2-representations of finitary 2-categories

(joint work with Vanessa Miemietz)

Volodymyr Mazorchuk
(Uppsala University)

Category Theoretic Methods in Representation Theory
October 16, 2011, Ottawa, Canada
2-categories

Note:
All categories in this talk are assumed to be locally small (or small if necessary).

Definition:
A 2-category is a category enriched over the monoidal category Cat of small categories.
That is:
- A 2-category consists of:
 ▶ a class (or set) C of objects;
 ▶ for every $i, j \in C$ a small category $C(i, j)$ of morphisms from i to j (objects in $C(i, j)$ are called 1-morphisms of C and morphisms in $C(i, j)$ are called 2-morphisms of C);
 ▶ functorial composition $C(j, k) \times C(i, j) \to C(i, k)$;
 ▶ identity 1-morphisms 1_i for every $i \in C$;
 ▶ natural (strict) axioms;

Volodymyr Mazorchuk
(Uppsala University)

2-representations of 2-categories
2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).
2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category \(\text{Cat} \) of small categories.
Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category Cat of small categories.

That is: A 2-category consists of:
2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category Cat of small categories.

That is: A 2-category consists of:

- a class (or set) \mathcal{C} of objects;
Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category Cat of small categories.

That is: A 2-category consists of:

- a class (or set) \mathcal{C} of objects;
- for every $i, j \in \mathcal{C}$ a small category $\mathcal{C}(i, j)$ of morphisms from i to j (objects in $\mathcal{C}(i, j)$ are called 1-morphisms of \mathcal{C} and morphisms in $\mathcal{C}(i, j)$ are called 2-morphisms of \mathcal{C});
2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category \(\text{Cat} \) of small categories.

That is: A 2-category consists of:

- a class (or set) \(\mathcal{C} \) of objects;
- for every \(i, j \in \mathcal{C} \) a small category \(\mathcal{C}(i, j) \) of morphisms from \(i \) to \(j \) (objects in \(\mathcal{C}(i, j) \) are called 1-morphisms of \(\mathcal{C} \) and morphisms in \(\mathcal{C}(i, j) \) are called 2-morphisms of \(\mathcal{C} \));
- functorial composition \(\mathcal{C}(j, k) \times \mathcal{C}(i, j) \to \mathcal{C}(i, k) \);
2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category \(\text{Cat} \) of small categories.

That is: A 2-category consists of:

- a class (or set) \(\mathcal{C} \) of objects;
- for every \(i, j \in \mathcal{C} \) a small category \(\mathcal{C}(i, j) \) of morphisms from \(i \) to \(j \) (objects in \(\mathcal{C}(i, j) \) are called 1-\textit{morphisms} of \(\mathcal{C} \) and morphisms in \(\mathcal{C}(i, j) \) are called 2-\textit{morphisms} of \(\mathcal{C} \));
- functorial composition \(\mathcal{C}(j, k) \times \mathcal{C}(i, j) \to \mathcal{C}(i, k) \);
- identity 1-morphisms \(1_i \) for every \(i \in \mathcal{C} \);
Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category \(\text{Cat} \) of small categories.

That is: A 2-category consists of:

- a class (or set) \(C \) of objects;
- for every \(i, j \in C \) a small category \(C(i, j) \) of morphisms from \(i \) to \(j \) (objects in \(C(i, j) \) are called 1-morphisms of \(C \) and morphisms in \(C(i, j) \) are called 2-morphisms of \(C \));
- functorial composition \(C(j, k) \times C(i, j) \to C(i, k) \);
- identity 1-morphisms \(1_i \) for every \(i \in C \);
- natural (strict) axioms;
General examples of 2-categories
General examples of 2-categories

- The category \mathbf{Cat} of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
General examples of 2-categories

- The category \textbf{Cat} of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

- for k a field, the category \mathcal{A}_k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);
General examples of 2-categories

- The category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

- for k a field, the category \mathcal{A}_k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);

- the full subcategory \mathcal{A}_k^f of \mathcal{A}_k consisting of small fully additive k-linear categories with finitely many indecomposable objects up to isomorphism;
General examples of 2-categories

- The category \textbf{Cat} of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

- for k a field, the category A_k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);

- the full subcategory A_k^f of A_k consisting of small fully additive k-linear categories with finitely many indecomposable objects up to isomorphism;

- the category R_k of small categories equivalent to module categories of finite-dimensional associative k-algebras;
2-category \mathcal{P} of Soergel bimodules
2-category \mathcal{S} of Soergel bimodules

\[\mathcal{C} = \mathcal{C}_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n) \] – the coinvariant algebra of S_n

I_n – the set of homogeneous (S_n) symmetric polynomials of positive degree;
2-category \mathcal{S} of Soergel bimodules

$\mathcal{C} = \mathcal{C}_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n)$ – the coinvariant algebra of S_n

