Q(\lambda^0), L_q(\mu)) =$$

$$\text{Ext}^i_{O_C}(P_C(\lambda^1), L_q(\mu^1) \otimes \text{Hom}_u_q(Q(\lambda^0), L_q(\mu^0))[-l]) =$$

$$\begin{cases}
\mathbb{C} & \text{if } \mu = \lambda \text{ and } i = 0; \\
0 & \text{otherwise.}
\end{cases}$$

\[\Box\]

Let us also record the following important consequence of the constructions in the proof of Theorem 3.14

Corollary 3.16. Projective modules in O_q all possess Verma filtrations.

Proof. Let $\lambda \in X$. We shall prove that the corollary holds for $P_q(\lambda)$. When $\lambda \in lX + (l-1)\rho$ this follows from the fact that the corresponding statement is true in O combined with Theorem 3.11. But then the result follows in general because the construction in the proof of Theorem 3.14 reveals that $P^q(\lambda)$ may be obtained as a summand of a projective in O^{spec}_q tensored by a finite dimensional module. \[\Box\]

3.8. **Injective modules in O_q.** Let M be an arbitrary U_q-module. Since the antipode S on U_q is an antihomomorphism, the dual space $M^* = \text{Hom}_u(M, \mathbb{C})$ has the natural structure of a U_q-module given by $uf(m) = f(S(u)m)$, $u \in U_q$, $f \in M^*$, $m \in M$. Now U_v has an automorphism ω which interchanges E_i and F_i and inverts K_i, see [Ja, 4.6]. Clearly, ω gives rise to an automorphism of U_q. Twisting M^* by ω we get the U_q-module ωM^* and when $M \in O_q$ we set

$$M^* = \oplus_{\lambda \in X}(\omega M^*)_{\lambda}.$$

Then $(_)^*$ is an endofunctor on O_q, called *duality*, with the property that for each $\lambda \in X$ we have $\dim(M^*)_\lambda = \dim M_\lambda$. Hence $L^*_q(\lambda) \simeq L_q(\lambda)$ (i.e. \star is *simple preserving*). The existence of \star gives immediately:

Theorem 3.17. O_q has enough injectives.

We set $I_q(\lambda) = P^*_q(\lambda)$. This is the injective envelope of $L_q(\lambda)$ in O_q and if we denote by $I_C(\mu)$ the injective envelope of $L_C(\mu)$ in O_{int} then Theorem 3.15 implies:

Theorem 3.18. For any $\lambda \in X$ we have $I_q(\lambda) \simeq I_C(\lambda^1)[l] \otimes Q_q(\lambda^0)$.

12
3.9. **Projective-injective modules in** \mathcal{O}_q. By a projective-injective module we understand a module which is both projective and injective. We have

Theorem 3.19. Let $\lambda \in X$. Then the following assertions are equivalent:

(a) $P_q(\lambda) \simeq I_q(\lambda)$.
(b) $L_q(\lambda)$ occurs in the socle of a projective-injective module in \mathcal{O}_q.
(c) $L_q(\lambda)$ occurs in the top of a projective-injective module in \mathcal{O}_q.
(d) $L_q(\lambda)$ occurs in the socle of some $\Delta_q(\mu)$, $\mu \in X$.
(e) λ is antidominant.

Proof. The corresponding statement for \mathcal{O}_{int} (and also for its parabolic subcategories) is well-known, see e.g. Addendum and Proposition 4.3 in [Ir]. Hence Theorem 3.11 implies the claim for $\mathcal{O}_{lX + (l-1)\rho}$.

Note that $Q_q(\lambda^0)$ is self-dual. Hence by Theorem 3.15 and 3.18 we see that (a) holds if and only if $P_{C}(\lambda^1) \simeq I_{C}(\lambda^1)$.

Now it is clear that (a) implies (b) and (b) implies (c). Because of Corollary 3.16 we have that (d) is a consequence of (c). Suppose $L_q(\lambda)$ is a submodule of $\Delta_q(\mu)$ for some $\mu \in X$. Then Proposition 3.3 and Proposition 3.1 show that $L_{C}(\lambda^1)$ is a submodule of $\Delta_{C}(\nu)$ for some $\nu \in X$. By the \mathcal{O}-result this implies that λ^1 is antidominant. But this is equivalent to (e). Finally, (c) implies (a) by the observations in the beginning of the proof. \square

The properties described in Theorem 3.19 appear frequently in various categories associated with Lie (super)algebras, e.g. see [MS, Theorem 48] and [BS, Theorems 6.1,6.2]. For Lie superalgebras this will be further clarified in Section 7.

4. **BGG reciprocity, Struktursatz and Ringel self-duality**

4.1. **BGG reciprocity in** \mathcal{O}_q. The dual Verma module $\Delta^*_q(\lambda)$ is denoted $\nabla_q(\lambda)$. Then we have the following easy but very useful vanishing theorem, cf. [Hu, 6.12].

Theorem 4.1. Let $\lambda, \mu \in X$ be arbitrary. Then

$$\text{Ext}^i_{\mathcal{O}_q}(\Delta_q(\lambda), \nabla_q(\mu)) \simeq \begin{cases} \mathbb{C} & \text{if } i = 0 \text{ and } \lambda = \mu; \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Note that $\text{Ext}^i_{\mathcal{O}_q}(\Delta_q(\lambda), \nabla_q(\mu)) \simeq \text{Ext}^i_{\mathcal{O}_q}(\Delta_q(\mu), \nabla_q(\lambda))$ by duality. This allows us to assume that $\lambda \not< \mu$. Easy weight arguments show that the theorem holds for $i = 0$. Now by Corollary 3.16 all projectives in \mathcal{O}_q have Verma filtrations. Moreover, we have a short exact sequence $0 \to K \to P_q(\lambda) \to \Delta_q(\lambda) \to 0$ with K having a Verma
filtration where all subfactors $\Delta_q(\lambda')$ have $\lambda' > \lambda$. The $i > 0$ part of the theorem follows then from this sequence by a dimension shift argument.

As a consequence we see that if $M \in \mathcal{O}_q$ has a Verma (resp. dual Verma) filtration then the number of occurrences $(M : \Delta_q(\lambda))$ (resp. $(M : \nabla_q(\lambda))$ of $\Delta_q(\lambda)$) (resp. $\nabla_q(\lambda)$) in this filtration equals the dimension of $\text{Hom}_{\mathcal{O}}(M, \nabla_q(\lambda))$ (resp. $\text{Hom}_{\mathcal{O}}(\Delta_q(\lambda), M)$). This immediately leads to the following BGG-reciprocity laws:

Corollary 4.2. Let $\lambda, \mu \in X$. Then

$$(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)] = (I_q(\lambda) : \nabla_q(\mu)).$$

In other words, the above means that \mathcal{O}_q is a highest weight category in the sense of [CPS88] (with infinitely many isomorphism classes of simple modules).

