TWISTING, COMPLETING AND APPROXIMATING CATEGORY \mathcal{O}

Volodymyr Mazorchuk

(Uppsala University)

1. Category \mathcal{O}

\mathfrak{g} — simple finite-dimensional Lie algebra over \mathbb{C}

$U(\mathfrak{g})$ — the universal enveloping algebra of \mathfrak{g}

$Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

$\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — fixed triangular decomposition of \mathfrak{g}

Definition: (BGG) Category \mathcal{O} is the full subcategory in \mathfrak{g}-mod that consists of all modules, which are

- finitely generated;
- \mathfrak{h}-diagonalizable;
- locally $U(\mathfrak{n}_+)$-finite.
With respect to the action of $Z(\mathfrak{g})$ the category \mathcal{O} decomposes:

$$\mathcal{O} = \bigoplus_{\chi \in Z(\mathfrak{g})^*} \mathcal{O}_\chi.$$

Every \mathcal{O}_χ is equivalent to the module category of a finite-dimensional, associative, quasi-hereditary algebra.

Simple modules in \mathcal{O}_χ are indexed (sometimes non-bijectively) by the elements of the Weyl group W.

Example: Indecomposable modules in the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:

- $L(\lambda)$:

 ![Diagram for L(\lambda)]

- $M(\lambda)$:

 ![Diagram for M(\lambda)]

- $M(s_\alpha \cdot \lambda)$:

 ![Diagram for M(s_\alpha \cdot \lambda)]

- $M(\lambda)^*$:

 ![Diagram for M(\lambda)^*]

- $P(s_\alpha \cdot \lambda)$:

 ![Diagram for P(s_\alpha \cdot \lambda)]
2. Twisting functors on \mathcal{O}

Let α be a simple root and $X_{-\alpha}$ be a non-zero root vector.

Let U_α denote the (Ore) localization of (\mathfrak{g}) with respect to
\[\{X_{-\alpha}^l : l \geq 0\}. \]

$B_\alpha = U_\alpha / U(\mathfrak{g})$ is the twisting $U(\mathfrak{g})$-bimodule (Arkhipov).

Let Φ_α be the inner automorphism of \mathfrak{g}, corresponding to α.

Definition: (Arkhipov) The twisting functor $T_\alpha : \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the functor $\Phi_\alpha\left(B_\alpha \otimes_{U(\mathfrak{g})} - \right)$.

T_α preserves all integral blocks of \mathcal{O}.

T_α is right exact.

Theorem. (Arkhipov?, Andersen?, Andersen-Lauritzen?, Khomenko-M.) Functors T_α, α simple, (weakly) satisfy braid relations on the integral blocks of \mathcal{O}.
Example: Action of T_α on the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

\[
\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

T_α
3. Enright-Deodhar’s completion functor on \mathcal{O}

Let α and U_α be as above.

Definition: The Enright-Deodhar’s completion functor $E_\alpha : \mathfrak{g}\text{-mod} \rightarrow \mathfrak{g}\text{-mod}$ is defined as the composition of the following functors:

1. $U_\alpha \otimes U(\mathfrak{g})$;
2. restriction to $U(\mathfrak{g})$;
3. taking \mathfrak{g}_α-locally finite part.

E_α is left exact and idempotent.

Example: Action of E_α on the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:
4. Enright-Joseph’s completion functor on \mathcal{O}

For $M, N \in U(\mathfrak{g})$-mod denote by $\mathcal{L}(M, N)$ the space of all locally ad-\mathfrak{g}-finite linear maps from M to N.

$M(\lambda)$ is the Verma module with highest weight $\lambda \in \mathfrak{h}^*$.

Definition: The Enright-Joseph’s completion functor $J_\alpha : \mathfrak{g}$-mod $\to \mathfrak{g}$-mod is defined as the functor

$$J_\alpha = \mathcal{L}(M(s_\alpha \cdot \lambda), -) \otimes_{U(\mathfrak{g})} M(\lambda),$$

where $M(\lambda)$ is the dominant Verma module in \mathcal{O}_λ.

J_α is left exact and $J_\alpha^3 \cong J_\alpha^2$.