I_n – the set of homogeneous (S_n)-symmetric polynomials of positive degree;

for s – simple reflection \mathcal{C}^s is the subalgebra of s-invariants in \mathcal{C}
2-category \mathcal{S} of Soergel bimodules

$C = C_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n)$ – the coinvariant algebra of S_n

I_n – the set of homogeneous (S_n-) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set $\hat{B}_w := C \otimes_{C^{s_1}} C \otimes_{C^{s_2}} \cdots \otimes_{C^{s_k}} C$
2-category \mathcal{S} of Soergel bimodules

$\mathcal{C} = \mathcal{C}_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n)$ – the coinvariant algebra of S_n

I_n – the set of homogeneous (S_n-) symmetric polynomials of positive degree;

for s – simple reflection \mathcal{C}^s is the subalgebra of s-invariants in \mathcal{C}

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set $\hat{B}_w := \mathcal{C} \otimes_{\mathcal{C}^{s_1}} \mathcal{C} \otimes_{\mathcal{C}^{s_2}} \cdots \otimes_{\mathcal{C}^{s_k}} \mathcal{C}$

define by induction on k the **Soergel \mathcal{C}-bimodule** B_w as follows:

$B_e = \mathcal{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined;
2-category \mathcal{S} of Soergel bimodules

Let $\mathcal{C} = \mathcal{C}_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n)$ be the coinvariant algebra of S_n where I_n is the set of homogeneous (S_n)-symmetric polynomials of positive degree.

For s a simple reflection, \mathcal{C}^s is the subalgebra of s-invariants in \mathcal{C}.

For every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$ and set $\hat{B}_w := \mathcal{C} \otimes_{\mathcal{C}^s_1} \mathcal{C} \otimes_{\mathcal{C}^s_2} \cdots \otimes_{\mathcal{C}^s_k} \mathcal{C}$.

Define by induction on k the **Soergel \mathcal{C}-bimodule** B_w as follows: $B_e = \mathcal{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined.

$\mathcal{S} = \mathcal{S}_n$ has one object \ast identified with \mathcal{C}-mods.
2-category \mathcal{S} of Soergel bimodules

$\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \ldots, x_n]/(l_n) –$ the coinvariant algebra of S_n

$l_n –$ the set of homogeneous (S_n-) symmetric polynomials of positive degree;

for $s –$ simple reflection \mathbf{C}^s is the subalgebra of s-invariants in \mathbf{C}

for every $w \in S_n$ fix a reduced decomposition $w = s_1s_2 \cdots s_k$

and set $\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$

define by induction on k the Soergel \mathbf{C}-bimodule B_w as follows:
$B_e = \mathbf{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined;

$\mathcal{S} = \mathcal{S}_n$ has one object $*$ identified with \mathbf{C}-mods;

1-morphisms are endofunctors of \mathbf{C}-mods isomorphic to tensor products with Soergel bimodules;
2-category \mathcal{S} of Soergel bimodules

$\mathcal{S}_n = \mathbb{C}[x_1, \ldots, x_n]/(I_n) -$ the coinvariant algebra of S_n

I_n – the set of homogeneous (S_n-) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set $\hat{B}_w := C \otimes_{C^{s_1}} C \otimes_{C^{s_2}} \cdots \otimes_{C^{s_k}} C$

define by induction on k the **Soergel C-bimodule** B_w as follows:

$B_e = C$ and B_w as the unique direct summand of \hat{B}_w not yet defined;

$\mathcal{S} = \mathcal{S}_n$ has one object $*$ identified with C-mods;

1-morphisms are endofunctors of C-mods isomorphic to tensor products with Soergel bimodules;

2-morphisms are natural transformations;
2-category \mathcal{C}_A
2-category \mathcal{C}_A

$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$$

A_i-connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic
2-category \mathcal{C}_A

$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$$

A_i- connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic

\mathcal{C} has objects $1, \ldots, k$, where i is identified with A_i-mods
2-category \mathcal{C}_A

$A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$

A_i-connected non-simple basic finite dimensional \(\mathbb{k} \)-algebra; pairwise non-isomorphic

\mathcal{C} has objects 1, \ldots, \(k \), where \(i \) is identified with A_i-mods

1-morphisms are functors isomorphic to identities (when applicable) or **projective functors** $A_i e \otimes_\mathbb{k} f A_j$, e, f – idempotents
2-category \mathcal{C}_A

\[A = A_1 \oplus A_2 \oplus \cdots \oplus A_k \]

A_i- connected non-simple basic finite dimensional \mathbb{k}-algebra; pairwise non-isomorphic

\mathcal{C} has objects $1, \ldots, k$, where i is identified with A_i-mods

1-morphisms are functors isomorphic to identities (when applicable) or \textbf{projective functors} $A_i e \otimes_{\mathbb{k}} f A_j$, e, f – idempotents

2-morphisms are natural transformations
2-representations

Definition. A 2-representation of a 2-category C is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category. 2-representations of C (into a fixed category) together with 2-natural transformations and modifications form a 2-category. For a k-linear 2-category C we have:

- additive representations $C\rightarrow \text{mod}_{A}$ into A
- finitary representations $C\rightarrow \text{afmod}_{A}$ into A_{f}
- abelian representations $C\rightarrow \text{mod}_{R}$ into R

Example. The 2-category CA was defined via its defining representation.
Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category.
Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category.