4.2. The category \mathcal{C}. Let \mathcal{C} denote the full subcategory of \mathcal{O}_q with objects $P_q(\lambda), \lambda \in X$. For simplicity we will identify objects of \mathcal{C} with elements in X. Then Proposition 3.5 implies that \mathcal{C} is a locally finite dimensional \mathbb{C}-linear category (we refer to [MOS] for generalities on representations of \mathbb{C}-linear categories). Moreover, from Proposition 3.5 and Theorems 3.14 and 3.17 it follows that for any $\lambda \in X$ there exists only finitely many $\mu \in X$ such that $\mathcal{C}(\lambda, \mu) \neq 0$ and that for any $\lambda \in X$ there exists only finitely many $\mu \in X$ such that $\mathcal{C}(\mu, \lambda) \neq 0$.

Let \mathcal{C}-mod (resp. $\text{mod-}\mathcal{C}$) denote the category of finite dimensional left (resp. right \mathcal{C})-modules, that is covariant (resp. contravariant) functors $M : \mathcal{C} \rightarrow \mathbb{C}$-$\text{mod}$ (the latter being the category of finite dimensional complex vector spaces) satisfying $\sum_{\lambda \in X} \dim M(\lambda) < \infty$. Then abstract nonsense (see e.g. [Ga]) implies that \mathcal{O}_q is equivalent to $\text{mod-}\mathcal{C}$ and the latter is equivalent to \mathcal{C}-mod by duality.

4.3. Dominance dimension and Soergel's Struktursatz.

Proposition 4.3. The category \mathcal{O}_q has dominance dimension at least two with respect to projective-injective modules, that is for any projective module $P \in \mathcal{O}_q$ there exists an exact sequence

$$0 \rightarrow P \rightarrow X_1 \rightarrow X_2,$$

where both X_1 and X_2 are projective-injective.

Proof. This claim is well-known for \mathcal{O}_{int}, see e.g. [KSX, 3.1]. Hence Theorem 3.11 implies the claim for $P \in \mathcal{O}_q^{\text{spec}}$. By Theorem 3.15, every indecomposable projective can be obtained by tensoring an indecomposable projective from $\mathcal{O}_q^{\text{spec}}$ with a finite dimensional module and taking direct summand. As this tensoring is both left and right adjoint to an exact functor, it preserves projective-injective modules. Hence
such tensoring maps a sequence of the form (4.1) to a sequence of the form (4.1) and the claim follows.

Denote by \mathcal{P}_I the full subcategory of \mathcal{C} whose objects are all antiderivative $\lambda \in X$, that is those $\lambda \in X$ for which the projective module $P_q(\lambda)$ is also injective (see Theorem 3.19). For $\lambda \in X$ define

$$M_\lambda := \text{Hom}_{\mathcal{O}_q}(-, P_q(\lambda)) \in \text{mod-}\mathcal{P}_I.$$ Let \mathcal{C} denote the full subcategory of $\text{mod-}\mathcal{P}_I$ with objects M_λ, $\lambda \in X$.

Define a functor $\Phi : \mathcal{C} \to \mathcal{C}$ as follows: on objects we set $\Phi(\lambda) := M_\lambda$, $\lambda \in X$; if $\lambda, \mu \in X$ and $\varphi \in \text{Hom}_{\mathcal{O}_q}(P_q(\lambda), P_q(\mu))$, then set

$$\Phi(\varphi) := \varphi \circ - : \text{Hom}_{\mathcal{O}_q}(-, P_q(\lambda)) \to \text{Hom}_{\mathcal{O}_q}(-, P_q(\mu)).$$

The following result generalizes [So90, Struktursatz].

Theorem 4.4. The functor Φ is an isomorphism of categories.

Proof. By definition, Φ induces a bijection on objects. So we need only to check that it induces a bijection on morphisms, that is that for any $\lambda, \mu \in X$ the map $\Phi_{\lambda, \mu} : \text{Hom}_{\mathcal{O}_q}(P_q(\lambda), P_q(\mu)) \to \mathcal{C}(M_\lambda, M_\mu)$ is an isomorphism. This is clear if both $P_q(\lambda)$ and $P_q(\mu)$ are injective.

By Proposition 4.3, the injective envelope of $P_q(\mu)$ is projective. Observe that, if $\varphi \in \text{Hom}_{\mathcal{O}_q}(P_q(\lambda), P_q(\mu))$ is nonzero, then the image of φ contains a simple submodule L in the socle of $P_q(\mu)$. By Theorem 3.19, L is a homomorphic image of some projective-injective module P. By the projectivity of P, the surjection $f : P \to L$ lifts to a map $f' : P \to P_q(\lambda)$ such that $f = \varphi \circ f'$. This implies that $\Phi_{\lambda, \mu}(\varphi)$ is nonzero and hence $\Phi_{\lambda, \mu}$ is injective.

To prove surjectivity let $\lambda, \mu \in X$ and $f \in \mathcal{C}(M_\lambda, M_\mu)$. By Proposition 4.3, there are exact sequences

$$0 \to P_q(\lambda) \to X_1 \to X_2 \to 0 \to P_q(\mu) \to Y_1 \to Y_2$$

in \mathcal{O}_q such that X_1, X_2, Y_1 and Y_2 are projective-injective. Applying the covariant functor $\text{Hom}_{\mathcal{O}_q}(-, -)$ to these exact sequence yields injective resolution for both M_λ and M_μ in $\text{mod-}\mathcal{P}_I$. The map f admits lifts giving the following commutative diagram:

$$\begin{array}{cccc}
0 & \to & M_\lambda & \to & \text{Hom}_{\mathcal{O}_q}(-, X_1) & \to & \text{Hom}_{\mathcal{O}_q}(-, X_2) \\
& & f & \downarrow f' & \downarrow f'' & & \\
0 & \to & M_\mu & \to & \text{Hom}_{\mathcal{O}_q}(-, Y_1) & \to & \text{Hom}_{\mathcal{O}_q}(-, Y_2)
\end{array}$$

As X_1, X_2, Y_1 and Y_2 are projective-injective, the right hand square of the latter diagram is the image of the right hand square of some
commutative diagram of the form

\[
\begin{array}{ccc}
0 & \rightarrow & P_q(\lambda) \\
& \downarrow \varphi & \rightarrow \\
0 & \rightarrow & P_q(\mu)
\end{array}
\begin{array}{ccc}
X_1 & \rightarrow & X_2 \\
\rightarrow & & \\
Y_1 & \rightarrow & Y_2
\end{array}
\]

As both rows are exact, the commutative right hand square of the latter diagram induces a unique \(\varphi : P_q(\lambda) \rightarrow P_q(\mu) \) making the digram commutative and we have \(\Phi_{\lambda,\mu}(\varphi) = f \). This proves surjectivity and completes the proof.

Statements similar to Proposition 4.3 and Theorem 4.4 appear frequently and play important role in Lie-theoretic context (sometimes in disguise), see e.g. [St03, Theorem 10.1], [St06, Theorem 3.9] and [Ma, Corollary 2]. Our proof above follows the approach of [KSX]. Making a parallel with the results of [MM], we propose the following conjecture:

Conjecture 4.5. The category \(\mathcal{C}^{PI} \) is symmetric, i.e. the bimodules \(\mathcal{C}^{PI}((-,-)^* \) and \(\mathcal{C}^{PI}((-,-) \) are isomorphic.

