GELFAND-ZETLIN MODULES

Volodymyr Mazorchuk

$$\mathfrak{g}=\mathfrak{g}l(n,\mathbb{C});$$

 $\{e_{i,j}|i,j=1,\ldots,n\}$ – matrix units, basis of \mathfrak{g} .

tableau
$$[l] = (l_{i,j})_{i=1,...,n}^{j=1,...,i}$$

simple f.d. \mathfrak{g} -modules $\leftrightarrow \mathfrak{m} = (m_1, \dots, m_n) \in \mathbb{C}^n, m_i - m_{i+1} \in \mathbb{N}$

THEOREM (Gelfand-Zetlin, 1950) The simple f.d. \mathfrak{g} -module $V = V(\mathfrak{m})$, corresponding to \mathfrak{m} as above has a basis, $\mathcal{B}(\mathfrak{m})$, consisting of all tableaux [t] such that

- $t_{n,j} = m_j, j = 1, \ldots, n;$
- $t_{i,j} t_{i-1,j} \in \mathbb{Z}_+, i = 2, \dots, n, j = 1, \dots, i;$
- $t_{i-1,j} t_{i,j+1} \in \mathbb{N}, i = 2, \ldots, n, j = 1, \ldots, i-1.$

The action of \mathfrak{g} on $\mathcal{B}(\mathfrak{m})$ is given by the following Gelfand-Zetlin formulae

$$e_{i,i}[t] = \left(\sum_{j=1}^{i} t_{i,j} - \sum_{j=1}^{i-1} t_{i-1,j}\right)[t],$$

$$e_{i,i+1}([t]) = -\sum_{j=1}^{i} \frac{\prod_{k=1}^{i+1} (t_{i,j} - t_{i+1,k})}{\prod_{k \neq j} (t_{i,j} - t_{i,k})} ([t] + [\delta^{i,j}]),$$

$$e_{i+1,i}([t]) = \sum_{j=1}^{i} \frac{\prod_{k=1}^{i-1} (t_{i,j} - t_{i-1,k})}{\prod_{k \neq i} (t_{i,j} - t_{i,k})} ([t] - [\delta^{i,j}]).$$

Generic Gelfand-Zetlin modules

fix [l] such that $l_{i,j} - l_{i,k} \notin \mathbb{Z}$ for all i < n and $j \neq k$. Let B([l]) consist of all [t] such that

- $t_{n,j} = l_j, j = 1, \ldots, n;$
- $t_{i,j} l_{i,j} \in \mathbb{Z}, i = 1, \dots, n-1, j = 1, \dots, i$.

THEOREM (Drozd-Ovsienko-Futorny, \sim 1989) The Gelfand-Zetlin formulae define on the vectorspace V([l]), spanned by B([l]), the structure of a \mathfrak{g} -module of finite length. V([l]) is simple if and only if $l_{i,j} - l_{i-1,k} \not\in \mathbb{Z}$ for all $i = 2, \ldots, n, j = 1, \ldots, i$ and $k = 1, \ldots, i-1$.

Gelfand-Zetlin subalgebra

Consider standard $\mathfrak{g}l(1,\mathbb{C}) \subset \mathfrak{g}l(2,\mathbb{C}) \subset \cdots \subset \mathfrak{g}l(n,\mathbb{C})$.

This induces $U(\mathfrak{g}l(1,\mathbb{C})) \subset U(\mathfrak{g}l(2,\mathbb{C})) \subset \cdots \subset U(\mathfrak{g}l(n,\mathbb{C}))$.

Set $Z_i = Z(\mathfrak{g}l(2,\mathbb{C}))$, $i = 1, \ldots, n$, and denote $\Gamma = \langle Z_i | i = 1, \ldots, n \rangle$ – polynomial algebra in n(n+1)/2 variables.

THEOREM

- 1. (Zhelobenko?) $\mathcal{B}(\mathfrak{m})$ is an eigenbasis w.r.t. Γ , moreover, Γ separates elements of $\mathcal{B}(\mathfrak{m})$.
- 2. (Drozd-Futorny-Ovsienko) B([l]) is an eigenbasis w.r.t. Γ , moreover, Γ separates elements of B([l]).

THEOREM (????, Ovsienko) Γ is a maximal commutative subalgebra of \mathfrak{g} .

Problem Find a transformation matrix between $\mathcal{B}(\mathfrak{m})$ with respect to different Γ , or, say, between $\mathcal{B}(\mathfrak{m})$ and the canonical basis.

Gelfand-Zetlin modules

A \mathfrak{g} -module, V, is called $Gelfand\text{-}Zetlin\ module}$ provided it is a direct sum of non-isomorphic f.d. Γ -modules.

Examples: all f.d. modules, all weight g-modules with f.d. weight

spaces and all generic Gelfand-Zetlin modules are Gelfand-Zetlin modules.

THEOREM (Ovsienko, 1998, preprint, yet to appear) Any character of Γ extends to a simple \mathfrak{g} -module. Moreover, there exists only finitely many of such extensions up to isomorphism.

Problem When the above extension is unique? E.g. this is the case if the corresponding character of Γ occurs in a generic Gelfand-Zetlin module (Drozd-Ovsienko-Futorny).

Realization of highest weight modules

Fix $\mathfrak{m} = (m_1, \ldots, m_n) \in \mathbb{C}^n$, such that $m_i - m_j \not\in \mathbb{Z}_+$, i < j.

Define [l] by $l_{i,j} = m_j$ for all i, j.

