COMBINATORICS OF PARTIAL
BIJECTIONS

1. The symmetric group S5,
n €N, N,=411,2,...,n}

Spn=Af: N, — N, : fis bijective}
Elements from S,, are called permutations on N,,.
f,g€S,= fogesS,, fog(x)= f(g(x)) forall x € N,

(Sp,0) is a group. This means the following;

1. The operation “o” is associative, i.e. fo(goh) = (fog)oh forall

f,9,h € Sy Infact, (fo(goh))(z) = ((fog)oh)(z) = f(g(h(z)))
for all z € N,

2. S, contains the identity permutation id, defined as follows:
id(z) = z for all z € S,,. This transformation satisfies id o f =

foid= fforall fes,.

3. Every permutation f € .S, has an inverse in .S, this means that
there exists a permutation, g € S,,, such that go f = f o g = d.

Remark. It is easy to see that the identity is unique and every
f € S, has unique inverse, which is denoted by f~!.
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Example. The group Ss:



2. The full inverse symmetric semigroup ZS,,

Let X and Y be arbitrary sets.

A partial map from X to Y is a map, f, from A C X to
B CY.Iff: A— Bisabijection it is called a partial bijection
from X to Y.

ZS8,={f: N, — N, : fis a partial bijection }.

Elements from ZS,, are called partial permutations on N,,.

Let f: X — Y and g : Y — Z be partial maps. Define the
composition go f : X — Z as the following partial map: g o f
is defined on x € X if and only if f is defined on x and g is
defined on f(x); moreover, if g o f is defined on x € X, then

(9o f)x) = g(f(z))-
If f: X — Y is a partial map and x € X is such that f is not
defined on z, denote this by f(z) = @.

(ZS,,, o) is an inverse semigroup (monoid). This means the follow-

ing:

[

1. The operation “o” is associative, i.e. fo(goh)= (fog)oh for
all f,g,h € ZS,,.

2.1d € 1S, andido f = foid = f forall f € ZS,,.

3. Every permutation f € S, has a partial inverse in S, i.e. that
there exists a unique permutation, g € .S,,, such that go fog=g
and f o go f = f. This unique partial inverse is denoted by f*.



Example. The semigroup ZS5s3:






3. Basic combinatorics

Syl =n-(n—=1)-(n—=2)...1=nl

1 2 3 .o n—1 n
n poss. m — 1 poss. n—2poss. ... 2poss. 1 poss.

How to calculate |ZS,|?
m €18, that is m: A — B is a bijection, A, B C N,,. Then

e A = Dom(r), the domain of ;

e B =Im(w), the image of 7;

e |A| = |B| = Rank(r), the rank of .

e n — Rank(7) = Def(r), the defect of 7.

e Count the number of elements of a fixed rank 7 separately.
e If ¢ is fixed, the domain A can be chosen in (7;) different ways.
e If 7 is fixed, the image B can be chosen in (?) different ways.

o If A and B of cardinality ¢ are fixed, a bijection from A to B
can be chosen in ¢! different ways.

n 2
Answer: 1Sy| = Z (?) i!
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4. Nilpotent elements

1S, contains 0, that is a special element, such that 0o f = fo0 =0
for all f € |ZS,|.

0 is unique, Dom(0) = Im(0) = @.

A € 1S, is said to be nilpotent provided that A" = 0 for some

positive integer n.

m € I8, is nilpotent if and only if m does not have cycles if and
only if m = [z1,..., 2] ... [y1, ..., y;]

How many nilpotent elements does ZS,, have?

Lemma. The number of nilpotent elements of a fixed defect k&,

0 < k < n, equals the signless Lah number L;,L’k = Z—:(Zj)

Proof. Let ay,...,a, be a permutation of 1,...,n (n! ways).

- -1
Choosing k — 1 places ((;_,
following nilpotent element:

) ways), say my, ..., mg_1 we get the

a1, @)@y 415 - - Q) - - - (G415 - - - Q).

This element has defect k. The permutation of chains (k! ways)
does not change it.

Corollary. The number of nilpotent elements in ZS,, equals

n

>l

k=1



5. Nilpotent subsemigroups

A semigroup, S, with zero 0 is nilpotent provided that S* = 0 for
some k.

A subsemigroup, 0 € S C ZS,, is nilpotent if and only if it contains
only nilpotent elements.

Question: What are the biggest (maximal) nilpotent subsemi-
groups in ZS,,?

Let S C ZS,, be a nilpotent subsemigroup then the relation <g on
N,,, defined as: a <g b if and only if there exists © € S such that
b= 7(a), is a partial order.

Let < be a partial order on N,. Then the semigroup S(<), which
consists of all 7 € ZS,, such that a < m(a) for all a € Dom(7) is a
nilpotent semigroup in ZS,,.
Lemma.

1. S C T implies <gC<r.

2. <1C<y implies S(<1) C S(<2).



Theorem [Ganyushkin-Kormysheva]. Maximal nilpotent
subsemigroups in ZS,, are exactly S(<), where < is a linear or-
der on N,. In particular, there exists exactly n! nilpotent subsemi-
groups in ZS,,, they all are conjugated by S,-action and hence are
isomorphic.

Question: How many elements does a maximal nilpotent sub-
semigroup of ZS,, contain?

Lemma. Let S = S(<) be a maximal nilpotent subsemigroup
in ZS,,. Then there is a natural bijection between the elements

in S and (unordered) partitions of IV, into subsets. In particular,
|S| = B,, the n-th Bell number.

Proof. Let m € S, then chain decomposition of 7 defines a parti-
tion of IV,,. Conversely, let N,, = Ny U ---U N;. Each N; defined
a maximal chain, ordered with respect to <. The product over all
¢ defines an element in S. These two correspondences are mutually
inverse bijections.



6. k-maximal subsemigroups
N,=M U---U M, |Mi|:ti>0,

Forz,y € Nysetz <yifandonlyifx € M;, y € M; and i < j.

The semigroup S(<) is maximal among nilpotent subsemigroups in
1S, of nilpotency degree k.

Question: What is |S(<)| for < as above?
For f(z) = apa"+a, 12" ' +- - -+a;z+ay let the Bell evaluation
of f(x) be the following: f(B) = a,Bn,+a,_1B,_1+- - -+a1Bi1+ay,

where {B;} are Bell’s numbers.

For i € Nset [z]; =x(x —1)...(z —i+ 1) and define

frtn(®) = [zl [2]y - - []sy

Theorem [Ganyushkin-Pavlov]. |S(<)| = f;,...+.(B).

Corollary. |S(<)| does not depend on the ordering of M;’s.
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