In [MM] it is shown that some similar categories associated to certain Lie superalgebras are symmetric using a description of the Serre functor for the corresponding category \(\mathcal{O} \) via Harish-Chandra bimodules. A similar approach for \(\mathcal{C}^{PI} \) would require development of the theory of Harish-Chandra bimodules in the quantum case.

4.4. **Tilting modules in** \(\mathcal{O}_q \). A module \(M \in \mathcal{O}_q \) is called tilting if \(M \) has both a Verma filtration and a dual Verma filtration. In \(\mathcal{O}_{int} \) there exists, for each \(\lambda \in X \), a unique indecomposable tilting module \(T_C(\lambda) \) which has \(\lambda \) as its unique highest weight. The same is true in \(\mathcal{O}_q^e \).

Theorem 4.6. For each \(\lambda \in X \) there exists an indecomposable tilting module \(T_q(\lambda) \) with \(\lambda \) as its unique highest weight. Every indecomposable tilting module in \(\mathcal{O}_q \) is isomorphic to \(T_q(\lambda) \) for some \(\lambda \in X \).

There are various ways to prove this (compare e.g. with [So99]), we choose the one which we think is the shortest.

Proof. The functor \(G : \mathcal{O}_{int} \rightarrow \mathcal{O}_q^e \) clearly takes tilting modules in \(\mathcal{O}_{int} \) to tilting modules in \(\mathcal{O}_q \), see Proposition 3.7. Hence for \(\mu \in X \) we set \(T_q(l\mu + (l-1)\rho) = T_C(\mu)^{[l]} \otimes St_l \).

For general \(\lambda \in X \) we set \(\mu = \lambda^1 - \rho \) and consider \(T = T_C(\mu)^{[l]} \otimes St_l \otimes L_q(\lambda^0 + \rho) \). Then \(T \) is a tilting module and its highest weight is \(\lambda \) occurring with multiplicity 1. So we set \(T_q(\lambda) \) equal to the unique indecomposable summand of \(T \) which has a non-zero \(\lambda \)-weight space.

This gives the existence of \(T_q(\lambda) \). The second statement is then seen by standard arguments, see [Hu, Theorem 11.2].
For $N \in \mathcal{O}_q$ we denote by $\text{Tr}_{PI}(N)$ the \textit{trace} in N of all projective-injective modules, that is the sum of the images of all homomorphisms from M to N, where M is projective-injective. Note that for every finite dimensional $V \in \mathcal{O}_q$ the functor $V \otimes -$ preserves the category of projective-injective modules. This implies that for any $N \in \mathcal{O}_q$ we have $\text{Tr}_{PI}(V \otimes N) \cong V \otimes \text{Tr}_{PI}(N)$. Titling modules in \mathcal{O}_q can be alternatively described as follows:

\begin{theorem} \label{thm:4.7}
(i) For every $\lambda \in X$ the module $\text{Tr}_{PI}(P_q(\lambda))$ is an indecomposable tilting module.

(ii) Every indecomposable tilting module is isomorphic to $\text{Tr}_{PI}(P_q(\lambda))$ for some $\lambda \in X$.

(iii) (Ringel self-duality) For every $\lambda, \mu \in X$ we have
\[\text{Hom}_{\mathcal{O}_q}(P_q(\lambda), P_q(\mu)) \cong \text{Hom}_{\mathcal{O}_q}(\text{Tr}_{PI}(P_q(\lambda)), \text{Tr}_{PI}(P_q(\mu))). \]
\end{theorem}

In the classical case Ringel self-duality is due to Soergel, see [So97b].

\begin{proof}
This is well-known for \mathcal{O}_C, see e.g. [So97b, FKM]. Hence Theorem 3.11 implies the claim for $\mathcal{O}_q^{\text{spec}}$. Using translation and Theorem 3.15 we obtain that $\text{Tr}_{PI}(P_q(\lambda))$ is a tilting module for every $\lambda \in X$.

For every $\lambda, \mu \in X$ from Theorem 4.4 it follows that the restriction map
\[\text{Hom}_{\mathcal{O}_q}(P_q(\lambda), P_q(\mu)) \to \text{Hom}_{\mathcal{O}_q}(\text{Tr}_{PI}(P_q(\lambda)), \text{Tr}_{PI}(P_q(\mu))) \]

is bijective. This proves (iii) and implies that every $\text{Tr}_{PI}(P_q(\lambda))$ is indecomposable, proving (i). Claim (ii) follows from the fact that every tilting module occurs as a direct summand of a simple tilting module from $\mathcal{O}_q^{\text{spec}}$ tensored with a finite dimensional module.
\end{proof}

Theorem 4.7(i) combined with Theorem 3.15 implies a tensor product formula for indecomposable tilting modules similar to Theorem 3.15 and Theorem 3.17. Namely, let $\lambda^0 \in X_I$ and write $\tilde{\lambda}^0 = l\rho + w_0 \cdot \lambda^0$.

\begin{corollary}
For each $\lambda \in X$ we have $T_q(\lambda) \simeq T_C(\lambda^1 - \rho)^{[0]} \otimes Q(\tilde{\lambda}^0)$.
\end{corollary}

5. Characters and Kazhdan-Lusztig data

5.1. Character formulas. Consider the group ring $\mathbb{Z}[X]$ in which we denote the basis element corresponding to $\lambda \in X$ by e^λ. The multiplication is then determined by $e^\lambda e^\mu = e^{\lambda + \mu}$.

We extend this ring by defining its “completion” $\widehat{\mathbb{Z}[X]}$ to consist of all expressions $\sum_\lambda c_\lambda e^\lambda$ where $c_\lambda \in \mathbb{Z}$ for all λ and there exist $\lambda_1, \ldots, \lambda_r \in X$ such that $c_\lambda = 0$ unless $\lambda \leq \lambda_i$ for some i (here \leq is the usual order on X). Alternatively, this is the set of \mathbb{Z}-valued functions on X whose support is contained in a finite union of subsets of the form
$X_{\leq \mu} = \{ \lambda \in X \mid \lambda \leq \mu \}$. Clearly, the multiplication on $\mathbb{Z}[X]$ extends to $\widehat{\mathbb{Z}[X]}$.

If $f = \sum a_{\lambda}e^{\lambda} \in \widehat{\mathbb{Z}[X]}$, we set $f[\lambda] = \sum a_{\lambda}e^{\lambda}$. If $M \in \mathcal{O}_{\text{int}}$ or $M \in \mathcal{O}_q$, we set $\text{ch} M = \sum_{\mu} (\dim M_\mu)e^\mu \in \widehat{\mathbb{Z}[X]}$ and call this the character of M. Then for $M \in \mathcal{O}_{\text{int}}$ we get $\text{ch}(M[\lambda]) = (\text{ch} M)[\lambda]$.

