STRUCTURE OF GENERALIZED VERMA MODULES

Volodymyr Mazorchuk

Uppsala University

1. Verma modules and their structure

 \mathfrak{g} – complex finite-dimensional Lie algebra with a triangular decomposition, $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$.

For $\lambda \in \mathfrak{h}^*$ define $U(\mathfrak{h} \oplus \mathfrak{n}_+)$ -module $\mathbb{C}_{\lambda} = \mathbb{C}$ by

$$(h+n)(v) = \lambda(h)v, \quad v \in \mathbb{C}_{\lambda}, h \in \mathfrak{h}, n \in \mathfrak{n}.$$

Verma module: $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}_+)} \mathbb{C}_{\lambda}$.

 $M(\lambda)$ has unique simple quotient $L(\lambda)$.

BGG Theorem. Let \mathfrak{g} be finite-dimensional. Then the following statements are equivalent:

- 1. $M(\mu) \subset M(\lambda)$.
- 2. $[M(\lambda) : L(\mu)] \neq 0$.
- 3. There exists a sequence of reflections, s_1, \ldots, s_k , in the Weyl group W, such that

$$\mu \leq s_1(\mu) \leq s_2 s_1(\mu) \leq \cdots \leq (s_k \dots s_2 s_1)(\mu) = \lambda,$$

where \leq is the standard partial order on \mathfrak{h}^* , associated with the chosen basis of the root system.

Corollary. Let \mathfrak{g} be finite-dimensional and $\lambda \in \mathfrak{h}^*$. Then $M(\lambda)$ is simple if and only if $(\lambda, \alpha) \notin \mathbb{Z}_+$ for all positive roots α .

KL Conjecture-Theorem. Let \mathfrak{g} be finite-dimensional, $\lambda \in \mathfrak{h}^*$ integral anti-dominant, and $w_1, w_2 \in W$. Denote by w_0 the longest element in W. Then $[M(w_1 \cdot \lambda) : L(w_2 \cdot \lambda)] = P_{w_0w_1, w_0w_2}(1)$, where $P_{w_0w_1, w_0w_2}(q)$ is the corresponding KL-polynomial.

Theorem. (Irving) Let \mathfrak{g} be finite-dimensional and $\lambda \in \mathfrak{h}^*$ integral regular. Then the Verma module $M(\lambda)$ is rigid, that is, its socle and radical filtrations coincide. Moreover, the coefficients of KL-polynomials determine the multiplicities of simple highest weights modules in the subquotients of the unique Loewy filtration (this is the socle filtration in this case) of $M(\lambda)$: for λ anti-dominant integral, and $w_1, w_2 \in W$ one has:

$$P_{w_0w_1,w_0w_2}(q) = \sum_{j} [soc_{l(w_2)+1+2j} M(w_1 \cdot \lambda) : L(w_2 \cdot \lambda)] q^j.$$

Theorem (Soergel). KL-conjecture is true for non-integral $\lambda \in \mathfrak{h}^*$ as well.

Theorem (Beilinson-Ginzburg-Soergel). All Verma modules are rigid and the multiplicities of simple highest weights modules in the subquotients of Loewy filtrations for Verma modules are given by KL-polynomials.

2. Generalized Verma modules

 \mathfrak{p} – parabolic subalgebra of \mathfrak{g} , containing $\mathfrak{h} \oplus \mathfrak{n}_+$.

 $\mathfrak{p} = \mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{h}^{\perp}$ – Levi decomposition, \mathfrak{n} – radical, $\mathfrak{a}' = \mathfrak{a} \oplus \mathfrak{h}^{\perp}$ – reductive part, \mathfrak{a} – semi-simple, \mathfrak{h}^{\perp} – center of \mathfrak{a}' .

For a simple \mathfrak{a}' -module V define $\mathfrak{n}V=0$, making it $U(\mathfrak{p})$ -module.

Generalized Verma module: $M(\mathfrak{p}, V) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V$.

 $M(\mathfrak{p}, V)$ has unique simple quotient $L(\mathfrak{p}, V)$.

Questions:

- What can be said about the structure of $M(\mathfrak{p}, V)$?
- When $M(\mathfrak{p}, V) = L(\mathfrak{p}, V)$?
- When $M(\mathfrak{p}, V)$ has finite length?
- When $M(\mathfrak{p}, V)$ is rigid?
- What are the simple subquotients of $M(\mathfrak{p}, V)$?
- What are the multiplicaties of these simple subquotients?

Example. \mathfrak{g}, V – finite-dimensional.

- 1. BGG-Theorem Rocha-Caridi.
- 2. KL-Conjecture Casian, Collingwood.
- 3. partial information about Loewy filtrations of generalized Verma modules (Irving).

Several known results for special classes of V.

