CATEGORY \mathcal{O} AS A SOURCE FOR CATEGORIFICATION

Volodymyr Mazorchuk

(Uppsala University)

\mathfrak{g} — semi-simple finite-dimensional Lie algebra over \mathbb{C}

\mathcal{O} — Bernstein-Gelfand-Gelfand category \mathcal{O} for \mathfrak{g}

\mathcal{O}_0 — the regular block of \mathcal{O}

$\mathcal{O}_0 \cong A$-mod, where

A — finite-dimensional associative algebra over \mathbb{C}

W — Weyl group of \mathfrak{g}

A-simples \leftrightarrow elements in W
$K_0(\mathcal{O}_0)$ — Grothendieck group of \mathcal{O}_0

Projective functors are exact and thus induce endomorphisms of $K_0(\mathcal{O}_0)$

This is a categorification of the regular right $\mathbb{Z}W$-module

Twisting functors satisfy braid relations

They are NOT equivalences of \mathcal{O}_0

Derived twisting functors ARE equivalences of $\mathcal{D}^b(\mathcal{O}_0)$

This gives a categorification of the regular left $\mathbb{Z}W$-module

Twisting and projective functors commute

This gives a categorification of $\mathbb{Z}W \mathbb{Z}W \mathbb{Z}W$
A admits a \mathbb{Z}-grading

A-gmod — category of graded A-modules

all our functors admit graded lifts

\mathcal{H} — Hecke algebra of W

effect on categorification: change $\mathbb{Z}W$ by \mathcal{H}

A is Koszul
Taking certain subcategories one produces categorifications of other modules

\(\mathfrak{p} \) — some parabolic subalgebra of \(\mathfrak{g} \)

\(W^p \) — the corresponding parabolic subgroup of \(W \)

\(\mathcal{O}_0^p \) — the corresponding parabolic subcategory of \(\mathcal{O}_0 \)

Projective functors preserve \(\mathcal{O}_0^p \)

This gives a categorification of the \(\mathbb{Z}W \)-module, induced from the sign \(W^p \)-module
\(\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C}) \)

\(\lambda \) — partition corresponding to \(p \)

\(\lambda' \) — the conjugate partition

\(Q \) — basic projective-injective module in \(\mathcal{O}_0^p \)

End\((Q)\)-mod can be viewed as a subcategory of \(\mathcal{O}_0^p \)

projective functors preserve End\((Q)\)-mod

This gives a categorification of the Specht module corresponding to \(\lambda' \)
\(W(p) \) — longest coset representatives in \(W^p \setminus W \)

\(e_w \) — primitive idempotent of \(A \) corresponding to \(w \in W \)

\[e_p = \sum_{w \in W(p)} e_w \]

\[B = e_p A e_p \]

\(B \)-mod can be realized as a subcategory of \(A \)-mod

projective functors preserve \(B \)-mod

This gives a categorification of the permutation module corresponding to \(W \) and \(W^p \)
$\mathfrak{R} \rightleftharpoons$ right cell in W

for $w \in \mathfrak{R}$ set $P^R(w) = P(w)/X$, where

$X \subset P(w)$ is generated by all $L(v), v \not\leq_{\text{right}} w$

$P^R = \bigoplus_{w \in \mathfrak{R}} P^R(w)$

$C = \text{End}(P^R)$

C-mod can be realized as a subcategory of A-mod

projective functors preserve C-mod

This gives a categorification of the cell module corresponding to \mathfrak{R}