Using the notation from Section 3.4 for $M \in \mathcal{O}_{\text{int}}$ we have

\begin{equation}
\text{ch} M = \sum_{\mu} [M : L_C(\mu)] \text{ch} L_C(\mu),
\end{equation}

and similarly for $M \in \mathcal{O}_q$ we have

\begin{equation}
\text{ch} M = \sum_{\mu} [M : L_q(\mu)] \text{ch} L_q(\mu).
\end{equation}

These sums are finite, cf. Corollary 3.5. If we take $M = \Delta_C(\lambda)$, then the sum in (5.1) has a unique highest term, namely $1 \cdot \text{ch} L_C(\lambda)$. We can therefore “invert” these equations and obtain

\begin{equation}
\text{ch} L_C(\lambda) = \sum_{\mu} p_{\mu,\lambda}^C \text{ch} \Delta_C(\mu)
\end{equation}

for some unique $p_{\mu,\lambda}^C \in \mathbb{Z}$. Similarly, we get

\begin{equation}
\text{ch} L_q(\lambda) = \sum_{\mu} p_{\mu,\lambda}^q \text{ch} \Delta_q(\mu)
\end{equation}

for some unique $p_{\mu,\lambda}^q \in \mathbb{Z}$.

Note that whereas the sum in (5.3) is finite for all $\lambda \in X$ (we have $p_{\mu,\lambda}^C = 0$ unless $\mu \in W \cdot \lambda$), this is not so in (5.4) (as blocks of \mathcal{O}_q could have infinitely many simples). For instance in the \mathfrak{sl}_2-case we have

\begin{equation}
\text{ch} L_q(-2) = \Delta_q(-2) + \sum_{m \leq -1} (\text{ch} \Delta_q(2ml) - \text{ch} \Delta_q(2ml - 2)).
\end{equation}

Similarly, we may consider the characters of (finite dimensional) $u_q \mathcal{B}_q$-modules. Here we obtain the analogous formulas

\begin{equation}
\text{ch} M = \sum_{\mu} [M : \tilde{L}_q(\mu)] \text{ch} \tilde{L}_q(\mu),
\end{equation}

and

\begin{equation}
\text{ch} \tilde{L}_q(\lambda) = \sum_{\mu} \tilde{p}_{\mu,\lambda}^q \text{ch} \Delta_q(\mu)
\end{equation}

for some unique $\tilde{p}_{\mu,\lambda}^q \in \mathbb{Z}$. Again, (5.6) clearly involves only finite sums for any finite dimensional M (and is in fact a formula in $\mathbb{Z}[X]$) whereas the sum in (5.7) may well be infinite.

Finally, we observe the following obvious identities

\begin{equation}
(\text{ch} \Delta_C(\lambda)e^\mu = \text{ch} \Delta_C(\lambda + \mu);
\end{equation}
(5.9) \((\text{ch } \Delta_q(\lambda))e^\mu = \text{ch } \Delta_q(\lambda + \mu)\);
and
(5.10) \((\text{ch } \tilde{\Delta}_q(\lambda))e^\mu = \text{ch } \tilde{\Delta}_q(\lambda + \mu)\)
valid for all \(\lambda, \mu \in X\).

5.2. **Characters of simple modules in** \(O_q\). Using the terminology from Section 5.1 we have:

Theorem 5.1. For all \(\lambda \in X\) we have the following:

(i) \(\text{ch } L_q(\lambda) = \sum_{\nu, \eta} \hat{p}_{\nu, \lambda}^C \hat{p}_{\eta, \lambda^0}^q \text{ch } \Delta_q(l\nu + \eta)\);
(ii) \(\hat{p}_{\mu, \lambda}^q = \sum_{\nu + \eta = \mu} \hat{p}_{\nu, \lambda}^C \hat{p}_{\eta, \lambda^0}^q = \sum_{w \in W\lambda^1} \hat{p}_{w \cdot \lambda \cdot \lambda^1}^C \hat{p}_{\mu - lw \cdot \lambda \cdot \lambda^0}^q\), where \(W\lambda^1\)

\(\text{denotes the set of shortest coset representatives in } W/\text{Stab}_W(\lambda^1)\).

Proof. By Proposition 3.1 combined with (5.3) and (5.7) we find

\[
\text{ch } L_q(\lambda) = (\text{ch } L_C(\lambda^1)) \text{ch } L_q(\lambda^0) = \sum_{\nu, \eta} \hat{p}_{\nu, \lambda}^C \hat{p}_{\eta, \lambda^0}^q \text{ch } \Delta_q(\nu) = \sum_{\mu} \left(\sum_{\nu + \eta = \mu} \hat{p}_{\nu, \lambda}^C \hat{p}_{\eta, \lambda^0}^q \right) \text{ch } \Delta_C(\nu) \text{ch } \tilde{\Delta}_q(\eta).
\]

So, to establish (i) we should only check that

(5.11) \((\text{ch } \Delta_C(\nu)) \text{ch } \tilde{\Delta}_q(\eta) = \text{ch } \Delta_q(l\nu + \eta)\).

However, by (5.10) we have \(\text{ch } \tilde{\Delta}_q(\eta) = (\text{ch } St_l e^{\eta - (l - 1)\rho} \text{ because } St_l = \tilde{\Delta}_q(l - 1)\rho)\). Hence using Proposition 3.7 we find

\[(\text{ch } \Delta_C(\nu)) \text{ch } \tilde{\Delta}_q(\eta) = \text{ch } \Delta_C(\nu) (\text{ch } St_l e^{\eta - (l - 1)\rho} = (\text{ch } \Delta_q(l\nu + (l - 1)\rho) e^{\eta - (l - 1)\rho} = \text{ch } \Delta_q(l\nu + \eta).\]

Here we have used (5.9) for the last equality.

The first equality in (ii) is immediate from (i) and the second comes from the fact that \(\hat{p}_{\nu, \lambda}^C = 0\) unless \(\nu \in W \cdot \lambda^1\).

5.3. **Characters of indecomposable tilting modules in** \(O_q\). By Corollary 4.8 we get for any \(\lambda \in X\)

\[
\text{ch } T_q(\lambda) = \sum_{\nu, \eta} (T_C(\lambda^1 - \rho) : \Delta_C(\nu))(Q_q(\lambda^0) : \tilde{\Delta}_q(\eta)) (\text{ch } \Delta_C(\nu)) \text{ch } \tilde{\Delta}_q(\eta).
\]

Applying (5.11) in this formula we get

Theorem 5.2. For all \(\lambda, \mu \in X\) we have

\[(T_q(\lambda) : \Delta_q(\mu)) = \sum_{\nu, \eta, \lambda^1 - \rho = \mu} (T_C(\lambda^1 - \rho) : \Delta_C(\nu))(Q_q(\lambda^0) : \tilde{\Delta}_q(\eta)).\]
5.4. Kazhdan-Lusztig theory for \(O_q \). Fix an antidominant weight \(\lambda \in X \). For each \(\mu \in W \cdot \lambda \) we pick \(w \in W \) minimal such that \(w \cdot \lambda = \mu \). Then the Kazhdan-Lusztig conjecture [KL] proved independently by Beilinson and Bernstein [BB], and by Brylinski and Kashiwara [BK] says (for each such minimal \(y, w \in W \))

\[
P^C_{y, \lambda, w \cdot \lambda} = (-1)^{l(yw)} P_{y, w}(1).
\]

Here \(P_{y, w} \) is the Kazhdan-Lusztig polynomial associated to \(y, w \), see [KL].