2-representations of \mathcal{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.
2-representations

Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category.

2-representations of \mathcal{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a \mathbb{k}-linear 2-category \mathcal{C} we have:
Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category. 2-representations of \mathcal{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category \mathcal{C} we have:

- additive representations \mathcal{C}-amod into \mathcal{A}_k
2-representations

Definition. A 2-representation of a 2-category \(\mathcal{C} \) is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category.

2-representations of \(\mathcal{C} \) (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a \(\mathbb{k} \)-linear 2-category \(\mathcal{C} \) we have:

- **additive** representations \(\mathcal{C} \text{-amod into } \mathcal{A}_\mathbb{k} \)
- **finitary** representations \(\mathcal{C} \text{-afmod into } \mathcal{A}_\mathbb{k}^f \)
2-representations

Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category. 2-representations of \mathcal{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category \mathcal{C} we have:

- **additive** representations $\mathcal{C}\text{-amod}$ into \mathcal{A}_k
- **finitary** representations $\mathcal{C}\text{-afmod}$ into \mathcal{A}_k^f
- **abelian** representations $\mathcal{C}\text{-mod}$ into \mathcal{R}_k
2-representations

Definition. A 2-representation of a 2-category \mathcal{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some “classical” 2-category.

2-representations of \mathcal{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category \mathcal{C} we have:

- **additive** representations $\mathcal{C}\text{-amod}$ into \mathbb{A}_k
- **finitary** representations $\mathcal{C}\text{-afmod}$ into \mathbb{A}_k^f
- **abelian** representations $\mathcal{C}\text{-mod}$ into \mathbb{R}_k

Example. The 2-category \mathcal{C}_A was defined via its defining representation.
Fiat categories

Definition. A 2-category C is called fiat (initiary - involution - adjunction - two category) provided that the following conditions are satisfied:

- C has finitely many objects;
- each $C(i, j) \in A_k$;
- composition is biadditive and k-linear;
- all k-spaces of 2-morphisms are finite dimensional;
- all 1_i are indecomposable;
- C has a weak involution *;
- C has adjunction morphisms $F \circ F^* \to 1_i$ and $1_j \to F^* \circ F$.

Examples. S is fiat; C_A is fiat if and only if A is self-injective and weakly symmetric (i.e. the top and the socle of each indecomposable projective are isomorphic).
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

1. \mathcal{C} has finitely many objects;
2. Each $\mathcal{C}(i, j) \in A$ is fiat;
3. Composition is biadditive and k-linear;
4. All k-spaces of 2-morphisms are finite dimensional;
5. All 1_i are indecomposable;
6. \mathcal{C} has a weak involution *;
7. \mathcal{C} has adjunction morphisms $F \circ F^* \to 1_i$ and $1_j \to F^* \circ F$.

Examples. S is fiat; $\mathcal{C}A$ is fiat if and only if A is self-injective and weakly symmetric (i.e. the top and the socle of each indecomposable projective are isomorphic).
Fiat categories

Definition. A 2-category \mathcal{C} is called fiat (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
- composition is biadditive and \mathcal{k}-linear;
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (**f**initary - **i**nvolution - **a**djunction - **t**wo category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
- composition is biadditive and k-linear;
- all k-spaces of 2-morphisms are finite dimensional;
Fiat categories

Definition. A 2-category \mathcal{C} is called fiat (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
- composition is biadditive and k-linear;
- all k-spaces of 2-morphisms are finite dimensional;
- all 1_i are indecomposable;
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
- composition is biadditive and k-linear;
- all k-spaces of 2-morphisms are finite dimensional;
- all $\mathbb{1}_i$ are indecomposable;
- \mathcal{C} has a weak involution $*$;
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_K$;
- composition is biadditive and K-linear;
- all K-spaces of 2-morphisms are finite dimensional;
- all 1_i are indecomposable;
- \mathcal{C} has a weak involution *;
- \mathcal{C} has adjunction morphisms $F \circ F^* \to 1_i$ and $1_j \to F^* \circ F$.

