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Abstract

We prove that tilting modules in the category O, are filtered by different families
of shuffled (or twisted) Verma modules.

Résumé

On prouve que les modules basculantes dans la catégorie Oy ont des filtrations
par des familles différentes de modules de Verma battres ou entorés.
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1 Introduction and the main result

Let g be a semi-simple complex finite-dimensional Lie algebra. The Bernstein-Gelfand-
Gelfand category O for g, introduced in [BGG], contains several important and interesting
families of g-modules, e.g. simple highest weight modules, Verma modules, projective mod-
ules, tilting modules, which appear naturally in that context. Considering the category of
Harish-Chandra modules for g (which are in fact g x g-modules), the Bernstein-Gelfand —
Joseph — Duflo equivalence of categories, see [Ja, Chapter 6], maps the principal series
Harish-Chandra modules to the so-called shuffled Verma modules M (x,y). Inside a fixed
regular indecomposable block O,, A regular integral antidominant, of O shuffled Verma
modules are indexed by pairs (z,y) of elements from the Weyl group W. Irving, in [I],
gave an alternative construction of these modules in terms of the so-called shuffling func-
tors, which are defined using the coherent translations 6,, [Ja], through the a-wall. His
construction is inductive and goes as follows. We start with setting M(z,e) = M(x - \),
the latter being the usual Verma module. If now y € W and ys, > y for the simple reflec-
tion s,, then the module M (z,y) canonically embeds into 6, (M (x,y)) and the quotient is
exactly M(z,ys,). Recently, in [AL] it was shown that the same family of modules can be
obtained using Arkhipov’s twisting functor, [Ar, AL], which also explains the alternative
name twisted Verma modules, used in [AL].

Recall that, if F is a fixed family of modules, a module, M, is said to have an F-flag
(or to be filtered by modules from F) if there is a filtration of M whose quotients belong to
F. Denote F, = {M(z,y)|ly € W} resp. FY ={M(z,y)|r € W} and let wy be the longest
element in W.



As it was known from [BGG], all projective modules in the category O are filtered
by Verma modules. In [I, Theorem 4.1] it was shown that some projectives in O, are
filtered by certain families of shufled Verma modules. Moreover, roughly speaking, the
bigger the indecomposable projective is, the more such filtrations it possess. Namely, the
indecomposable projective cover P(z-)\), x € W, of the simple module L(z-\) € O, appears
to have an FY-flag for all y, which can be written y = s;...s; with simple reflections s;
satisfying xs; > x. In particular, the big projective module P()) in O, has an F¥-flag for
all y.

If one writes {M (z,y)} in a W x W-array with respect to some total order extending the
Bruhat order, the sets F, and F¥ represent rows resp. columns of the array. In particular,
F¢ and F,,, represent Verma modules and F*° and F, represent their duals. This is why
the shuffled Verma modules are usually viewed as intermediate modules between Verma
modules and their duals. This remark also stimulates to consider tilting modules in Oy, i.e.
self-dual modules with a Verma flag, first constructed by [CI] (the term tilting module was
introduced for O later, namely, after [R]). In particular, it is known that indecomposable
tilting modules are indexed by Verma modules, namely, for each Verma module M (z - )
there exists exactly one indecomposable tilting module 7T'(x - A), such that any Verma flag
of T'(x - A\) starts with M (x - A).

By definition, all tilting modules have Fe-, F,,-, F¢- and F*°-flags. In particular, P())
is an example of indecomposable tilting module. As we already mentioned, by Irving’s
result P(\) has an FY-flag for all y. Another example of tilting module in O, is the simple
Verma module M (), isomorphic to M(z,z~!) for any z € W (see e.g. properties of
M (z,y) in [T]). Since M ()) occurs in each row and column of the W x W array {M(x,y)},
we get that M (A) has an F¥- and an F,-flag for all z,y. The aim of this paper is to prove
the following result, which is naturally motivated by the above discussion.

Theorem 1. Any tilting module in Oy has an FY- and an F,-flag for all x,y € W.

We also note that Soergel’s equivalence of categories from [S1] extends this result to all
regular anti-dominant A, which is the classical case, considered in [I].

2 FY-flags on tilting modules

In this section we prove the first part of the main Theorem 1, namely, we will show that
any tilting module in O, has an FY-flag for all y € W. As we already mentioned, from
[I] this follows for P(A) = T'(wp - A) and for T'(A) = M(A) the statement is obvious. For
a simple root, «, let s = s, be the corresponding reflection. Then we denote by S, the
corresponding shuffling functor, [I, Section 3] (we remark that in [I] this functor was denoted
by Cs, s = s4, and we decided to use the other name to avoid confusions with Enright’s
completions, which are also usually denoted by Cs). Then for any M € O, the module
Ss(M) is the quotient of 6,(M) modulo the canonical image of M inside 0,(M). It is
easy to see that this map is functorial. Shuffling functors produce the following connection
between different (F¥)’s, see [I, Corollary 3.2]:
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Lemma 1. Let o be a simple root and y € W such that ysq > y. If M € Oy has an
FY-flag then Ss, (M) has an F¥*=-flag.

