TWISTED GENERALIZED WEYL ALGEBRAS

Volodymyr Mazorchuk

(joint research with Lyudmyla Turowska and Mariya Ponomarenko)

Definition of algebras.

 $k \in \mathbb{N}$, $\mathbb{N}_k = \{1, 2, ..., k\}$, R ring with 1, Z(R) – center of R. $\{\sigma_i \mid 1 \leq i \leq k\}$ pairwise commuting automorphisms of R, $M = (\mu_{i,j})_{i,j \in \mathbb{N}_k}$, $\mu_{i,j} \in Z(R)$ invertible and stable under all σ_i . $0 \neq t_i \in Z(R)$, $i \in \mathbb{N}_k$, such that:

$$t_i t_j = \mu_{i,j} \mu_{j,i} \sigma_i^{-1}(t_j) \sigma_j^{-1}(t_i), \quad i, j \in \mathbb{N}_k, i \neq j.$$

 \mathcal{A} — unital R-algebra generated over R by $X_i, Y_i, i \in \mathbb{N}_k$, with relations

- $X_i r = \sigma_i(r) X_i$ for any $r \in R$, $i \in \mathbb{N}_k$;
- $Y_i r = \sigma_i^{-1}(r) Y_i$ for any $r \in R$, $i \in \mathbb{N}_k$;
- $X_i Y_j = \mu_{i,j} Y_j X_i$ for any $i, j \in \mathbb{N}_k$, $i \neq j$;
- $Y_iX_i = t_i, i \in \mathbb{N}_k$;

• $X_iY_i = \sigma_i(t_i), i \in \mathbb{N}_k$.

 \mathcal{A} is obtained from R, M, $\{\sigma_i\}$ and $\{t_i\}$ by twisted generalized Weyl construction (TGWC). It is \mathbb{Z}^k -graded.

Let R be commutative. The twisted generalized Weyl algebra (TGWA) $\hat{A} = \mathcal{A}(R, \sigma_1, \dots, \sigma_k, t_1, \dots, t_k)$ of rank k is the quotient ring \mathcal{A}/I , where I is the (unique) maximal graded two-sided ideal of \mathcal{A} intersecting R trivially.

 $\mathfrak{M} = max(R)$. For $\mathfrak{m} \in \mathfrak{M}$ and an \mathcal{A} -module ($\hat{\mathcal{A}}$ -module) V set $V_{\mathfrak{m}} = \{v \in V \mid \mathfrak{m}v = 0\}$. An \mathcal{A} -module ($\hat{\mathcal{A}}$ -module), M, will be called weight provided $M = \sum_{\mathfrak{m} \in \mathfrak{M}} M_{\mathfrak{m}}$.

Shapovalov form and weight modules.

R – commutative. There is a unique anti-involution, *, on A such that $(X_i)^* = Y_i$ for any i = 1, 2, ..., n and $r^* = r$ for any $r \in R$.

A — TGWC. $\mathfrak{p}:A\to A_0$ — the graded projection on the zero component.

For $u, v \in A$ put $F^l(u, v) = \mathfrak{p}(u^*v) \in A_0 = R$ and $F^r(u, v) = \mathfrak{p}(uv^*) \in A_0 = R$. We will call F^l the *left Shapovalov form* on A and F^r the *right Shapovalov form* on A.

LEMMA

- 1. $F^l: A \times A \to R$ and $F^r: A \times A \to R$ are R-bilinear form.
- 2. $F^l(xu, v) = F^l(u, x^*v)$ and $F^r(u, vx) = F^r(ux^*, v)$ for all $u, x, v \in A$.
- 3. $F^l(u,v) = F^l(v,u)$ and $F^r(u,v) = F^r(v,u)$ for all $u,v \in A$.

- 4. $F^l(A_g, A_h) = 0$ and $F^r(A_g, A_h) = 0$ for any $g \neq h \in \mathbb{Z}^n$.
- 5. The ideal, generated by the intersection of the kernels of F^l and F^r coincides with the maximal graded ideal of A intersecting R trivially.
- 6. The intersection of the kernels of F^l and F^r coincides with I.
- 7. The kernel of F^l coincides with I (and coincides with the kernel of F^r).

COROLLARY Let A be as above and J be a graded two-sided ideal of A, stable under * and intersecting R trivially. Denote by \tilde{F} the form induced by $F = F^l$ on the quotient $\tilde{A} = A/J$. Then \tilde{A} is isomorphic to the TGWA \hat{A} if and only if \tilde{F} is non-degenerate on \tilde{A} .