As discussed in the introduction the analogous Lusztig conjecture for finite dimensional simple modules in \(F_q \) has also been settled.

Let \(W_l \) be the affine Weyl group (of dual Langlands type). Set

\[
\lambda^0 = \{ \lambda \in X \mid -l < \langle \lambda + \rho, \alpha^\vee \rangle < 0 \text{ for all positive roots } \alpha \}.
\]

This is the top antidominant alcove. Fix \(\lambda \in \lambda^0 \) and choose for each \(\mu \in W_l \cdot \lambda \) a minimal \(x \in W_l \) such that \(\mu = x \cdot \lambda \). Then in analogy with (5.12) for all such minimal \(z, x \in W_l \) for which \(z \cdot \lambda, x \cdot \lambda \in X^+ \) we have

\[
P_q^{z, x, \lambda} = (-1)^{l(zx)} P_{z, x}(1).
\]

Here \(P_{z, x} \) is again the Kazhdan-Lusztig polynomial associated to the pair \((z, x)\) in the affine Weyl group \(W_l \). Note that this gives us only some of the coefficients, the remaining coefficients (for \(x \cdot \lambda \in X^+ \) fixed) can be obtained using the Weyl character formula for quantum Weyl modules.

Combining the above two formulas we get:

Corollary 5.3. Let \(\lambda \in X \) and suppose \(w \in W \), resp. \(x \in W_l \) is minimal such that \(w^{-1} \cdot \lambda^1 \) is antidominant, resp. \(x^{-1} \cdot \lambda^0 \in \lambda^0 \). Then the character of \(L_q(\lambda) \) equals

\[
\sum_{r \in W} \sum_{y \in W^{-1} \cdot \lambda^1} \sum_{z \in W^{-1} \cdot \lambda^0} (-1)^{l(yw) + l(zx) + l(r)} P_{y, w}(1) P_{z, x}(1) \cdot \text{ch} \Delta_C(yw^{-1} \cdot \lambda^1)^l \text{ch} \Delta_q(rzx^{-1} \cdot \lambda^0)
\]

Similarly, the result in Theorem 5.2 leads to the following expression for the characters of indecomposable tilting modules in \(O_q \). The formula involves the “inverse” Kazhdan-Lusztig polynomials \(Q_{x, y} \), i.e. the polynomials determined by the equations

\[
\sum_z (-1)^{l(z) - l(y)} P_{y, z} Q_{z, w} = \delta_{y, w}.
\]

Corollary 5.4. Let \(\lambda \in X \). We assume that \(\lambda^1 - \rho \) is regular i.e. belongs to the interior of a chamber so that there is a unique \(w \in W \).
with \(w^{-1} \cdot (\lambda^1 - \rho) \) antidominant. Likewise we assume that \(\lambda^0 \) is \(l \)-regular so that there is a unique \(x \in W_l \) with \(x^{-1} \cdot \lambda^0 \in A_l^* \). Then
\[
(T_q(\lambda) : \Delta_q(\mu)) = \sum_{y,z} P_{y,w}(1)Q_{z,x}(1)
\]
where the sum runs over those \(y \in W, z \in W_l \) for which \(\mu = lyw^{-1}\lambda^1 + zx^{-1} \cdot \lambda^0 \).

Proof. According to [So97a, Conjecture 7.1] (proved in [So97b]) we have
\[
(T_C(\lambda^1 - \rho) : \Delta_C(yw^{-1} \cdot (\lambda^1 - \rho)) = P_{y,w}(1) \text{ and } (Q_q(\lambda^0) : \hat{\Delta}_q(zx^{-1} \cdot \lambda^0 + l\rho) = Q_{z,x}(1). \quad \Box
\]

Remark. Using [So97a, Remark 7.2.2] it is possible to generalize this corollary to include weights \(\lambda \) without the stated regularity assumptions.

Example 5.5. Consider the simplest possible case where the Lie algebra \(g \) is \(\mathfrak{sl}_2 \). Then \(X = \mathbb{Z} \) with \(X^+ = \mathbb{Z}_{\geq 0} \). Suppose \(q \) is a complex root of unity of odd order \(l > 1 \). Then we have the following description of the Verma modules and the indecomposable tilting modules in \(\mathcal{O}_q \):

Case 1. Suppose \(\lambda \in \mathbb{Z} \) is \(l \)-singular, i.e. \(\lambda \equiv -1 \pmod{l} \). Then we are in the special block of \(\mathcal{O}_q \) and just as in the classical case we have (cf. Theorem 3.11) \(\Delta_q(\lambda) = T_q(\lambda) = L_q(\lambda) \) when \(\lambda < 0 \). On the other hand, for \(\lambda \geq 0 \) we have the following two short exact sequences
\[
0 \to L_q(-\lambda - 2) \to \Delta_q(\lambda) \to L_q(\lambda) \to 0,
\]
and
\[
0 \to \Delta_q(\lambda) \to T_q(\lambda) \to \Delta_q(-\lambda - 2) \to 0.
\]

Case 2. Suppose \(\lambda \) is \(l \)-regular and write \(\lambda = \lambda^0 + l\lambda^1 \) with \(0 \leq \lambda^0 < l - 1 \). If \(\lambda < 0 \) we have the following two exact sequences
\[
0 \to L_q(-\lambda^0 - 2 + l\lambda^1) \to \Delta_q(\lambda) \to L_q(\lambda) \to 0,
\]
and
\[
0 \to \Delta_q(\lambda) \to T_q(\lambda) \to \Delta_q(-\lambda^0 - 2 + l\lambda^1) \to 0.
\]
On the other hand, if \(\lambda \geq 0 \) then \(\Delta_q(\lambda) \) has the following four composition factors: \(L_q(\lambda), L_q(-\lambda^0 - 2 + l\lambda^1), L_q(-\lambda - 2) \), and \(L_q(\lambda^0 + l(-\lambda^1 - 2)) \). Note that if \(\lambda^1 = 0 \) the second and the third of these factors coincide and \(\Delta_q(\lambda) \) has in this case only three composition factors. The tilting module \(T_q(\lambda) \) similarly has the following four Verma filtration factors: \(\Delta_q(\lambda), \Delta_q(-\lambda^0 - 2 + l\lambda^1), \Delta_q(-\lambda - 2) \), and \(\Delta_q(\lambda^0 - l\lambda^1) \). If \(\lambda^1 = 0 \) then the first and the last factors are identical and so are the second and third, so that in this case there are only two factors.
Although this example is maybe too simple to catch the full flavor of the behavior of Verma modules and tilting modules it does illustrate some important features: In the most singular case (the special block) the modules are as in the classical case (with the Kazhdan-Lusztig polynomials for the finite ordinary Weyl group governing the combinatorics). At the other extreme when the weight \(\lambda\) in question is \(l\)-regular and far from the walls of the Weyl chamber \(C\) containing it the Verma module \(\Delta_q(\lambda)\), respectively the tilting module \(T_q(\lambda)\) has composition factors, respectively Verma filtration factors, belonging to ”clusters” in all the Weyl chambers below \(C\) (in the Bruhat order). These clusters look like the alcove patterns in [Lu80]. When \(\lambda\) is close to some walls there are (rather complicated) cancellations among these clusters. Moreover, there are several degrees of \(l\)-singularity (depending on the facet for the affine Weyl group to which \(\lambda\) belongs) which also influence the patterns. This is all encoded in Corollaries 5.3 and 5.4.