For y € W we denote by O,(y) the full subcategory of all modules from O, having an
FY-flag. We start with the following observation:

Lemma 2. Let y € W and s = s, be a simple reflection such that ys > y. Then S; :
Ox(y) — Ox(ys) is an equivalence of categories.

Proof. Because of the exact sequence 0 — M(z,y) — 05(M(z,y)) = M(z,ys) — 0, [L,
Theorem 2.1], where z € W, the adjunction morphism M (x,y) — 0(M(z,y)) is injec-
tive and hence the image of O,(y) under S; is contained in O,(ys) by Lemma 1. By
[AL, Remark 1.2], there also exists a self-equivalence, S, of the bounded derived cate-
gory D(0,) such that S;(M) ~ S,(M) for any M € Ox(y). In particular, S, preserves
the homomorphism rings between objects from O,(y) and thus the endomorphism ring of
all objects from O,(y). Hence it sends indecomposables to indecomposables. Now it is
sufficient to prove that any object in O,(ys) belongs to the image of S;. We will do it
using induction in the length of F¥*-filtration of M € O,(ys). If this length is one, then
M ~ M(z,ys) for some x € W and hence M = S;(M(z,y)). Now consider an exact se-
quence 0 — M; — My — M3 — 0 in O, (ys). Applying to this sequence the exact functor
0 we get the following commutative diagram with exact rows:

0 —— 0,(M;) —— 0,(My) —— 0,(M3) —— 0

! ! !

O— My — My —— M; —— 0

where the columns are represented by natural morphisms 0;(M) — M (see I}, in [GJ, Sub-
section 3.12]). As all M; € O,(ys), these morphisms are surjective by [GJ, Lemma 3.12].
Hence, by standard homological arguments and computing the character of K;, i =
1,2, 3, we can extend the diagram above to the following commutative diagram with exact

columns:
0 0 0

0 —— K1 E— K2 E— K3 — 0
0 —— 0,(M;) —— O5(My) —— O5(M3) —— 0

Oo— My — My —— My —— 0




Now as the two lower rows are exact the upper one is exact as well by 3 x 3-Lemma. From
the inductive assumption we get that K; and K3 have FY-flags and thus K5 has an FY-flag
as well. Moreover, by induction we also have 6,(K;) ~ 64(M;), i = 1,3, and that the
morphisms K; — 0,(M;), i = 1,3, are represented by the natural morphisms K; — 0,(K;).
From this and [GJ, Subsection 3.12] it follows then that the natural morphism Ky — 05(K>)
is injective which then, together with 62 = 0, @ 0,, guarantees that 0,(K3) ~ 0,(M>).
Substituting now the map Ky — 6,(M;) with the natural morphism K, — 60,(Kj) we
still get a commutative diagram and thus the composition of the natural morphisms Ky —
05(K>) and 6,(K5y) ~ 05(Ms) — M, must be zero. Therefore My ~ S;(K>), which completes
the proof. O

We note that one can also use the following argument to prove the second part of
Lemma 2: Having a module with F¥*-filtration one uses shuffling functors to get a module,
filtered by dual Verma modules, which then can be translated to a module with Verma
flag by duality. Shuffling the latter we can get a module with F*%¥-flag and applying the
duality once more we get a module with F¥-flag. It follows from [AL, Remark 1.2] that
this procedure is inverse to Ss : Ox(y) — Ox(ys).

Corollary 1. Let y € W with the reduced decompositiony = s; . ... Then S; o---08;, :
Ox(e) = Ox(y) is an equivalence of categories.

Corollary 2. The category Oy(y) is closed under taking direct summands.

Now the necessary statement (i.e. necessary part of Theorem 1) will follow from the
following result.

Lemma 3. Let M € NyewOxr(y) and s be a simple reflection. Then 05(M) € Nyew Ox(y).

Proof. First we note that M is filtered by F¢ and F*° and hence is a tilting module. In
particular, it is self-dual. Hence 6,(M) is self-dual as well. Let y € W be such that ys > y.
Then the adjunction morphism M — 6,(M) is injective and thus its cokernel is filtered by
Fvs. As M is filtered by F¥* as well we get that 6,(M) is filtered by F¥°, in other words
by F* with ws < w. Now if we use the fact that M is self-dual and that the modules in
Fwov are exactly the duals to the modules in F* (see [I]), we get that the module M is
filtered by F“* with ws < w and hence by F* with wt > ¢. This completes the proof. [

Lemma 4. Each indecomposable tilting module T'(w - X), w € W, is a direct summand of
some M € NyewOr(y).