Consider \hat{A} as a regular left \hat{A} -module and fix an ideal, \mathfrak{m} , in R. Set $N(\mathfrak{m}) = \{x \in \hat{A} \mid \tilde{F}(x,y) \in \mathfrak{m} \text{ for any } y \in \hat{A}\}.$

THEOREM

- 1. $N(\mathfrak{m})$ is a graded submodule of \hat{A} ;
- 2. $N(\mathfrak{m})_0 = \mathfrak{m};$
- 3. If $\mathfrak{m} \in \mathfrak{M}$ then $M(\mathfrak{m}) = \hat{A}/N(\mathfrak{m})$ is a simple graded \hat{A} -module.
- 4. Up to a shift of grading, all weight simple $(\mathbb{Z}^k$ -) graded \hat{A} modules are exhausted by $\{M(\mathfrak{m})\}$.

Mickelsson (step) algebras

 $(\mathfrak{g},\mathfrak{k})$ — reductive pair of complex f.d. Lie algebras, $\Delta_{\mathfrak{k}} = \Delta_{\mathfrak{k}}^+ \cup \Delta_{\mathfrak{k}}^-$ the root system of \mathfrak{k} w.r.t. \mathfrak{h} . For a \mathfrak{g} -module V, V^+ is the set $\{v \in V \mid X_{\alpha}v = 0 \text{ for all } \alpha \in \Delta_{\mathfrak{k}}^+\}$. For the algebra $\mathfrak{n}_+ = \mathfrak{n}_+(\mathfrak{k})$ set $I_+ = U(\mathfrak{g})\mathfrak{n}_+$ and $V(\mathfrak{g},\mathfrak{k}) = U(\mathfrak{g})/I_+$. Then the *Mickelsson step algebra* $S(\mathfrak{g},\mathfrak{k})$, associated with $(\mathfrak{g},\mathfrak{k})$, is defined as $V(\mathfrak{g},\mathfrak{k})^+$.

A slightly more convenient algebra appears if we invert $U(\mathfrak{h})$. Let $D(\mathfrak{h})$ denote the fraction field of $U(\mathfrak{h})$. Set $U'(\mathfrak{g}) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} D(\mathfrak{h})$, $I'_{+} = U'(\mathfrak{g})\mathfrak{n}_{+}$, $V'(\mathfrak{g}, \mathfrak{k}) = U'(\mathfrak{g})/I'_{+}$ and $Z(\mathfrak{g}, \mathfrak{k}) = V'(\mathfrak{g}, \mathfrak{k})^{+}$.

 $\mathfrak{g}_n = \mathfrak{g}l(n,\mathbb{C}), \ \mathfrak{h}_n \ \text{the subalgebra of diagonal matrices.} \ AZ_n = Z(\mathfrak{g}l(n+1,\mathbb{C}),\mathfrak{g}l(n,\mathbb{C}) \oplus \mathbb{C}e_{n+1,n+1}).$

 AZ_n has the following presentation. It is generated (over the field $D_{n+1} = D(\mathfrak{h}_{n+1})$) by elements z_i , $i \in \{\pm 1, \pm 2, \ldots, \pm n\}$, with relations:

- $z_i z_j = \alpha_{i,j} z_j z_i, i + j \neq 0;$
- $\bullet \ z_i z_{-i} = \sum_{j=1}^n eta_{i,j} z_{-j} z_j + \gamma_i, \ i = 1, 2, \dots, n;$
- $[h_j, z_i] = (\varepsilon_i \varepsilon_{n+1})(h_j)z_i, i = 1, 2, \dots, n, j = 1, 2, \dots, n+1;$
- $[h_j, z_{-i}] = (\varepsilon_{n+1} \varepsilon_i)(h_j)z_{-i}, i = 1, 2, \dots, n, j = 1, 2, \dots, n+1;$

where

$$\alpha_{i,j} = \alpha_{-j,-i} = \frac{\phi_{i,j}^{+}}{\phi_{i,j}}, 1 \leq i < j \leq n; \quad \alpha_{i,j} = 1, \operatorname{sign}(i) \neq \operatorname{sign}(j);$$

$$\beta_{i,j} = \delta_{i}^{-} \gamma_{i,j} \delta_{j}^{+}; \quad \gamma_{i} = \delta_{i}^{-} \phi_{i,n+1}^{-}; \quad \phi_{i,j} = h_{i} - h_{j} + j - i, \quad \phi_{i,j}^{\pm} = \phi_{i,j} \pm 1;$$

$$\gamma_{i,j} = (1 - \phi_{i,j})^{-1}; \quad \delta_{i}^{\pm} = \prod_{k=i+1}^{n} \frac{\phi_{i,k}^{\pm}}{\phi_{i,k}}; \quad \varepsilon_{i}(h_{j}) = \delta_{i,j}, i, j = 1, 2, \dots, n+1.$$

