ON FINITISTIC DIMENSION OF STRATIFIED ALGEBRAS

Volodymyr Mazorchuk

(Uppsala University)

1. Notation

k — algebraically closed field.

A — finite-dimensional associative k-algebra.

A-mod — category of all finite-dimensional A-modules.

$\{e_1, \ldots, e_n\}$ — a complete set of primitive idempotents.

$L(i), P(i), I(i), i = 1, \ldots, n,$ — the corresponding simple, projective and injective modules.

\[L = \bigoplus_{i=1}^{n} L(i), \quad P = \bigoplus_{i=1}^{n} P(i), \quad I = \bigoplus_{i=1}^{n} I(i). \]
2. (Generalized) tilting module

Definition. $T \in A$-mod is called a (generalized) *tilting* module provided that

1. $\text{Ext}^i_A(T, T) = 0$, $i > 0$;
2. $\text{p.d.}(T) < \infty$;
3. there exists a coresolution $0 \to P \to T_0 \to \cdots \to T_k \to 0$, where $T_i \in \text{Add}(T)$ for all i.

Remark. Minimal k above equals $\text{p.d.}(T)$.

3. Duality

Definition. The algebra A is said to have a (simple preserving) *duality*, if there exists a contravariant exact equivalence on A-mod, which preserves the iso-classes of simple modules.

Example. Any isomorphism $\varphi : A \cong A^{opp}$, such that $\varphi(e_i) = e_i$ for all i, gives rise to a duality.
3. Finitistic dimension

Global dimension of A:

$$\text{gl.d.}(A) = \max_{M \in A\text{-mod}} \text{p.d.}(M).$$

$\mathcal{P}^{<\infty}(A)$ — the full subcategory of $A\text{-mod}$, consisting of all modules of finite projective dimension.

Projectively defined finitistic dimension of A:

$$\text{fin.d.}(A) = \max_{M \in \mathcal{P}^{<\infty}(A)} \text{p.d.}(M).$$

Finitistic dimension conjecture. $\text{fin.d.}(A) < \infty$ for every A.
4. Finitistic dimension algebras with duality and self-dual tilting modules

Lemma. Assume that \(\text{p.d.}(I) < \infty \). Then \(\text{fin.d.}(A) = \text{p.d.}(I) \).

Proof. Let \(M \in \mathcal{P}^{<\infty}(A) \) be such that \(\text{p.d.}(M) = \text{fin.d.}(A) = m \). Choose \(M \hookrightarrow \hat{I} \twoheadrightarrow K \) and apply \(\text{Hom}_A(_, S) \). One gets the exact sequence

\[
\cdots \to \text{Ext}_A^m(\hat{I}, S) \to \text{Ext}_A^m(M, S) \neq 0 \to \text{Ext}_A^{m+1}(K, S) = 0.
\]

Hence \(\text{Ext}_A^m(\hat{I}, S) \neq 0 \) and therefore \(\text{p.d.}(I) = \text{p.d.}(\hat{I}) = m = \text{fin.d.}(A) \). Q.E.D.

Theorem A. [M.-Ovsienko] Assume that

(i) \(A \) has a duality, \(\circ \).

(ii) There is a (generalized) tilting module, \(T \), such that all indecomposable summands of \(T \) are self-dual with respect to \(\circ \).

(iii) \(\text{fin.d.}(A) < \infty \).

Then \(\text{fin.d.}(A) = 2 \cdot \text{p.d.}(T) \)
Proof. Let
\[0 \to P \to T_0 \to \cdots \to T_k \to 0 \] \hspace{1cm} (1)
be a minimal tilting coresolution of \(P \). Remark that \(k = \text{p.d.}(T) \).
Apply \(\circ \) form (i) and use (ii) to obtain a tilting resolution for \(I \):
\[0 \to T_k \to \cdots \to T_0 \to I \to 0. \] \hspace{1cm} (2)
In particular, \(\text{p.d.}(I) < \infty \). Hence Lemma implies that \(\text{fin.d.}(A) \)
equals the maximal \(m \) such that \(\text{Ext}^m_A(I, P) \neq 0 \). We calculate such \(m \) using (1) and (2).

In \(D^b(A) \) we can substitute \(P \) and \(I \) by tilting complexes \(\mathcal{T}_1^\bullet \)
and \(\mathcal{T}_2^\bullet \) obtained from (1) and (2) respectively. Then the extensions
can be calculated as the usual homomorphisms between the shifted complexes up to homotopy.

If \(t > 2k \), we have the following picture for the homomorphisms from \(\mathcal{T}_2^\bullet[-t] \) to \(\mathcal{T}_1^\bullet \):
\[\cdots \to 0 \to 0 \to 0 \to \cdots \to T_k \to \cdots \to g_{k-1} T_0 \to \cdots \]
\[\cdots \to T_0 \to T_k \to 0 \to \cdots \to 0 \to 0 \to \cdots \to 0 \to \cdots \]
Hence \(\text{Ext}^t_A(I, P) = 0 \) for all \(t > 2k \).