Define C([l]) as the set of all [t] satisfying:

- $t_{n,j} = l_{n,j}, j = 1, \ldots, n;$
- $l_{i,j} t_{i,j} \in \mathbb{Z}_+$ for all i, j;
- $t_{i,j} t_{i-1,j} \in \mathbb{Z}_+$ for all i, j.

THEOREM Gelfand-Zetlin formulae define on the vector space W([l]), spanned by C([l]) the structure of a \mathfrak{g} -module. Moreover, W([l]) is a simple Verma module with highest weight \mathfrak{m} .

Remark that this is a precise realization for all simple Verma modules.

Realization of simple dense modules

A \mathfrak{g} -module is called weight if it is diagonalizable w. r. t. a Cartan subalgebra. We fix $\mathfrak{h} = \langle e_{i,i} | i = 1, \ldots, n \rangle$.

A weight \mathfrak{g} -module, V, is called *dense* if its support, i.e. the set of \mathfrak{h} -weights, coincides with a coset of \mathfrak{h}^* modulo $\mathbb{Z}\Delta$, where Δ is the root system of \mathfrak{g} .

Any simple weight \mathfrak{g} -module is either dense or parabolically induced (Fernando-Futorny).

Simple dense modules with f.d. weight spaces exist only for A_n and C_n algebras (Fernando).

All simple dense modules with f.d. weight spaces are recently classified (Mathieu, 2000).

Fix $\mathfrak{m} = (m_1, \ldots, m_n) \in \mathbb{C}^n$, such that $m_i - m_{i+1} \in \mathbb{N}$, $i = 2, \ldots, n-1$, and $x = (x_1, \ldots, x_{n-1}) \in \mathbb{C}^{n-1}$ such that $x_i - m_2 \notin \mathbb{Z}$ for all i.

Let $D(x, \mathfrak{m})$ denote the set of all tableaux [t] satisfying:

- $t_{n,j} = m_j, j = 1, \ldots, n;$
- $t_{i,1} x_i \in \mathbb{Z}, i = 1, \dots, n-1;$
- $l_{i,j} l_{i-1,j} \in \mathbb{Z}_+, i = 3, \dots, n, j = 2, \dots, i;$
- $l_{i-1,j} l_{i,j+1} \in \mathbb{N}, i = 3, \dots, n, j = 2, \dots, i.$

THEOREM Gelfand-Zetlin formulae define on the space $V(x, \mathfrak{m})$, spanned by $D(x, \mathfrak{m})$, the structure of a \mathfrak{g} -module. The module $V(x, \mathfrak{m})$ is simple, dense and has f.d. weight spaces. Moreover, almost all simple dense module with f.d. weight spaces can be realized as $V(x, \mathfrak{m})$ in the sense that all other are given by non-trivial polynomial equalities in the set of parameters.

Quantum deformation

Let q be a non-zero complex non-root of unity. Fix some $h \in \mathbb{C}$ such that $q = \exp(h)$ and for $x \in \mathbb{C}$ put

$$[x]_q = \frac{\exp(hx) - \exp(-hx)}{q - q^{-1}}.$$

 $U_q(\mathfrak{gl}(n,\mathbb{C}))$ is generated by $K_i = \tilde{e}_{i,i}, i = 1,\ldots,n, E_i = \tilde{e}_{i,i+1},$ $F_i = \tilde{e}_{i+1,i}, i = 1,\ldots,n-1$; subject to the following relations:

$$K_{i}K_{i}^{-1} = K_{i}^{-1}K_{i} = 1, \quad K_{i}^{\pm 1}K_{j}^{\pm 1} = K_{j}^{\pm 1}K_{i}^{\pm 1},$$

$$K_{i}E_{j} = q^{\delta_{i,j} - \delta_{i,j+1}}E_{j}K_{i}, \quad K_{i}F_{j} = q^{-\delta_{i,j} + \delta_{i,j+1}}F_{j}K_{i},$$

$$E_{i}F_{j} - F_{j}E_{i} = \delta_{i,j}\frac{K_{i}K_{i+1}^{-1} - K_{i}^{-1}K_{i+1}}{q - q^{-1}},$$

$$[E_{i}, E_{j}] = [F_{i}, F_{j}] = 0, \quad |i - j| \ge 2,$$

$$E_{i}^{2}E_{i\pm 1} - (q + q^{-1})E_{i}E_{i\pm 1}E_{i} + E_{i\pm 1}E_{i}^{2} = 0,$$

$$F_{i}^{2}F_{i\pm 1} - (q + q^{-1})F_{i}F_{i\pm 1}F_{i} + F_{i\pm 1}F_{i}^{2} = 0.$$

Substituting $(t_{i,j} - t_{i',j'})$ with $[t_{i,j} - t_{i',j'}]_q$ in Gelfand-Zetlin formulae we get quantum Gelfand-Zetlin formulae. They tend to the classical ones under $q \to 1$.

THEOREM (Jimbo) Quantum Gelfand-Zetlin formulae define on $V_q(\mathfrak{m}) = V(\mathfrak{m})$ (space of simple f.d. \mathfrak{g} -module) the structure of $U_q(\mathfrak{gl}(n,\mathbb{C}))$ -module, which is a deformation of $V(\mathfrak{m})$.

THEOREM (M.-Turowska) Generic Gelfand-Zetlin modules admit quantum deformation.

THEOREM All simple dense \mathfrak{g} -modules with f.d. weight spaces admit quantum deformation.

THEOREM Certain $\mathfrak{g}l(k,\mathbb{C})-\mathfrak{g}l(n,\mathbb{C})$ Harish-Chandra modules admit quantum deformation.

THEOREM Modules, parabolically induced from simple generic Gelfand-Zetlin modules (certain generalized Verma modules) admit quantum deformation.