Examples. S is fiat; $\mathcal{C}A$ is fiat if and only if A is self-injective and weakly symmetric (i.e. the top and the socle of each indecomposable projective are isomorphic).
Fiat categories

Definition. A 2-category \mathcal{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- \mathcal{C} has finitely many objects;
- each $\mathcal{C}(i, j) \in \mathcal{A}_k$;
- composition is biadditive and k-linear;
- all k-spaces of 2-morphisms are finite dimensional;
- all 1_i are indecomposable;
- \mathcal{C} has a weak involution $*$;
- \mathcal{C} has adjunction morphisms $F \circ F^* \to 1_i$ and $1_j \to F^* \circ F$.

Examples. \mathcal{I} is fiat; \mathcal{C}_A is fiat if and only if A is self-injective and weakly symmetric (i.e. the top and the socle of each indecomposable projective are isomorphic).
Principal 2-representations
Principal 2-representations

from now on: \(\mathcal{C} \) is a fiat category
from now on: \mathcal{C} is a fiat category

Definition. For $i \in \mathcal{C}$ the corresponding **principal** 2-representation \mathbb{P}_i of \mathcal{C} is defined as the 2-functor

$$\mathcal{C}(i, -) : \mathcal{C} \to \mathcal{A}_f^f.$$
from now on: \mathcal{C} is a fiat category

Definition. For $i \in \mathcal{C}$ the corresponding **principal** 2-representation \mathbb{P}_i of \mathcal{C} is defined as the 2-functor

$$\mathcal{C}(i, -) : \mathcal{C} \to \mathcal{A}_k^f.$$

Yoneda lemma. For any $M \in \mathcal{C}$-amod we have

$$\text{Hom}_{\mathcal{C}}(\mathbb{P}_i, M) = M(i).$$
from now on: \mathcal{C} is a fiat category

Definition. For $i \in \mathcal{C}$ the corresponding **principal** 2-representation \mathcal{P}_i of \mathcal{C} is defined as the 2-functor

$$\mathcal{C}(i, -) : \mathcal{C} \to \mathcal{A}_k^f.$$

Yoneda lemma. For any $M \in \mathcal{C}$-amod we have

$$\text{Hom}_{\mathcal{C}}(\mathcal{P}_i, M) = M(i).$$
Abelianization

Definition. The **abelianization** 2-functor \(\tilde{\cdot} : \mathcal{C}\text{-afmod} \to \mathcal{C}\text{-amod} \) is defined as follows:
Abelianization

Definition. The abelianization 2-functor \(\tilde{\cdot} : \mathcal{C}_{\text{afmod}} \to \mathcal{C}_{\text{amod}} \) is defined as follows:

given \(M \in \mathcal{C}_{\text{afmod}} \) and \(i \in \mathcal{C} \) the category \(\tilde{M}(i) \) has objects
Abelianization

Definition. The abelianization 2-functor \(\bar{\cdot} : \mathcal{C}\text{-afmod} \to \mathcal{C}\text{-amod} \) is defined as follows:

given \(M \in \mathcal{C}\text{-afmod} \) and \(i \in \mathcal{C} \) the category \(\overline{M}(i) \) has objects

\[X \xrightarrow{\alpha} Y, \quad X, Y \in M(i), \quad \alpha : X \to Y; \]
Definition. The abelianization 2-functor $\bar{\cdot} : \mathcal{C}\text{-afmod} \to \mathcal{C}\text{-amod}$ is defined as follows:

Given $M \in \mathcal{C}\text{-afmod}$ and $i \in \mathcal{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y,$$

$$X, Y \in M(i), \quad \alpha : X \to Y;$$

and morphisms

$$X \xrightarrow{\alpha} Y \quad \text{modulo} \quad X' \xrightarrow{\alpha'} Y'.$$
Abelianization

Definition. The abelianization 2-functor \(\overline{\cdot} : \mathcal{C} \text{-afmod} \to \mathcal{C} \text{-amod} \) is defined as follows:

Given \(M \in \mathcal{C} \text{-afmod} \) and \(i \in \mathcal{C} \), the category \(\overline{M}(i) \) has objects \(X, Y \in M(i), \; \alpha : X \to Y \); and morphisms

\[
\begin{array}{ccc}
X & \xrightarrow{\alpha} & Y \\
\downarrow{\beta} & & \downarrow{\gamma} \\
X' & \xrightarrow{\alpha'} & Y'
\end{array}
\]

and morphisms modulo

\[
\begin{array}{ccc}
X & \xrightarrow{\alpha} & Y \\
\downarrow{\beta} & & \downarrow{\gamma} \\
X' & \xrightarrow{\alpha'} & Y'
\end{array}
\]