Proof. For w = 0 the module T'(\) is a simple Verma module and hence belongs to all
O\(y), y € W. Now, by Lemma 3 the module §,, o---08,, (T())) also belongs to all O,(y),

y € W, for any sequence si,...,s; € W of simple reflections. If we take w = s;...s;
to be a reduced decomposition of w, we can use [CI] and obtain that T'(w - A) is a direct
summand of 6, o --- 08, (T'()\)). This completes the proof. O

Now the proof of the first statement of Theorem 1 is transparent. We use Lemma 4 and
find some M € Nyew Oz (y) which has T'(w - A) as a direct summand. Now, by Corollary 2,
all direct summands of M, in particular T'(w - A), belong to Nyew Ox(y), which is the
statement we needed.



3 F,-flags on tilting modules

In this section we prove the second part of Theorem 1, which appears to be a little bit
easier than the first one. To produce different F,-flags on tilting modules we will use
Arkhipov’s twisting functors T,,, w € W (notation as in [AL], in [Ar] the author used ©,,).
According to [AL, Section 5], T, sends F,,, which consists of Verma modules, to F,,,, for
any w € W. We again start with the simple tilting module.

Lemma 5. The module T'(\) has an F,-flag for any z € W.

Proof. Write z = wwy for uniquely defined w € W and choose Verma module M (u) € F,,
such that T,,(M () =~ M(A) = T(\). This is possible since T, : Fypy — Fuw, 1S bijective
and M (A) € Fyuy,- O

We have to note that the statement itself follows from the fact M () € Fyu,, however
we will use the formula T,,(M (1)) ~ M(A) in the arguments that follow.

Corollary 3. For any finite-dimensional g-module F' and any x € W the module F @ T'(\)
has an F,-flag.

Proof. As above write z = wwy. By [AL, Subsection 6.3|, T,, commutes with F® . Hence
FRT(\) ~ FR(Ty(M(u))) =~ Ty(FQM(u)). As M(u) is a Verma module, F® M (i) has
a Verma flag, hence F,,-flag. Then T,, will translate this flag to an F,-flag of F®T()\). O

Lemma 6. Let F' and x be as in Corollary 3. Then each direct summand of F ® T'()\) has
an F,-flag.

Proof. Here we use the fact ([Ar, AL]) that T, extends to the functor LT, on the bounded
derived category D°(Q,), moreover, LT, is, in fact, an auto-equivalence on D?(0,). In
particular, it preserves the endomorphism ring of each direct summand of F ® M (i) as the
latter are filtered by Verma modules, see [AL, Corollary 6.3]. Hence T, sends indecom-
posable direct summands of F'® M (u) to indecomposable direct summands of F' ® T'()\)
and therefore transforms the Verma flags of the first ones to F,-flags of the last ones. This
completes the proof. O

Now the proof of the second part of Theorem 1 is easily completed. By [CI] each
indecomposable tilting module in O, occurs as a direct summand in some F ® T()\).
Hence Lemma 6 implies the necessary statement.

We note that the problem to use analogous arguments in Section 2 was that the coherent
translation f; does not commute with the functor F'® in the general case.

4 Some corollaries and remarks

Corollary 4. For a module, M € Oy, the following conditions are equivalent:

1. M is a tilting module, i.e. is self-dual and filtered by Verma modules;
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2. M has an FY-flag for ally € W;

3. M has an Fy-flag for all x € W;

4. M has an FY-flag and an F,-flag for all x,y € W.
Proof. Immediate corollary of Theorem 1. O
Corollary 5. Fach category O\(y), y € W, has almost split sequences.
Proof. Follows from Corollary 1 and [R]. O

The next corollary is a famous result of Soergel, [S2]. In particular, Corollary 1 can be
viewed as an extension of this result.

Corollary 6. The categories Oy(e) and Ox(e)P are equivalent.

Proof. As a special case of Corollary 1, the categories O,(e) and Oy(wy) are equivalent.
But the last one is equivalent with O, (e)°? by usual duality. O

Analogous results can be obtained via T,, for categories of modules, filtered by F,. In
fact, in [S2] the functor T, is used to prove the above statement.

We would like to finish with the remark that the homological characterization of O, (y)
in the spirit of [R], where it was proved that F¢ = +F¥0 and F¥ = (F°¢)* does not
seem to be possible, e.g. as for any short exact sequence 0 - K — T, — T — 0 with
tilting modules 7} and 75, the module K although filtered by F*¢ is not tilting in general
(example: T3 = T'(A\), Ty = 0,(T'(N\)), then K = M(s, - A) is not self-dual). In case of
existence of any analogue of such homological characterization, from Theorem 1 and the
long exact sequence it would follow that K is a tilting module as well.
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