CATEGORIFICATION,
KOSTANT’S PROBLEM AND
GENERALIZED VERMA MODULES

Volodymyr Mazorchuk

(Uppsala University)
1. Motivation — generalized Verma modules

\(g \) — semi-simple finite-dimensional complex Lie algebra.

\(g = n_- \oplus h \oplus n_+ \) — triangular decomposition.

\(p \supset h \oplus n_+ \) — parabolic subalgebra.

\(p = a \oplus n \)

\(n \) — nilpotent radical of \(p \)

\(a \) — Levi factor

\(V \) — simple \(a \)-module

\(nV = 0 \)

\(M(p, V) = U(g) \otimes_{U(p)} V \) — generalized Verma module

Question 1: What is the structure of \(M(p, V) \)?

Question 2: When is \(M(p, V) \) irreducible?
Discouragement: No classification of simple α-modules.

Encouragement 1: Many partial cases are known, in particular, $\alpha = \mathfrak{h}$, V finite-dimensional, V weight dense with f.d. weight spaces, V generic Gelfand-Zetlin, V Whittaker. (Names: Verma, BGG, Jantzen, McDowell, Futorny, M., Milicic, Soergel, Khomenko, Mathieu, Britten, Lemire, others)

Encouragement 2: Annihilators of V are classified via annihilators of simple highest weight modules.

Idea (following Milicic-Soergel’s study of the case when V is a Whittaker module):

- Take a simple highest weight α-module V' with the same annihilator as V.
- Realize $M(\mathfrak{p}, V)$ and $M(\mathfrak{p}, V')$ as objects in some Coker-categories.
- Prove (using Harish-Chandra bimodules) that these categories are equivalent and that the equivalence sends $M(\mathfrak{p}, V)$ to $M(\mathfrak{p}, V')$.
- Deduce the structural properties of $M(\mathfrak{p}, V)$ from those of $M(\mathfrak{p}, V')$ and KL-type combinatorics.
Encouragement 1: Works for Whittaker and generic Gelfand-Zetlin modules.

Encouragement 2: The categories of Harish-Chandra bimodules which appear depend only on the annihilator of V.

Catch 1: Needs better understanding of the so-called Kostant’s problem for V and some induced modules.

Catch 2: Answers the irreducibility question, but does not help to describe all subquotients of GVM as this description depends on more than the annihilator of V.

Example: The Verma module $M(s \cdot 0)$ over \mathfrak{sl}_3 is parabolically induced from a simple Verma \mathfrak{sl}_3-module, say X. The module $M(s \cdot 0)$ has simple subquotients

$$L(s \cdot 0), \ L(st \cdot 0), \ L(ts \cdot 0), \ L(sts \cdot 0).$$

Let X' be a simple dense \mathfrak{sl}_3-module with the same annihilator as X. Then (Futorny) $M(p, X')$ has only three subquotients N_1, N_2 and N_3.

Mathieu’s functor can be used to associate N_1, N_2 and N_3 with $L(s \cdot 0)$, $L(st \cdot 0)$ and $L(sts \cdot 0)$ respectively.

$L(ts \cdot 0)$ is induced from a module with the annihilator, which is ‘‘strictly bigger’’ than that of X.
2. **Kostant’s problem**

M — g-module.

$L(M, M) = \text{Hom}_\mathbb{C}(M, M)^{\text{ad-fin}}$ — locally ad $U(g)$-finite \mathbb{C}-endomorphisms of M.

Kostant’s problem: For which (simple) M is the natural injection

$$U(g)/\text{Ann}\,_{U(g)}(M) \hookrightarrow L(M, M)$$

surjective?

Answer is:

- not known in general, not even for simple highest weight modules

- known to be positive for Verma modules and for simple highest weight modules of the form $L(w_0^p w_0 \cdot \lambda)$, λ is regular and dominant (Joseph, Gabber-Joseph).

- known to be negative for $L(st \cdot 0)$ in type B_2 (Joseph).
Theorem 1. (M.) Let s be a set of simple roots for p. Then the answer to Kostant’s problem is positive for the simple highest weight module of the form $L(sw_0^p w_0 \cdot \lambda)$ where λ is regular and dominant.

Example: For the regular block in type B_2 the answer to Kostant’s problem is thus positive for $L(0)$, $L(s \cdot 0)$, $L(t \cdot 0)$, $L(sts \cdot 0)$, $L(tst \cdot 0)$ and $L(tsts \cdot 0)$; and it is negative for $L(st \cdot 0)$ and $L(ts \cdot 0)$.

Theorem 2. (M.-Stroppel) Let $g = \mathfrak{sl}_n$. Then for simple highest weight modules of the form $L(x \cdot \lambda)$ where λ is regular and dominant the answer to Kostant’s problem is a left cell invariant.
3. Why? Twisting FUNCTORS

s — simple reflection corresponding to simple root α

X_α — some non-zero element in g_α

U_α — localization of $U(g)$ with respect to X_α

Θ_α — an automorphism of g corresponding to s

Twisting functor (Arkhipov):

$$T_s : M \mapsto \Theta_\alpha(U_\alpha/U(g) \otimes g M).$$

Properties (Andersen-Stroppel, Khomenko-M.):

• T_s commutes with projective functors.