The 2-action of \(\mathcal{C} \) is defined componentwise.
Abelianization

Definition. The abelianization $\bar{\cdot} : \mathcal{C}\text{-afmod} \to \mathcal{C}\text{-amod}$ is defined as follows:

given $M \in \mathcal{C}\text{-afmod}$ and $i \in \mathcal{C}$ the category $\overline{M}(i)$ has objects

$$X \overset{\alpha}{\rightarrow} Y, \quad X, Y \in M(i), \quad \alpha : X \to Y;$$

and morphisms

the 2-action of \mathcal{C} is defined componentwise
extends to a 2-functor componentwise
Multisemigroups

Definition. A **multisemigroup** is a pair \((S, \diamond)\), where \(S\) is a set and \(\diamond : S \times S \rightarrow 2^S\) is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]
Multisemigroups

Definition. A multisemigroup is a pair \((S, \diamond)\), where \(S\) is a set and \(\diamond: S \times S \to 2^S\) is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]

Example 1. Any semigroup is a multisemigroup.
Multisemigroups

Definition. A multisemigroup is a pair \((S, \diamond)\), where \(S\) is a set and \(\diamond : S \times S \rightarrow 2^S\) is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]

Example 1. Any semigroup is a multisemigroup.

Example 2. \((\mathbb{Z}_+, \diamond)\), where \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\}\) and

\[
m \diamond n = \{i : |m - n| \leq i \leq m + n; \quad i \equiv m + n \mod 2\}.
\]
Multisemigroups

Definition. A **multisemigroup** is a pair \((S, \diamond)\), where \(S\) is a set and \(\diamond : S \times S \to 2^S\) is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]

Example 1. Any semigroup is a multisemigroup.

Example 2. \((\mathbb{Z}_+, \diamond)\), where \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\}\) and

\[
m \diamond n = \{i : |m - n| \leq i \leq m + n; \quad i \equiv m + n \mod 2\}.
\]

Green’s relations (Kazhdan-Lusztig cells):

- \(a \sim_L b\) iff \(S \diamond a = S \diamond b\);
Multisemigroups

Definition. A **multisemigroup** is a pair \((S, \diamond)\), where \(S\) is a set and \(\diamond : S \times S \to 2^S\) is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]

Example 1. Any semigroup is a multisemigroup.

Example 2. \((\mathbb{Z}_+, \diamond)\), where \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\}\) and

\[
m \diamond n = \{i : |m - n| \leq i \leq m + n; \quad i \equiv m + n \mod 2\}.
\]

Green’s relations (Kazhdan-Lusztig cells):

- \(a \sim_L b\) iff \(S \diamond a = S \diamond b\);
- \(a \sim_R b\) iff \(a \diamond S = b \diamond S\);
Definition. A **multisemigroup** is a pair \((S, \diamond)\), where \(S\) is a set and
\[\diamond : S \times S \to 2^S\] is associative in the sense

\[
\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \quad \text{for all } a, b, c \in S
\]

Example 1. Any semigroup is a multisemigroup.

Example 2. \((\mathbb{Z}_+, \diamond)\), where \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\}\) and

\[
m \diamond n = \{i : |m - n| \leq i \leq m + n; \quad i \equiv m + n \mod 2\}.
\]

Green’s relations (Kazhdan-Lusztig cells):

- \(a \sim_L b\) iff \(S \diamond a = S \diamond b\);
- \(a \sim_R b\) iff \(a \diamond S = b \diamond S\);
- \(a \sim_J b\) iff \(S \diamond a \diamond S = S \diamond b \diamond S\)
Fiat categories, principal 2-representations and abelianization

Multisemigroup of a fiat category

F, G are composable indecomposable 1-morphisms in \mathcal{C}, then

$$F \circ G \cong \sum_{H \text{ indec.}} m^H_{F,G} H.$$
F, G are composable indecomposable 1-morphisms in \(\mathcal{C} \), then

\[
F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^{H} H.
\]

Definition. The multisemigroup \((S(\mathcal{C}), \diamond)\) of a fiat category \(\mathcal{C} \) is defined as follows: \(S(\mathcal{C}) \) is the set of isomorphism classes of 1-morphisms in \(\mathcal{C} \) (including 0),

\[
[F] \diamond [G] = \begin{cases}
[H]: m_{F,G}^{H} \neq 0, & F \circ G \text{ defined and } \neq 0; \\
0, & \text{else}.
\end{cases}
\]
Multisemigroup of a fiat category

F, G are composable indecomposable 1-morphisms in C, then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

Definition. The multisemigroup $(S(C), \diamond)$ of a fiat category C is defined as follows: $S(C)$ is the set of isomorphism classes of 1-morphisms in C (including 0),

$$[F] \diamond [G] = \begin{cases}
[H]: m_{F,G}^H \neq 0, & F \circ G \text{ defined and } \neq 0; \\
0, & \text{else.}
\end{cases}$$

Sometimes $S(C)' := S(C) \setminus \{0\}$ is closed with respect to \diamond.