If \(t > 2k \), we have the following non-trivial homomorphism:
\[\cdots \to 0 \to 0 \to T_k \to T_{k-1} \to \cdots \to T_0 \to \cdots \]
\[\cdots \to T_0 \to T_{k-1} \to T_k \to 0 \to \cdots \to 0 \to \cdots \]
Minimality of the resolution implies that it is not homotopic to zero, giving a non-trivial extension of degree \(2k \) between \(I \) and \(P \).
\ \textbf{Q.E.D.}
5. Various stratified algebras

For $i = 1, \ldots, n$ define:

- **standard modules** $\Delta(i)$ as the maximal quotient of $P(i)$ such that
 $[\Delta(i) : L(j)] = 0, j > i$;

- **proper standard modules** $\overline{\Delta}(i)$ as the maximal quotient of $\Delta(i)$
 such that $[\overline{\Delta}(i) : L(i)] = 1$;

- **costandard modules** $\nabla(i)$ as the maximal submodule of $I(i)$ such that
 $[\nabla(i) : L(j)] = 0, j > i$;

- **proper costandard modules** $\overline{\nabla}(i)$ as the maximal submodule of $\nabla(i)$
 such that $[\overline{\nabla}(i) : L(i)] = 1$.

Definition. A is called **strongly standardly stratified** provided that for every i
the kernel of $P(i) \rightarrow \Delta(i)$ has a filtration with subquotients $\Delta(j), j > i$.

Definition. A is called **properly stratified** provided that it is strongly
standardly stratified and each $\Delta(i)$ has a filtration with subquotients $\overline{\Delta}(i)$.

Definition. A is called **quasi-hereditary** provided that it is properly
stratified and $\Delta(i) = \overline{\Delta}(i)$ for all i.
6. Application of Theorem A to quasi-hereditary algebras

A — quasi-hereditary with duality.

$\mathcal{F}(\Delta)$ — category of modules having a standard filtration.

$\mathcal{F}(\nabla)$ — category of modules having a costandard filtration.

Fact. $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) = \text{Add}(T)$, where T is a (generalized) tilting module with self-dual indecomposable summands.

Corollary. $\text{gl.dim.}(A) = 2 \cdot \text{p.d.}(T)$.

Corollary. $\text{gl.dim.}(A) = 2 \cdot \dim_{\Delta}(A) = 2 \cdot \text{gl.dim.}(B)$, where $\dim_{\Delta}(A)$ is the Δ-filtration dimension of A, and B is an exact Borel subalgebra of some $A' \simeq_{\text{Morita}} A$.
7. Application of Theorem A to properly stratified algebras

A — properly stratified with duality.

$\mathcal{F}(\Delta), \mathcal{F}(\nabla)$ as above.

$\mathcal{F}(\overline{\Delta})$ — category of modules having a proper standard filtration.

$\mathcal{F}(\overline{\nabla})$ — category of modules having a proper costandard filtration.

Fact. $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) = \text{Add}(T)$, where T is a (generalized) tilting module.

Fact. $\mathcal{F}(\overline{\Delta}) \cap \mathcal{F}(\nabla) = \text{Add}(C)$, where C is a (generalized) cotilting module.

Fact. If $T = C$ then all indecomposable summands of T are self-dual.

Corollary. Assume $T = C$. Then $\text{fin.d.}(A) = 2 \cdot \text{p.d.}(T)$.

Conjecture. [M.-Parker] $\text{fin.d.}(A) = 2 \cdot \text{p.d.}(T)$ for any properly stratified algebra A with duality.
7. New generalized tilting module for strongly stratified algebras

A — strongly stratified.

T — characteristic tilting module for A.

$R = \text{End}_A(T)$ — the Ringel dual of A.

$F = \text{Hom}_A(T, _): A \text{- mod} \rightarrow R \text{- mod}$ — the Ringel duality functor.

Fact. $F : \mathcal{F}(\nabla^{(A)}) \rightarrow \mathcal{F}(\Delta^{(R)})$ is an exact equivalence.

Theorem. [Frisk-M.] Assume that R is properly stratified, then $H = F^{-1}(T^{(R)})$ is a (generalized) tilting module for A.

Corollary. Assume that R is properly stratified. Then

$$\text{fin.d.}(A) = \text{p.d.}(H).$$

Corollary. Assume that R is properly stratified. Then $\mathcal{P}^{<\infty}(A)$ is contravariantly finite.
7. Two-step duality for strongly stratified algebras

A — strongly stratified.

Assume that R is properly stratified.

H — new (two-step) tilting module for A.

Theorem. [Frisk-M.]

1. $B = \text{End}_A(H)^{opp}$ is strongly stratified.
2. The Ringel dual of B is properly stratified.
3. The two-step dual for B is Morita equivalent to A^{opp}.

$G = \text{Hom}_k(\text{Hom}_A(-, H), k) : A-\text{mod} \to B-\text{mod}$ — the two-step duality functor.

Corollary. $G : \mathcal{P}^{<\infty}(A) \to \mathcal{I}^{<\infty}(B)$ is an exact equivalence.
8. Finitistic dimension for strongly stratified algebras

Theorem. [Frisk-M.] Assume that both A and R are properly stratified with duality. Then

$$\text{fin.d.}(A) = 2 \cdot \text{p.d.}(T).$$

Theorem. [Frisk-M.] Assume that A is properly stratified with duality and R is properly stratified. Then

$$\text{fin.d.}(A) = 2 \cdot \text{p.d.}(T^{(R)}).$$