6. The generic case

6.1. The category \(\mathcal{O}_v\). We define the category \(\mathcal{O}_v\) to be the full subcategory of the category of \(U_v\)-modules consisting of those modules which satisfy the analogues of (I)–(III) in Section 3.1.

Among the objects in \(\mathcal{O}_v\) we have the generic Verma modules \(\Delta_v(\lambda)\), \(\lambda \in X\), defined in the usual way. They have unique simple quotients \(L_v(\lambda)\) and these are up to isomorphism a complete set of simple modules in \(\mathcal{O}_v\).

The category \(\mathcal{O}_v\) has properties completely analogous to \(\mathcal{O}_{int}\), see e.g. [C-P, Chapters 9-10]. In particular all modules in \(\mathcal{O}_v\) have finite length, the Verma module \(\Delta_v(\lambda)\) has composition factors \(L_v(\mu)\) with \(\mu \in W \cdot \lambda\), and in fact \(\mathcal{O}_v\) splits into blocks

\[
\mathcal{O}_v = \bigoplus_{\lambda} \mathcal{O}_v^\lambda
\]

where the block \(\mathcal{O}_v^\lambda\) consists of those modules from \(\mathcal{O}_v\) whose composition factors have highest weights in \(W \cdot \lambda\), and where the sum runs over the set of all \(\lambda\) for which \(\lambda + \rho\) are dominant.

In analogy to \(\mathcal{O}_q\) we have a duality \(\cdot^*\) on \(\mathcal{O}_v\) which fixes simple modules. The dual Verma module \(\Delta_v^*(\lambda)\) is denoted \(\nabla_v(\lambda)\).

6.2. A-lattices. Clearly the Verma module \(\Delta_v(\lambda)\) has an \(A\)-lattice, namely the Verma module for \(U_A\) defined by

\[
\Delta_A(\lambda) = U_A \otimes_{B_A} A_{\lambda}.
\]

Here \(B_A\) is the Borel subalgebra of \(U_A\) defined in analogy with \(B_q\) and \(A_{\lambda}\) denotes the free rank one \(A\)-module with \(B_A\)-action given by the analogue over \(A\) of the character \(\chi_{\lambda}\) from Section 2.4.
Similarly, $\nabla_v(\lambda)$ has an A-lattice $\nabla_A(\lambda)$ defined as the A-dual of $\Delta_A(\lambda)$ (with the appropriate U_A-structure).

Note that $\text{Hom}_{U_A}(\Delta_A(\lambda), \nabla_A(\lambda)) \simeq A$. We let c_λ denote a generator of this module and set $K_A(\lambda)$, respectively $L_A(\lambda)$, respectively $C_A(\lambda)$, equal to the kernel, respectively the image, respectively the cokernel, of c_λ. Then we get the following two short exact sequences in O_v:

$$0 \to K_A(\lambda) \to \Delta_A(\lambda) \to L_A(\lambda) \to 0,$$

and

$$0 \to L_A(\lambda) \to \nabla_A(\lambda) \to C_A(\lambda) \to 0.$$

Tensoring by the fraction field $\mathbb{Q}(v)$ of A we see that $L_A(\lambda) \otimes_A \mathbb{Q}(v) \simeq L_v(\lambda)$ because $L_v(\lambda)$ is the image of $c_\lambda \otimes 1 : \Delta_\lambda(\lambda) \to \nabla_v(\lambda)$. On the other hand, if we specialize to a root of unity $q \in \mathbb{C}$ (i.e. apply $- \otimes_A \mathbb{C}_q$ with \mathbb{C}_q denoting \mathbb{C} made into an A-module by mapping v to q) then we obtain the following two exact sequences in O_v:

$$K_A(\lambda) \otimes_A \mathbb{C}_q \to \Delta_q(\lambda) \to L_A(\lambda) \otimes_A \mathbb{C}_q \to 0,$$

and

$$0 \to \text{Tor}_1^A(C_A(\lambda), \mathbb{C}_q) \to L_A(\lambda) \otimes_A \mathbb{C}_q \to \nabla_q(\lambda) \to C_A(\lambda) \otimes_A \mathbb{C}_q \to 0.$$

As $L_A(\lambda) \otimes_A \mathbb{C}_q$ is a non-zero quotient of $\Delta_q(\lambda)$ it has $L_q(\lambda)$ as a quotient but it may be bigger.

Proposition 6.1. Let $\lambda, \mu \in X$ be fixed. Then

$$\dim_{\mathbb{C}} L_q(\lambda)_\mu \leq \dim_{\mathbb{Q}(v)} L_v(\lambda)_\mu$$

for all l. Equality holds if $l \gg 0$.

Proof. The inequality follows from the above considerations. They also show that we have equality if and only if $\text{Tor}_1^A(C_A(\lambda)_\mu, \mathbb{C}_q) = 0$. But $C_A(\lambda)_\mu$ is a finitely generated A-module so this Tor vanishes for all but at most finitely many q. \hfill \Box

6.3. **Generic multiplicities.** From the above discussion we deduce the following result, comparing combinatorics of O_v with that of O (see [HK] for some other results in the same spirit).

Theorem 6.2. Let $\lambda \in X$. Then we have

$$\text{ch} L_v(\lambda) = \text{ch} L_C(\lambda).$$

Proof. We want to prove that $\dim_{\mathbb{Q}(v)} L_v(\lambda)_\mu = \dim_{\mathbb{C}} L_C(\lambda)_\mu$ for all $\mu \in X$. So let us fix μ. By Proposition 6.1 we have $\dim_{\mathbb{Q}(v)} L_v(\lambda)_\mu = \dim_{\mathbb{C}} L_q(\lambda)_\mu$ for l large. Moreover, by Theorem 5.1 (i) we have

$$\dim L_q(\lambda)_\mu = \sum_{\nu, \eta} p^C_{\nu, \lambda} p^q_{\eta, \lambda_0} \dim \Delta_q(l\nu + \eta)_\mu.$$

Note that the pair (ν, η) on the right hand side only contributes a non-zero term if $\nu \leq \lambda^1$ and $\eta \leq \lambda^0$. However, if $\nu < \lambda^1$ we have
\(\Delta_q(l\nu + \eta)_\mu = 0 \) for all \(\eta \leq \lambda^0 \) when \(l \) is large enough, i.e. in that case the right hand side reduces to

\[
\sum_{\nu \leq \lambda^0} \tilde{p}_{q,\lambda^0}^\mu \dim \Delta_q(l\lambda^1 + \eta)_\mu.
\]

We have \(\tilde{p}_{q,\lambda^0}^\mu = \tilde{p}_{q+l\lambda^1,\lambda}^\mu \) so that we are done if we check that \(\tilde{p}_{q,\lambda}^\mu = p_{q,\lambda}^\mu \)

for all \(\mu \leq \eta \leq \lambda \) (and for \(l \) large).