Set $t_i = z_{-i}z_i$ and denote by R the algebra, generated by t_1, \ldots, t_n over the field D_{n+1} . Define σ_i , $i = 1, 2, \ldots, n$, as follows:

$$\sigma_{i}(h_{k}) = h_{k}, k \neq i, n + 1; \quad \sigma_{i}(h_{i}) = h_{i} - 1; \sigma_{i}(h_{n+1}) = h_{n+1} + 1;$$

$$\sigma_{i}(t_{j}) = \frac{\phi_{i,j}^{-}}{\phi_{i,j}^{-} - 1} t_{j}, \quad j < i; \quad \sigma_{i}(t_{j}) = \frac{\phi_{i,j}}{\phi_{i,j}^{-}} t_{j}, \quad j > i;$$

$$\sigma_{i}(t_{i}) = \sum_{k=1}^{n} \beta_{i,k} t_{k} + \gamma_{i}.$$

THEOREM AZ_n is the TGWA associated with R, $\{\sigma_i\}$ and $\{t_i\}$ above (all $\mu_{i,j} = 1$).

The most difficult part for TGWC is to prove that σ_i 's commute.

To go from TGWC to TGWA use the Diamond Lemma and Shapovalov form.

Extended OGZ-algebras

Let r = (k - 1, k, k + 1). If \mathbb{F} is a field, $\mathcal{L} = \mathcal{L}(\mathbb{F}, r) = \mathbb{F}^{3k}$ with elements $[l] = \{l_{i,j} | i = 1, 2, 3; j = 1, \dots, k + 2 - i\}$, called tableaux. \mathcal{L}_0 is the subset of \mathcal{L} that consists of all [l] such that $l_{1,j} = 0, l_{3,j} = 0, l_{2,j} \in \mathbb{Z}$ for all j.

 Λ — rational functions in $\lambda_{i,j}$ for all i, j. $[\mathfrak{l}] \in \mathcal{L}(\Lambda, r)$ defined by $\mathfrak{l}_{i,j} = \lambda_{i,j}$. $M = M([\mathfrak{l}])$ is Λ -v.sp. with the basis $v_{[t]}$, $[t] \in [\mathfrak{l}] + \mathcal{L}_0$.

For $[t] \in [\mathfrak{l}] + \mathcal{L}_0$ and $1 \leq j \leq k$ let

$$a_{j}^{\pm}([t]) = \mp rac{\prod\limits_{m}(t_{2\pm1,m}-t_{2,j})}{\prod\limits_{m
eq j}(t_{2,m}-t_{2,j})},$$

define Λ -linear operators $X_j^{\pm}: M \to M, X_j^{\pm}v_{[t]} = a_j^{\pm}([t])v_{[t]\pm[\delta^{2,j}]},$ and $H_{i,j}: M \to M, H_{i,j}v_{[t]} = t_{i,j}v_{[t]}, i = 1, 2, 3.$

Let \mathcal{Q} be the localization of $\mathbb{C}[H_{i,j}, 1 \leq i \leq n, 1 \leq j \leq r_i]$ w.r.t. the multiplicative set, generated by $H_{2,j} - H_{2,l} + m$ for all $j \neq l$ and $m \in \mathbb{Z}$. The extended orthogonal Gelfand-Zetlin algebra \mathcal{U} is the \mathbb{C} -algebra, generated over \mathbb{C} by \mathcal{Q} and $X_{i,j}^{\pm}$, $2 \leq i \leq n-1$, $1 \leq j \leq r_i$.

$$T_{i} = -\frac{\prod_{j=1}^{k+1} (H_{3,j} - H_{2,i}) \prod_{j=1}^{k-1} (H_{1,j} - H_{2,i} - 1)}{\prod_{j \neq i} (H_{2,j} - H_{2,i}) \prod_{j \neq i} (H_{2,j} - H_{2,i} - 1)},$$

$$\sigma_{i}(H_{2,i}) = H_{2,i} - 1; \quad \sigma_{i}(H_{k,l}) = H_{k,l}, \quad k \neq 2 \text{ or } l \neq i.$$

THEOREM \mathcal{U} is the TGWA associated with \mathcal{Q} , $\{\sigma_i\}$ and $\{T_i\}$.