• $R T_s$ is an autoequivalence of $D^b(O_0)$.

• $R T_s$’s satisfy braid relations and hence define an action of the braid group on $D^b(O_0)$.

• The action of $R T_s$’s on $D^b(O_0)$ categorifies the left regular representation of the Weyl group.

• $T_s M(x \cdot 0) \cong M(sx \cdot 0)$ if $sx > x$.

• T_s is left adjoint to Joseph’s completion functor.
Kostant’s problem can be reduced to numerical calculations using:

- \(\text{Hom}_g(V, \mathcal{L}(M, M)) = \text{Hom}_g(M, M \otimes V^*), \ V \) — simple finite-dimensional.
- Annihilators of simple highest weight modules correspond bijectively to left cells.

Need: \(\dim \text{Hom}_g(L(x \cdot 0), L(x \cdot 0) \otimes V^*) \) is a left cell invariant.

Roughly speaking the left cell is a simple \(S_n \)-module, where \(S_n \) acts via twisting functors.

Twistings commute with projective functors \(- \otimes V^* \).

\(T_s L(x \cdot 0) \) is either 0 (if \(sx > s \)) or has simple top \(L(x \cdot 0) \) and semisimple radical consisting of \(L(sx \cdot 0) \) and some other modules \(L(y \cdot 0) \), where \(x \) and \(y \) are in the same left cell (multiplicity is given by KL-combinatorics).

Using the properties of (derived) twisting functors one can show that

\[\dim \text{Hom}_g(L(x \cdot 0), L(x \cdot 0) \otimes V^*) \leq \dim \text{Hom}_g(L(y \cdot 0), L(y \cdot 0) \otimes V^*) \]

for any \(x, y \) in the same left cell.
4. Structure of generalized Verma modules

V — simple α-module

$\text{Coker}(V)$ — category of all modules X which admit resolution $M_2 \rightarrow M_1 \rightarrow X \rightarrow 0$, where M_2 and M_1 are direct summands of some $E \otimes V$, E finite-dimensional (Milicic-Soergel).

Need: V — projective in $\text{Coker}(V)$

For \mathfrak{sl}_n we can always substitute V by some \tilde{V}, which will be projective in $\text{Coker}(\tilde{V})$ by Irving-Shelton.

Using “parabolic Harsh-Chandra homomorphism” (Drozd-Futorny-Ovsienko) we can assume that $M(\mathfrak{p}, \tilde{V})$ is projective in $\text{Coker}(M(\mathfrak{p}, \tilde{V}))$.

From the above results on Kostant’s problem it follows that Kostant’s problem has a positive answer for $M(\mathfrak{p}, \tilde{V})$.

Corollary: $\text{Coker}(M(\mathfrak{p}, \tilde{V}))$ is equivalent to a certain category of Harish-Chandra bimodules.
Blocks of \(\text{Coker}(M(\mathfrak{p}, \tilde{V})) \) are described by weakly properly stratified algebras in the sense of Cline-Parshall-Scott and Frisk.

This means that projectives in these categories are filtered by the so-called standard and proper standard modules, both having a clear categorical interpretation (and thus preserved by “nice” equivalences). Generalized Vermas correspond to proper standard modules.

Catch: Simple objects in these categories are not simple \(g \)-modules in general.

Example: \(g = \mathfrak{a} = \mathfrak{sl}_2, \; V = L(s \cdot 0) \).

The corresponding block of \(\text{Coker}(M(\mathfrak{p}, \tilde{V})) \) is equivalent to the category of modules over the algebra \(\mathbb{C}[x]/(x^2) \). It contains two indecomposable objects: the projective object \(P(s \cdot 0) \) and the simple object \(\hat{L}(s \cdot 0) \), which have the following Loewy filtrations:

\[
P(s \cdot 0) = \begin{cases}
L(s \cdot 0) \\
L(0) \\
L(s \cdot 0)
\end{cases} , \quad \hat{L}(s \cdot 0) = \begin{cases}
L(s \cdot 0) \\
L(0) \\
L(s \cdot 0)
\end{cases} ,
\]

There is no projective module in \(\text{Coker}(M(\mathfrak{p}, \tilde{V})) \) with simple top \(L(0) \).
This is very similar to the classical realization of eAe-modules inside A-modules for an Artin algebra A.

Conclusion: There is no hope to obtain a complete description of all composition factors of $M(p, V)$ in full generality using this approach.

On can only describe the rough structure of $M(p, V)$, that is multiplicities of those simples, for which there is a projective cover in $\text{Coker}(M(p, \tilde{V}))$.

Other simples correspond to “strictly bigger annihilators”.

Theorem 3: (M.-Stroppel) Let L be the simple top of some projective in $\text{Coker}(M(p, \tilde{V}))$ then

$$[M(p, V) : L] = [M(p, L(\lambda)) : L(\mu)]$$

where $L(\lambda)$ is a simple highest weight module with the same annihilator as V and the weight μ can be described explicitly (the right hand side is combinatorially understood).

Corollary: $M(p, V)$ is irreducible if and only if so is $M(p, L(\lambda))$.