The right hand side is given by (5.12). Let us consider the left hand side. We choose \(l \) large enough so that all the \(\eta \)'s we consider belong to the alcoves having \(-\rho \) in their closures. The minimal \(w \in W_l \) satisfying \(w^{-1} \cdot \lambda \in \tilde{A}_l^f \) then belongs to \(W \). The same is true for the minimal \(y \) such that \(\eta = yw^{-1} \cdot \lambda \). Hence the quantum Kazhdan-Lusztig conjecture (cf. e.g. [So97a, Theorem 6.1]) says

\[
\tilde{p}_{yw^{-1},\lambda,\lambda}^\mu = (-1)^{l(yw)} P_{y,w}(1)
\]

and we are done.

From Theorem 6.2 for all \(\lambda, \mu \in X \) we have

\[
[\Delta_v(\lambda) : L_v(\mu)] = [\Delta_C(\lambda) : L_C(\mu)].
\]

Furthermore, we also have

Corollary 6.3. The result in Theorem 6.2 holds not only for an indeterminate \(v \) but also for any specialization \(v \mapsto q \) where \(q \in \mathbb{C} \) is transcendental.

Remark. The results of this section also follow from the fact that, after extending the scalars to \(\mathbb{C} \), for any transcendental \(q \in \mathbb{C} \setminus \{0\} \) the categories \(\mathcal{O}_q \) and \(\mathcal{O}_{\text{int}} \) are equivalent (each block of such category can be realized as modules over an associative algebra with relations defined over \(\mathbb{Q} \)). As was pointed out to us by D. Kazhdan, such an equivalence was established (in the simply laced case) by M. Finkelberg in his thesis [Fi]. G. Lusztig made us aware of the paper [EK] where such an equivalence is established more generally for symmetrizable Kac-Moody algebras, see [EK, Theorem 4.2]. In our case this result gives that if \(v \) is an indeterminate then the category \(\mathcal{O}_v \) is equivalent to the integral block in the category \(\mathcal{O} \) for \(g \otimes_{\mathbb{Q}} K \) where \(K \) is the fraction field of \(\mathbb{Q}[v][v] \).

The methods used in both [Fi] and [EK] are completely different from our approach.

7. A Parallel with Lie Superalgebras

There are several similarities between general properties of \(\mathcal{O}_q \) and those of the category \(\mathcal{O} \) for finite dimensional Lie superalgebras. These similarities played an important role in forming our intuition for the results of the present paper and in this section we try to make them
more precise, following a suggestion of the referee and the editor. We refer the reader e.g. to [Mu] for more details on Lie superalgebras and their modules. For a Lie superalgebra \mathfrak{a} we denote by $U(\mathfrak{a})$ the corresponding enveloping algebra.

7.1. Super setup. Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a Lie superalgebra over \mathbb{C}. We assume that \mathfrak{g}_0 is a finite dimensional reductive Lie algebra and \mathfrak{g}_1 is a semi-simple \mathfrak{g}_0-module. We denote by \mathfrak{g}-smod the abelian category of \mathfrak{g}-supermodules (where morphisms are homogeneous \mathfrak{g}-homomorphisms of degree 0). Fix some triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ with the induced triangular decomposition $\mathfrak{g}_0 = \mathfrak{n}^-_0 \oplus \mathfrak{h}_0 \oplus \mathfrak{n}^+_0$ for \mathfrak{g}_0. Our two basic examples are: the general linear Lie superalgebra $\mathfrak{gl}(m|n)$ and the queer Lie superalgebra \mathfrak{q}_n.

The superalgebra $\mathfrak{gl}(m|n)$ consists of $(n + m) \times (n + m)$ matrices naturally divided into $n \times n$, $n \times m$, $m \times n$ and $m \times m$ blocks. The operation is the usual super-commutator of matrices. The diagonal blocks form the even part while the off-diagonal blocks form the odd part. The standard triangular decomposition corresponds to taking lower triangular, diagonal and upper triangular matrices. Note that the Cartan subalgebra \mathfrak{h} of diagonal matrices is purely even.

The superalgebra \mathfrak{q}_n consists of $2n \times 2n$ matrices of the form

$$
\begin{pmatrix}
A & B \\
B & A
\end{pmatrix}
$$

with respect to the usual super-commutator of matrices. The even part corresponds to $B = 0$ while the odd part corresponds to $A = 0$. The triangular decomposition is induced by the standard triangular decomposition for A and B (simultaneously). In this example the Cartan subalgebra \mathfrak{h} has a nonzero odd component, in particular, it is not commutative.

7.2. Category \mathcal{O}. To avoid technicalities and complicated notation, we will describe the situation for the classical category \mathcal{O} for \mathfrak{g}. All properties transfer mutatis mutandis to the parabolic versions of \mathcal{O}.

For a Lie superalgebra with triangular decomposition as above we can consider the corresponding category \mathcal{O} defined as the full subcategory of \mathfrak{g}-smod containing all objects M with the following properties:

i) M is finitely generated;
ii) the action of \mathfrak{h}_0 on M is diagonalizable;
iii) the action of $U(\mathfrak{n}^+)$ on M is locally finite.

Let V be a simple \mathfrak{h}_0-diagonalizable \mathfrak{h}-supermodule. Set $\mathfrak{n}^+ \cdot V = 0$ and define the Verma or proper standard supermodule $\overline{\Delta}(V)$ as usual via

$$
\overline{\Delta}(V) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}^+)} V.
$$
Standard arguments (see [Di, Hu]) show that \(\Delta(V) \) has simple top, which we denote by \(L(V) \). Then the map \(V \mapsto L(V) \) sets up a bijection from the set isomorphism classes of simple \(h_0 \)-diagonalizable \(h \)-supermodules to the set of isomorphism classes of simple objects in \(\mathcal{O} \).

Let \(\mathcal{O}_{\pi} \) denote the category \(\mathcal{O} \) for \(\mathfrak{g}_{\pi} \). As \(U(\mathfrak{g}) \) is finite over \(U(\mathfrak{g}_{\pi}) \) by the PBW theorem, we have the usual induction functor

\[
\text{Ind}^\mathfrak{g}_{\mathfrak{g}_{\pi}} : \mathcal{O}_{\pi} \to \mathcal{O}.
\]

Our first observation is the following (compare with Corollary 3.5):

Proposition 7.1. (a) The restriction functor \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \) maps \(\mathcal{O} \) to \(\mathcal{O}_{\pi} \).

(b) Every object in \(\mathcal{O} \) has finite length.

Proof. From the PBW Theorem it follows that \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \Delta(V) \) is in \(\mathcal{O}_{\pi} \), which implies \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_{\pi}} L(V) \in \mathcal{O}_{\pi} \). By adjunction, a projective cover \(P(V) \) for \(L(V) \) is a direct summand of some module of the form \(\text{Ind}^\mathfrak{g}_{\mathfrak{g}_{\pi}} X \), where \(X \in \mathcal{O}_{\pi} \).