Volodymyr Mazorchuk (Uppsala University)
Multisemigroup of a fiat category

\(F, G \) are composable indecomposable 1-morphisms in \(\mathcal{C} \), then
\[
F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.
\]

Definition. The multisemigroup \((S(\mathcal{C}), \diamond)\) of a fiat category \(\mathcal{C} \) is defined as follows: \(S(\mathcal{C}) \) is the set of isomorphism classes of 1-morphisms in \(\mathcal{C} \) (including 0),
\[
[F] \diamond [G] = \begin{cases}
[H] : m_{F,G}^H \neq 0, & F \circ G \text{ defined and } \neq 0; \\
0, & \text{else.}
\end{cases}
\]

Sometimes \(S(\mathcal{C})' := S(\mathcal{C}) \setminus \{0\} \) is closed with respect to \(\diamond \).

Example. \(\mathcal{C}_{\mathfrak{sl}_2} \) – the 2-category of the tensor category of finite dimensional \(\mathfrak{sl}_2 \)-modules.
Multisemigroup of a fiat category

\(F, G \) are composable indecomposable 1-morphisms in \(\mathcal{C} \), then

\[
F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.
\]

Definition. The multisemigroup \((S(\mathcal{C}), \diamond)\) of a fiat category \(\mathcal{C} \) is defined as follows: \(S(\mathcal{C}) \) is the set of isomorphism classes of 1-morphisms in \(\mathcal{C} \) (including 0),

\[
[F] \diamond [G] = \begin{cases}
\{ [H] : m_{F,G}^H \neq 0 \}, & F \circ G \text{ defined and } \neq 0; \\
0, & \text{else.}
\end{cases}
\]

Sometimes \(S(\mathcal{C})' := S(\mathcal{C}) \setminus \{0\} \) is closed with respect to \(\diamond \).

Example. \(\mathcal{C}_{\mathfrak{sl}_2} \) – the 2-category of the tensor category of finite dimensional \(\mathfrak{sl}_2 \)-modules.

\(S(\mathcal{C}_{\mathfrak{sl}_2})' \xleftrightarrow{1:1} \mathbb{Z}_+ \) (via highest weight) and \((S(\mathcal{C}_{\mathfrak{sl}_2})', \diamond) \cong (\mathbb{Z}_+, \diamond)\)
Further examples

Soergel bimodules.
Further examples

Soergel bimodules.

$S(\mathcal{I})' \leftrightarrow S_n$
Further examples

Soergel bimodules.

\[S(\mathcal{P})' \leftrightarrow S_n \]

under this identification left cells of \(S(\mathcal{P})' \) correspond to right cells of \(S_n \) and vice versa
Further examples

Soergel bimodules.

$S(\mathcal{P})' \leftrightarrow S_n$

under this identification left cells of $S(\mathcal{P})'$ correspond to right cells of S_n and vice versa

The fiat category \mathcal{C}_A, $A = A_1 \oplus \cdots \oplus A_k$.
Further examples

Soergel bimodules.

\[S(\mathcal{P})' \leftrightarrow S_n \]

under this identification left cells of \(S(\mathcal{P})' \) correspond to right cells of \(S_n \) and vice versa

The fiat category \(\mathcal{C}_A, A = A_1 \oplus \cdots \oplus A_k \).

two-sided cells: \(\{ 1_1 \}, \{ 1_2 \}, \ldots, \{ 1_k \}, J := \{ A_i e \otimes_{k} fA_j : e, f \text{-primitive} \} \)
Further examples

Soergel bimodules.

\[S(\mathcal{P})' \leftrightarrow S_n \]

under this identification left cells of \(S(\mathcal{P})' \) correspond to right cells of \(S_n \) and vice versa

The fiat category \(\mathcal{C}_A, A = A_1 \oplus \cdots \oplus A_k \).

two-sided cells: \(\{1_1\}, \{1_2\}, \ldots, \{1_k\} \), \(J := \{ A_i e \otimes_k fA_j : e, f \text{-primitive} \} \)

left cells of \(J \): \(\{ A_i e \otimes_k fA_j : f \text{ fixed} \} \)

Volodymyr Mazorchuk (Uppsala University)
Further examples

Soergel bimodules.

$S(\mathcal{I})' \leftrightarrow S_n$

under this identification left cells of $S(\mathcal{I})'$ correspond to right cells of S_n and vice versa

The fiat category \mathcal{C}_A, $A = A_1 \oplus \cdots \oplus A_k$.

two-sided cells: $\{1_1\}, \{1_2\}, \ldots, \{1_k\}$, $J := \{A_i e \otimes_k fA_j : e, f\text{-primitive}\}$

left cells of J: $\{A_i e \otimes_k fA_j : f \text{ fixed}\}$

right cells of J: $\{A_i e \otimes_k fA_j : e \text{ fixed}\}$
Further examples

Soergel bimodules.