- 1. \mathfrak{g} f.d.; V f.d.: Rocha-Caridi, Casian, Collingwood, Irving (BGG Theorem, multiplicities).
- 2. \mathfrak{g} f.d., V Whittaker: McDowell, Soergel, Milicic, Backelin (multiplicities).
- 3. \mathfrak{g} f.d., $\mathfrak{a} \simeq \mathfrak{sl}(2,\mathbb{C})$, V simple weight without highest and lowest weight: Futorny, Khomenko, Mazorchuk (BGG Theorem).
- 4. \mathfrak{g} f.d., V simple weight with finite-dimensional weight spaces: Mathieu (multiplicities).
- 5. \mathfrak{g} f.d., V simple generic Gelfand-Zetlin module: Futorny, König, Mazorchuk, Ovsienko, (BGG Theorem, multiplicities).

Remark. The approach of Kac and Kazhdan, which uses the Shapovalov form and the Jantzen filtration on $M(\lambda)$, allows one to transfer the BGG Theorem to many infinite-dimensional Lie algebra, e.g. Kac-Moody Lie algebras, contragradient Lie algebras and the Virasoro Lie algebra.

3. First general result

Verma module, associated with M(p, V). Assume that \mathfrak{a} is finite-dimensional. Then V has a central character as an \mathfrak{a}' -module. Let W be a simple Verma module over \mathfrak{a}' , having the same central character, as V. Set

$$\mathfrak{f}(M(\mathfrak{p},V)) = M(\mathfrak{p},W).$$

Then $\mathfrak{f}(M(\mathfrak{p},V))$ is a Verma module over \mathfrak{g} .

Theorem. (Khomenko-Mazorchuk) Let \mathfrak{g} be contragradient and \mathfrak{p} be such that $\mathfrak{a} \simeq \mathfrak{sl}(2,\mathbb{C})$ and \mathfrak{g} is an integrable \mathfrak{a} -module. Let V be a simple infinite-dimensional \mathfrak{a}' -module. Then the module $M(\mathfrak{p},V)$ is simple if and only if the module $\mathfrak{f}(M(\mathfrak{p},V))$ is simple.

4. Second general result

Theorem. (Khomenko-Mazorchuk) Let \mathfrak{g} be finite-dimensional and V be a simple module, whose annihilator is generated by the central character (i.e. the annihilator is a minimal primitive ideal). Then the module $M(\mathfrak{p}, V)$ is simple if and only if the module $\mathfrak{f}(M(\mathfrak{p}, V))$ is simple.

Theorem. (Khomenko-Mazorchuk) Let \mathfrak{g} be finite-dimensional and V_1, V_2 be simple module, whose annihilators are minimal primitive ideals. Then $[M(\mathfrak{p}, V_1) : L(\mathfrak{p}, V_2)] = [\mathfrak{f}(M(\mathfrak{p}, V_1)), L(\mu)]$, where μ is easily computed from V_2 .

Remark. This result COVERS all known cases for

- 1. $\mathfrak{a} \simeq \mathfrak{sl}(2,\mathbb{C})$.
- 2. V simple Whittaker.
- 3. V generic Gelfand-Zetlin module.

Remark. This result DOES NOT cover the case when V is simple weight with f.d. weight spaces for $\mathfrak{a} \not\simeq \mathfrak{sl}(2,\mathbb{C})$.

Idea of the proof. Extend arguments of Soergel and Milicic and transfer the question to the corresponding question for Harish-Chandra bimodules.

Difficulties. It is not known if $M(\mathfrak{p}, V)$ as above has finite length. Most probably it does not have finite length in general. The arguments of Soergel and Milicic embed $M(\mathfrak{p}, V)$ into a category, $\mathcal{O}_{\mathfrak{p},V}$, which shows only the "rough" structure of $M(\mathfrak{p}, V)$. One can see only simple subquotients $L(\mathfrak{p}, W)$ in $M(\mathfrak{p}, V)$, which correspond to simple W, whose annihilator is again a minimal primitive ideal.

The main part of the proof is actually to show that the category $\mathcal{O}_{\mathfrak{p},V}$ is equivalent to a category of Harish-Chandra bimodules.

5. Rigidity

Theorem. (Khomenko-Mazorchuk) Let \mathfrak{g} be finite-dimensional and V be a simple module, whose annihilator is a minimal primitive ideal. The "rough" structure of $M(\mathfrak{p}, V)$ is rigid, that is the module $M(\mathfrak{p}, V)$ is rigid, as an object of $\mathcal{O}_{\mathfrak{p},V}$. Moreover, the multiplicities of $L(\mathfrak{p}, W)$ in the subquotients of the unique Loewy filtration of $M(\mathfrak{p}, V)$ are given by coefficients of certain KL-polynomials.

6. Relative GK-dimension

Theorem. (Ovsienko-Mazorchuk) Let \mathfrak{g} be finite-dimensional and V be a simple generic GZ-module. Then the growth of the length of $M(\mathfrak{p}, V)$, considered as an \mathfrak{a} -module, is polynomial.

Corollary. Let \mathfrak{g} be finite-dimensional and V_1, V_2 be simple generic GZ-modules. Then

$$\dim(\operatorname{Hom}_{\mathfrak{g}}(M(\mathfrak{p}, V_1), M(\mathfrak{p}, V_2))) \leq 1.$$