By the PBW Theorem, the composition \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \circ \text{Ind}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \) is naturally isomorphic to tensoring with the finite dimensional \(\mathfrak{g}_{\pi} \)-module \(\wedge \mathfrak{g}_{\pi} \). This means that \(P(V) \) is of finite length already as a \(\mathfrak{g}_{\pi} \)-module, in particular, it is of finite length as an object in \(\mathcal{O} \). This implies claim (b) and claim (a) follows by induction on the length of a module. \(\square \)

Both \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \) and \(\text{Ind}^\mathfrak{g}_{\mathfrak{g}_{\pi}} \) are exact by the PBW Theorem (and even biadjoint up to parity shifts, see e.g. [Go00]). In particular, the two functors take projectives to projectives and injectives to injectives. The PBW Theorem also implies that they map modules with Verma filtrations to modules with Verma filtrations.

Usual arguments imply that \(\mathcal{O} \) has a block decomposition into a direct sum of indecomposable subcategories. The first principal difference with \(\mathcal{O}_{\pi} \) is that blocks of \(\mathcal{O} \) might contain infinitely many isomorphism classes of simple objects (however, always at most countably many). Description of the linkage principle for simples in \(\mathcal{O} \) is a very hard problem in full generality. However, it is known for several special cases, see e.g. [Br03] for \(\mathfrak{gl}(m|n) \) or [Br04] for \(\mathfrak{q}_n \).

7.3. **Standardly stratified structure.**

Let \(V \) be a simple \(h_0 \)-diagonalizable \(h \)-supermodule and \(\hat{V} \) be its projective cover in the category of \(h_0 \)-diagonalizable \(h \)-supermodules. Set \(\mathfrak{n}^+ \cdot \hat{V} = 0 \) and define the **standard** module \(\Delta(V) \) as follows:

\[
\Delta(V) := U(\mathfrak{g}) \otimes_{U(h \oplus \mathfrak{n}^+)} \hat{V}.
\]

From the PBW Theorem it follows that every projective in \(\mathcal{O} \) has a **standard filtration**, that is a filtration with standard subquotients.
Clearly, each $\Delta(V)$ has a filtration by Verma (proper standard) supermodules. Note that $\text{Ind}_{\mathfrak{g}_{\mathfrak{r}}}^\mathfrak{g}$ maps modules with Verma filtrations to modules with standard filtrations.

Dually, one defines the costandard module $\nabla(V)$ and the proper costandard module $\overline{\nabla}(V)$. Using adjunction and the fact that $\mathcal{O}_{\mathfrak{g}}$ is a highest weight category, we get the following ext-vanishing property:

$$\text{Ext}_\mathcal{O}^i(\Delta(V), \overline{\nabla}(V')) \cong \begin{cases} \mathbb{C} & \text{if } V \cong V'; \\ 0 & \text{otherwise}. \end{cases}$$

This implies that the associative algebra describing a block of \mathcal{O} is standardly stratified in the sense of [CPS96]. In particular, we have the following BGG-reciprocity in \mathcal{O}:

$$(P(V) : \Delta(V')) = [\overline{\nabla}(V') : L(V)]$$

(compare with Corollary 4.2). Another consequence is that \mathcal{O} has tilting modules (in the sense of [Fr07-1]). Tilting modules are modules which have both a standard filtration and a proper costandard filtration. Both $\text{Res}_{\mathfrak{g}_{\mathfrak{r}}}^\mathfrak{g}$ and $\text{Ind}_{\mathfrak{g}_{\mathfrak{r}}}^\mathfrak{g}$ map tilting modules to tilting modules. It follows that tilting modules are also cotilting.

We refer the reader to [Fr07-2] for a very detailed \mathfrak{q}_n-example where $\Delta(V)$ and $\overline{\Delta}(V)$ are explicitly computed and compared.

7.4. Dominance dimension and Soergel’s Struktursatz

For category \mathcal{O} one has a direct analogue of all our results from Subsection 4.3. We claim that every projective P in \mathcal{O} admits a two step coresolution

$$0 \to P \to X_1 \to X_2,$$

where both X_1 and X_2 are projective-injective (compare with Proposition 4.3). It is certainly enough to prove this for $P(V)$. From the above we know that the latter module occurs as a direct summand of a module induced from a projective module in $\mathfrak{g}_{\mathfrak{r}}$. Since induction is exact and maps projectives to projectives and injectives to injectives, the claim follows from the corresponding classical claim for $\mathcal{O}_{\mathfrak{g}}$.

Pick a representative in each isomorphism class of indecomposable projective-injective modules in \mathcal{O} and let \mathcal{P}^{PI} be the full subcategory of \mathcal{O} formed by these. Taking homomorphisms in \mathcal{O} into these representatives defines a contravariant functor Φ from the additive category of projective objects in \mathcal{O} into $\text{mod-}\mathcal{P}^{PI}$ (see Subsection 4.3 for more details).

Theorem 7.2. The functor Φ is fully faithful.

Proof. Mutatis mutandis the proof of Theorem 4.4.
7.5. Irving’s theorems. We also have the following natural super-analogue of Theorem 3.19.

Theorem 7.3. Let V be a simple \mathfrak{h}_0-diagonalizable \mathfrak{h}-supermodule. Then the following assertions are equivalent:

(a) $P(V)$ is isomorphic to $I(V)$ up to parity shift.
(b) $L(V)$ occurs in the socle of a projective-injective module in \mathcal{O}.
(c) $L(V)$ occurs in the top of a projective-injective module in \mathcal{O}.
(d) $L(V)$ occurs in the socle of some $\Delta(V')$.

Proof. This follows by adjunction from the corresponding properties of \mathcal{O}_Π. □

7.6. Constructive differences. The most important difference between category \mathcal{O}_q in the quantum case and category \mathcal{O} in the super case is that for the latter we do not know of any analogue for our decomposition statements Theorem 3.1, Theorem 3.15, Theorem 3.17 and Corollary 4.8. It seems that it is unreasonable to expect such analogues. To some extent the situation in the super case is opposite to the quantum case. In the quantum case we have one nice subcategory (the special block) and all other subcategories are more complicated, however, they are “more complicated in the same way”. For Lie superalgebras the situation is the opposite: generically, a Lie superalgebra “behaves” like its even part (see e.g. [Go02, FM]), that is in an “easy” way. However, there are non-generic degenerations of various kinds (e.g. atypical modules, non-diagonalizable \mathfrak{h}-supermodules, projective-injectives which are self-dual only up to a parity shift etc.) and for these degenerations the behavior is more complicated, however, in different ways. Therefore we do not think that our tensor decomposition statements have any chance to generalize to the super case.

References

A. Frisk; Typical blocks of the category \mathcal{O} for the queer Lie superalgebra. J. Algebra Appl. 6 (2007), no. 5, 731–778.

V. Mazorchuk; Some homological properties of the category O. II. Represent. Theory 14 (2010), 249–263.

H. H. A.: Center for Quantum Geometry of Moduli Spaces, Aarhus University, Building 530, Ny Munkegade, 8000 Aarhus C, DENMARK, email: mathha@qgm.au.dk

V. M: Department of Mathematics, Uppsala University, Box. 480, SE-75106, Uppsala, SWEDEN, email: mazor@math.uu.se