Example: Action of J_α on the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:
5. **Approximation functor**

\[A \] — finite-dimensional associative algebra.

\[\Upsilon \] — a set of primitive pairwise orthogonal idempotents.

\[P(\Upsilon), I(\Upsilon) \] — the corresponding projective and injective modules respectively.

Definition: (Auslander?) The approximation functor \(c_\Upsilon : A\text{-mod} \to A\text{-mod} \) is defined as

\[
c_\Upsilon = \text{Hom}_{\text{End}_A(P(\Upsilon))}(\text{Hom}_A(P(\Upsilon), A), \text{Hom}_A(P(\Upsilon), _)).\]

\(c_\Upsilon \) is left exact and idempotent.

\(c_\Upsilon \) can be viewed as the composition of the following two procedures. Start with \(M \in A\text{-mod}. \)

1. Take the maximal possible image \(M_1 \) of \(M \) in some \(I(\Upsilon)^n \).

2. Make the maximal possible coextension of \(M_1 \) inside \(I(\Upsilon)^n \) with non-\(\Upsilon \) simples.

For a simple root \(\alpha \) and a block \(O_\chi \) we let \(\Upsilon \) denote the set of \(\alpha \)-antidominant simples.
Example: Action of c_Y on the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:

The coapproximation functor \tilde{c}_Y is defined dually.

Theorem. (Auslander?) The functor \tilde{c}_Y is left adjoint to c_Y.
6. Functor of partial approximation

$A, \Upsilon, P(\Upsilon), I(\Upsilon)$ — as above.

I — injective generator of A-mod.

Definition: (Khomenko-M.) The functor of partial approximation $\mathfrak{d}_\Upsilon : A$-mod $\rightarrow A$-mod is defined as the composition of the following three procedures. Start with $M \in A$-mod.

1. Take a minimal injective envelope $M \subset I_M$ of M.
2. Make the maximal possible coextension of M inside I_M with non-Υ simples obtaining M_1.
3. Take the maximal possible image of M_1 in some $I(\Upsilon)^n$.

\mathfrak{d}_Υ is left exact and $\mathfrak{d}_\Upsilon^3 = \mathfrak{d}_\Upsilon^2$.

The coapproximation functor $\tilde{\mathfrak{d}}_\Upsilon$ is defined dually.

Theorem. (Khomenko-M.) The functor $\tilde{\mathfrak{d}}_\Upsilon$ is left adjoint to \mathfrak{d}_Υ.

For a simple root α and a block \mathcal{O}_χ we let Υ denote the set of α-antidominant simples.
Example: Action of c_T on the regular block of \mathcal{O} for $\mathfrak{sl}(2, \mathbb{C})$:
7. Relations between these functors (Khomenko-M.)

Let \mathcal{O}_χ be integral and regular.

Theorem: The functors E_α and c_v are isomorphic.

Theorem: The functors J_α and d_v are isomorphic.

Theorem: There is a non-trivial natural transformation from T_α to the identity functor.

Theorem: The functors T_α and \tilde{d}_v are isomorphic.

Corollary: The functor T_α is left adjoint to the functor J_α.

Corollary: The functor T_α is left adjoint to the functor $\star \circ T_\alpha \circ \star$.

Corollary: The functor J_α is left adjoint to the functor $\star \circ J_\alpha \circ \star$.

Corollary: (Joseph) The functors J_α, α simple, satisfy braid relations.

Corollary: (Deodhar, Bouaziz) The functors E_α, α simple, satisfy braid relations on the full subcategory of \mathcal{O}_χ, which consists of all modules, torsion free with respect to all $g_{-\beta}$, β positive.
8. T_α and the Kazhdan-Lusztig conjecture

Let \mathcal{O}_χ be integral and regular.

Let $L(\lambda) \in \mathcal{O}_\chi$ be a simple module such that $T_\alpha(L(\lambda)) \neq 0$ (that is λ is α-antidominant).

Theorem: (Andersen-Stroppel) The Kazhdan-Lusztig conjecture is equivalent to the following statement: The kernel of the natural morphism $T_\alpha(L(\lambda)) \rightarrow L(\lambda)$ is semi-simple for all α and λ as above.