COMBINATORICS OF PARTIAL BIJECTIONS

1. The symmetric group S_n

$$n \in \mathbb{N}, \qquad N_n = \{1, 2, \dots, n\}$$

$$S_n = \{f : N_n \to N_n : f \text{ is bijective}\}$$

Elements from S_n are called *permutations* on N_n .

$$f, g \in S_n \Rightarrow f \circ g \in S_n, \quad f \circ g(x) = f(g(x)) \text{ for all } x \in N_n$$

 (S_n, \circ) is a group. This means the following:

- 1. The operation "o" is associative, i.e. $f \circ (g \circ h) = (f \circ g) \circ h$ for all $f, g, h \in S_n$. In fact, $(f \circ (g \circ h))(x) = ((f \circ g) \circ h)(x) = f(g(h(x)))$ for all $x \in N_n$.
- 2. S_n contains the identity permutation id, defined as follows: id(x) = x for all $x \in S_n$. This transformation satisfies $id \circ f = f \circ id = f$ for all $f \in S_n$.
- 3. Every permutation $f \in S_n$ has an inverse in S_n , this means that there exists a permutation, $g \in S_n$, such that $g \circ f = f \circ g = id$.

Remark. It is easy to see that the identity is unique and every $f \in S_n$ has unique inverse, which is denoted by f^{-1} .

Example. The group S_3 :

$$id = \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right)$$

$$(1,2) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$$

$$(1,3) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

$$(2,3) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)$$

$$(1,2,3) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

$$(1,3,2) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$$

2. The full inverse symmetric semigroup \mathcal{IS}_n

Let X and Y be arbitrary sets.

A partial map from X **to** Y is a map, f, from $A \subset X$ to $B \subset Y$. If $f: A \to B$ is a bijection it is called a **partial bijection** from X **to** Y.

$$\mathcal{IS}_n = \{f : N_n \to N_n : f \text{ is a partial bijection } \}.$$

Elements from \mathcal{IS}_n are called partial permutations on N_n .

Let $f: X \to Y$ and $g: Y \to Z$ be partial maps. Define the **composition** $g \circ f: X \to Z$ as the following partial map: $g \circ f$ is defined on $x \in X$ if and only if f is defined on x and g is defined on f(x); moreover, if $g \circ f$ is defined on $x \in X$, then $(g \circ f)(x) = g(f(x))$.

If $f: X \to Y$ is a partial map and $x \in X$ is such that f is not defined on x, denote this by $f(x) = \emptyset$.

 (\mathcal{IS}_n, \circ) is an inverse semigroup (monoid). This means the following:

- 1. The operation "o" is associative, i.e. $f \circ (g \circ h) = (f \circ g) \circ h$ for all $f, g, h \in \mathcal{IS}_n$.
- 2. $id \in \mathcal{IS}_n$ and $id \circ f = f \circ id = f$ for all $f \in \mathcal{IS}_n$.
- 3. Every permutation $f \in S_n$ has a partial inverse in S_n , i.e. that there exists a unique permutation, $g \in S_n$, such that $g \circ f \circ g = g$ and $f \circ g \circ f = f$. This unique partial inverse is denoted by f^* .

Example. The semigroup \mathcal{IS}_3 :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad (1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$(2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad (1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad (1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$[1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 2 & 3 \end{pmatrix}, \quad (2,3)[1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 3 & 2 \end{pmatrix}, \quad [2,3,1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 3 & 1 \end{pmatrix}$$

$$[3,2,1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 1 & 2 \end{pmatrix}, \quad [3,1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 2 & 1 \end{pmatrix}, \quad [2,1] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 1 & 3 \end{pmatrix}$$

$$[2] = \begin{pmatrix} 1 & 2 & 3 \\ 1 & \varnothing & 3 \end{pmatrix}, \quad (1,3)[2] = \begin{pmatrix} 1 & 2 & 3 \\ 3 & \varnothing & 1 \end{pmatrix}, \quad [1,3,2] = \begin{pmatrix} 1 & 2 & 3 \\ 3 & \varnothing & 2 \end{pmatrix}$$