$S(\mathcal{P})' \leftrightarrow S_n$

under this identification left cells of $S(\mathcal{P})'$ correspond to right cells of S_n and vice versa

The fiat category \mathcal{C}_A, $A = A_1 \oplus \cdots \oplus A_k$.

two-sided cells: $\{1_1\}, \{1_2\}, \ldots, \{1_k\}$, $J := \{A_i e \otimes_k f A_j : e, f$-primitive\}

left cells of J: $\{A_i e \otimes_k f A_j : f$ fixed\}

right cells of J: $\{A_i e \otimes_k f A_j : e$ fixed\}

note: $A_j f \otimes_k e A_i \otimes_A A_i e \otimes_k f A_j \cong \text{dim}(A_i e) A_j f \otimes_k f A_j$ and $\text{dim}(A_i e)$ is constant on a right cell!!!
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)

consider \(\overline{P}_i \) and for an indecomposable 1-morphism \(F \in \mathcal{L} \cap \mathcal{C}(i, j) \)

denote by \(P_F \) the projective object \(0 \to F \) of \(\overline{P}_i(j) \) and by \(L_F \) the simple top of \(P_F \)
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

designated there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)

consider \(\overline{P}_i \) and for an indecomposable 1-morphism \(F \in \mathcal{L} \cap \mathcal{C}(i, j) \)

denote by \(P_F \) the projective object \(0 \rightarrow F \) of \(\overline{P}_i(j) \) and by \(L_F \) the simple top of \(P_F \)

Proposition.
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)

consider \(\overline{P}_i \) and for an indecomposable 1-morphism \(F \in \mathcal{L} \cap \mathcal{C}(i, j) \)

denote by \(P_F \) the projective object \(0 \rightarrow F \) of \(\overline{P}_i(j) \) and by \(L_F \) the simple top of \(P_F \)

Proposition.

1. There is a unique \(K \subset P_{\perp i} \) such that \(F P_{\perp i} / K = 0 \) for any \(F \in \mathcal{L} \)
 while \(F X \neq 0 \) for any \(X \in \text{top}(K) \).
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)

consider \(\overline{P}_i \) and for an indecomposable 1-morphism \(F \in \mathcal{L} \cap \mathcal{C}(i, j) \) denote by \(P_F \) the projective object \(0 \to F \) of \(\overline{P}_i(j) \) and by \(L_F \) the simple top of \(P_F \)

Proposition.

1. There is a unique \(K \subset P_{\mathbb{1}_i} \) such that \(FP_{\mathbb{1}_i}/K = 0 \) for any \(F \in \mathcal{L} \) while \(FX \neq 0 \) for any \(X \in \text{top}(K) \).

2. \(K \) has simple top \(L_{G_L} \).
Duflo involution of a left cell

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \)

there is \(i \in \mathcal{C} \) such that every \(F \in \mathcal{L} \) belongs to some \(\mathcal{C}(i, j) \)

consider \(\overline{P}_i \) and for an indecomposable 1-morphism \(F \in \mathcal{L} \cap \mathcal{C}(i, j) \)
denote by \(P_F \) the projective object \(0 \to F \) of \(\overline{P}_i(j) \) and by \(L_F \) the simple top of \(P_F \)

Proposition.

1. There is a unique \(K \subset P_{1i} \) such that \(FP_{1i} / K = 0 \) for any \(F \in \mathcal{L} \)
 while \(FX \neq 0 \) for any \(X \in \text{top}(K) \).
2. \(K \) has simple top \(L_{G_{\mathcal{L}}} \).
3. Both \(G_{\mathcal{L}} \) and \(G_{\mathcal{L}}^* \) belong to \(\mathcal{L} \).
Duflo involution of a left cell

\mathcal{C} – fiat category; \mathcal{L} – left cell of \mathcal{C}

there is $i \in \mathcal{C}$ such that every $F \in \mathcal{L}$ belongs to some $\mathcal{C}(i, j)$

consider \overline{P}_i and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathcal{C}(i, j)$
denote by P_F the projective object $0 \rightarrow F$ of $\overline{P}_i(j)$ and by L_F the simple top of P_F

Proposition.

1. There is a unique $K \subset P_{\underline{i}}$ such that $FP_{\underline{i}}/K = 0$ for any $F \in \mathcal{L}$
 while $FX \neq 0$ for any $X \in \text{top}(K)$.

