Examples.

If k = 1 then TGWA is almost the same as GWA. Typical examples:

- **1.** $U(\mathfrak{sl}(2,\mathbb{C}))$. $R = \mathbb{C}[T,H]$; t = T; $\sigma(H) = H 1$, $\sigma(T) = T + H$.
- **2.** $U_q(\mathfrak{sl}(2,\mathbb{C}))$. Fix $0 \neq q \in \mathbb{C}$. $R = \mathbb{C}[T,k,k^{-1}]; t = T;$ $\sigma(k) = q^{-1}k, \ \sigma(T) = T + \frac{k^2 k^{-2}}{q q^{-1}}.$

If k > 1 then most of GWA are still TGWA. Typical example:

- **3.** The Weyl algebra A_n . k = n; $R = \mathbb{C}[H_1, \ldots, H_n]$; $t_i = H_i$, $i = 1, \ldots, n$; $\sigma_i(H_j) = H_j \delta_{i,j}$.
- If k > 1 there are TGWA which are not GWA in natural presentation. The reason is that $\{X_i\}$ ($\{Y_i\}$) do not commute in general. Or even X's do not commute with Y's if $\mu_{i,j} \neq 1$.
- **4.** k = 2; $R = \mathbb{C}[H]$; $t_1 = H$, $t_2 = H + 1$; $\sigma_1(H) = H + 1$, $\sigma_2(H) = H 1$; $\mu_{i,j} = 1$.
- **5.** Orthogonal Gelfand-Zetlin algebras. Mickelsson step algebras. (later in the talk)