$$[3,1,2] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & \varnothing & 1 \end{pmatrix}, \quad [3,2] = \begin{pmatrix} 1 & 2 & 3 \\ 1 & \varnothing & 2 \end{pmatrix}, \quad [1,2] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & \varnothing & 3 \end{pmatrix}$$

$$[3] = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & \varnothing \end{pmatrix}, \quad (1,2)[3] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & \varnothing \end{pmatrix}, \quad [1,2,3] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & \varnothing \end{pmatrix}$$

$$[2,1,3] = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & \varnothing \end{pmatrix}, \quad [2,3] = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & \varnothing \end{pmatrix}, \quad [1,3] = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & \varnothing \end{pmatrix}$$

$$[1][2] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & \varnothing & 3 \end{pmatrix}, \quad [3,1][2] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & \varnothing & 1 \end{pmatrix}, \quad [1][3,2] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & \varnothing & 2 \end{pmatrix}$$

$$[1][3] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 2 & \varnothing \end{pmatrix}, \quad [2,1][3] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 1 & \varnothing \end{pmatrix}, \quad [1][2,3] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & 1 & \varnothing \end{pmatrix}$$

$$[2][3] = \begin{pmatrix} 1 & 2 & 3 \\ 1 & \varnothing & \varnothing \end{pmatrix}, \quad [1,2][3] = \begin{pmatrix} 1 & 2 & 3 \\ 2 & \varnothing & \varnothing \end{pmatrix}, \quad [2][1,3] = \begin{pmatrix} 1 & 2 & 3 \\ 3 & \varnothing & \varnothing \end{pmatrix}$$

$$0 = [1][2][3] = \begin{pmatrix} 1 & 2 & 3 \\ \varnothing & \varnothing & \varnothing \end{pmatrix}.$$

3. Basic combinatorics

$$|S_n| = n \cdot (n-1) \cdot (n-2) \dots 1 = n!$$

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ n \text{ poss.} & n-1 \text{ poss.} & n-2 \text{ poss.} & \dots & 2 \text{ poss.} & 1 \text{ poss.} \end{pmatrix}$$

How to calculate $|\mathcal{IS}_n|$?

 $\pi \in \mathcal{IS}_n$, that is $\pi : A \to B$ is a bijection, $A, B \subset N_n$. Then

- $A = \text{Dom}(\pi)$, the domain of π ;
- $B = \operatorname{Im}(\pi)$, the *image* of π ;
- $|A| = |B| = \text{Rank}(\pi)$, the rank of π .
- $n \text{Rank}(\pi) = \text{Def}(\pi)$, the defect of π .
- \bullet Count the number of elements of a fixed rank i separately.
- If i is fixed, the domain A can be chosen in $\binom{n}{i}$ different ways.
- If i is fixed, the image B can be chosen in $\binom{n}{i}$ different ways.
- If A and B of cardinality i are fixed, a bijection from A to B can be chosen in i! different ways.

Answer:
$$|S_n| = \sum_{i=0}^n \binom{n}{i}^2 i!$$

4. Nilpotent elements

 \mathcal{IS}_n contains 0, that is a special element, such that $0 \circ f = f \circ 0 = 0$ for all $f \in |\mathcal{IS}_n|$.

0 is unique, $Dom(0) = Im(0) = \varnothing$.

 $A \in \mathcal{IS}_n$ is said to be *nilpotent* provided that $A^n = 0$ for some positive integer n.

 $\pi \in \mathcal{IS}_n$ is nilpotent if and only if π does not have cycles if and only if $\pi = [x_1, \ldots, x_i] \ldots [y_1, \ldots, y_j]$.

How many nilpotent elements does \mathcal{IS}_n have?