2. K has simple top L_{G_L}.

3. Both G_L and G_L^* belong to \mathcal{L}.

Definition. G_L is the Duflo involution in \mathcal{L}
Definition of a cell 2-representation

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \); \(G_\mathcal{L} \) – Duflo involution
Definition of a cell 2-representation

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \); \(G_{\mathcal{L}} \) – Duflo involution

Theorem. \(\mathcal{X} := \text{add}\{F L_{G_{\mathcal{L}}}: F \in \mathcal{L}\} \) is closed under the action of \(\mathcal{C} \)
Definition of a cell 2-representation

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \); \(G_{\mathcal{L}} \) – Duflo involution

Theorem. \(\mathcal{X} := \text{add}\{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \} \) is closed under the action of \(\mathcal{C} \)

Definition. The **cell 2-representation** of \(\mathcal{C} \) corresponding to \(\mathcal{L} \) is the finitary 2-representation obtained by restricting the action of \(\mathcal{C} \) to \(\mathcal{X} \).
Definition of a cell 2-representation

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \); \(G_{\mathcal{L}} \) – Duflo involution

Theorem. \(\mathcal{X} := \text{add}\{F L_{G_{\mathcal{L}}} : F \in \mathcal{L}\} \) is closed under the action of \(\mathcal{C} \)

Definition. The cell 2-representation of \(\mathcal{C} \) corresponding to \(\mathcal{L} \) is the finitary 2-representation obtained by restricting the action of \(\mathcal{C} \) to \(\mathcal{X} \).

Definition. Two 2-representations of \(\mathcal{C} \) are called **elementary equivalent** if there is a homomorphism between them which is an equivalence when restricted to every \(i \in \mathcal{C} \).

Definition. Two 2-representations of \(\mathcal{C} \) are called **equivalent** if there is a finite sequence of 2-representations starting with the first one and ending with the second one such that every pair of neighbors in the sequence are elementary equivalent.
Definition of a cell 2-representation

\(\mathcal{C} \) – fiat category; \(\mathcal{L} \) – left cell of \(\mathcal{C} \); \(G_{\mathcal{L}} \) – Duflo involution

Theorem. \(\mathcal{X} := \text{add}\{F L_{G_{\mathcal{L}}} : F \in \mathcal{L}\} \) is closed under the action of \(\mathcal{C} \)

Definition. The **cell 2-representation** of \(\mathcal{C} \) corresponding to \(\mathcal{L} \) is the finitary 2-representation obtained by restricting the action of \(\mathcal{C} \) to \(\mathcal{X} \).

Definition. Two 2-representations of \(\mathcal{C} \) are called **elementary equivalent** if there is a homomorphism between them which is an equivalence when restricted to every \(i \in \mathcal{C} \).

Definition. Two 2-representations of \(\mathcal{C} \) are called **equivalent** if there is a finite sequence of 2-representations starting with the first one and ending with the second one such that every pair of neighbors in the sequence are elementary equivalent.
Comparison of cell 2-representation

Main theorem.
Comparison of cell 2-representation

Main theorem.

Let \mathcal{J} be a 2-sided cell of \mathcal{C} such that:

- different left cells inside \mathcal{J} are not comparable w.r.t. the left order;
- for any $L, R \subseteq \mathcal{J}$ we have $|L \cap R| = 1$;
- the function $F \mapsto \text{m} F \circ \text{m} F$, where $F \ast \circ F = \text{m} F \circ \text{H}$ is constant on right cells of \mathcal{J}.

The for any two left cells L and L' of \mathcal{J} the corresponding cell 2-representations are equivalent.

Example. Works for both \mathcal{C} (in type \mathcal{A}) and \mathcal{C}_A.

Volodymyr Mazorchuk (Uppsala University)
Comparison of cell 2-representation

Main theorem.

Let \(\mathcal{J} \) be a 2-sided cell of \(\mathcal{C} \) such that:

- different left cells inside \(\mathcal{J} \) are not comparable w.r.t. the left order;

For any two left cells \(L \) and \(L' \) of \(\mathcal{J} \) the corresponding cell 2-representations are equivalent.

Example. Works for both \(\mathcal{C} \) (in type \(A \)) and \(\mathcal{C}A \).
Main theorem.

Let \mathcal{J} be a 2-sided cell of \mathcal{C} such that:

- different left cells inside \mathcal{J} are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$.

Example. Works for both \mathcal{C} (in type A) and \mathcal{CA}.
Comparison of cell 2-representation

Main theorem.

Let \mathcal{J} be a 2-sided cell of \mathcal{C} such that:

- different left cells inside \mathcal{J} are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J}.
Comparison of cell 2-representation

Main theorem.

Let \mathcal{J} be a 2-sided cell of \mathcal{C} such that:

- different left cells inside \mathcal{J} are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J}.

The for any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations are equivalent.
Main theorem.

Let J be a 2-sided cell of C such that:

- different left cells inside J are not comparable w.r.t. the left order;
- for any $L, R \subset J$ we have $|L \cap R| = 1$;
- the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of J.

The for any two left cells L and L' of J the corresponding cell 2-representations are equivalent.

Example. Works for both C (in type A) and C_A.

Volodymyr Mazorchuk (Uppsala University)