Lemma. The number of nilpotent elements of a fixed defect k, $0 < k \le n$, equals the signless Lah number $L'_{n,k} = \frac{n!}{k!} \binom{n-1}{k-1}$.

Proof. Let a_1, \ldots, a_n be a permutation of $1, \ldots, n$ (n! ways). Choosing k-1 places $\binom{n-1}{k-1}$ ways), say m_1, \ldots, m_{k-1} we get the following nilpotent element:

$$[a_1, \ldots a_{m_1}][a_{m_1+1}, \ldots a_{m_2}] \ldots [a_{m_{k-1}+1}, \ldots a_n].$$

This element has defect k. The permutation of chains (k!) ways does not change it.

Corollary. The number of nilpotent elements in \mathcal{IS}_n equals

$$\sum_{k=1}^{n} \frac{n!}{k!} \binom{n-1}{k-1}.$$

5. Nilpotent subsemigroups

A semigroup, S, with zero 0 is *nilpotent* provided that $S^k = 0$ for some k.

A subsemigroup, $0 \in S \subset \mathcal{IS}_n$ is nilpotent if and only if it contains only nilpotent elements.

Question: What are the biggest (maximal) nilpotent subsemigroups in \mathcal{IS}_n ?

Let $S \subset \mathcal{IS}_n$ be a nilpotent subsemigroup then the relation $<_S$ on N_n , defined as: $a <_S b$ if and only if there exists $\pi \in S$ such that $b = \pi(a)$, is a partial order.

Let < be a partial order on N_n . Then the semigroup S(<), which consists of all $\pi \in \mathcal{IS}_n$ such that $a < \pi(a)$ for all $a \in \text{Dom}(\pi)$ is a nilpotent semigroup in \mathcal{IS}_n .

Lemma.

- 1. $S \subset T$ implies $<_S \subset <_T$.
- 2. $<_1 \subset <_2$ implies $S(<_1) \subset S(<_2)$.

Theorem [Ganyushkin-Kormysheva]. Maximal nilpotent subsemigroups in \mathcal{IS}_n are exactly S(<), where < is a linear order on N_n . In particular, there exists exactly n! nilpotent subsemigroups in \mathcal{IS}_n , they all are conjugated by S_n -action and hence are isomorphic.

Question: How many elements does a maximal nilpotent subsemigroup of \mathcal{IS}_n contain?

Lemma. Let S = S(<) be a maximal nilpotent subsemigroup in \mathcal{IS}_n . Then there is a natural bijection between the elements in S and (unordered) partitions of N_n into subsets. In particular, $|S| = B_n$, the n-th Bell number.

Proof. Let $\pi \in S$, then chain decomposition of π defines a partition of N_n . Conversely, let $N_n = N_1 \cup \cdots \cup N_k$. Each N_i defined a maximal chain, ordered with respect to <. The product over all i defines an element in S. These two correspondences are mutually inverse bijections.

6. *k*-maximal subsemigroups

$$N_n = M_1 \cup \cdots \cup M_k, \quad |M_i| = t_i > 0,$$

For $x, y \in N_n$ set x < y if and only if $x \in M_i$, $y \in M_j$ and i < j.

The semigroup S(<) is maximal among nilpotent subsemigroups in \mathcal{IS}_n of nilpotency degree k.

Question: What is |S(<)| for < as above?

For $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ let the *Bell evaluation* of f(x) be the following: $f(B) = a_n B_n + a_{n-1} B_{n-1} + \cdots + a_1 B_1 + a_0$, where $\{B_i\}$ are Bell's numbers.

For
$$i \in \mathbb{N}$$
 set $[x]_i = x(x-1)\dots(x-i+1)$ and define
$$f_{t_1,\dots,t_k}(x) = [x]_{t_1}[x]_{t_2}\dots[x]_{t_k}.$$

Theorem [Ganyushkin-Pavlov]. $|S(<)| = f_{t_1,...,t_k}(B)$.

Corollary. |S(<)| does not depend on the ordering of M_i 's.