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Abstract. For any finitely generated abelian group Q, we reduce
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1. Introduction

1.1. General overview. The present paper addresses classification of
Q-graded simple Lie algebras for any finitely generated abelian group
Q and classification of Q-graded simple modules over Q-graded Lie
algebras in the case when the characteristic of the ground field k does
not divide the order of the torsion subgroup of Q.

Study of gradings on Lie algebras goes back at least as far as to the pa-
per [PZ] which started a systematic approach to understanding of grad-
ings by abelian groups on simple finite dimensional Lie algebras over
algebraically closed fields of characteristic 0. In the past two decades,
there was a significant interest to the study of gradings on simple Lie
algebras by arbitrary groups, see the recent monograph [EK2] and ref-
erences therein. In particular, there is an essentially complete classi-
fication of fine gradings (up to equivalence) on all finite-dimensional
simple Lie algebras over an algebraically closed field of characteristic
0, see [EK2, El, Yu]. Some properties of simple Z2-graded Lie algebras
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were obtained in [Zu]. For a given abelian group Q, the classification of
Q-gradings (up to isomorphism) on classical simple Lie algebras over
an algebraically closed field of characteristic different from 2 was done
in [BK, El] (see also [EK2]).

1.2. Notation and setup. Throughout this paper, k denotes an alge-
braically closed field. If not explicitly stated otherwise, we do not put
any restrictions on the characteristic of k. Similarly, if not explicitly
stated otherwise, all vector spaces, algebras and tensor products are
assumed to be over k. As usual, we denote by Z, N, Z+ and C the
sets of integers, positive integers, nonnegative integers and complex
numbers, respectively.

Let Q be an additive abelian group. A Q-graded Lie algebra over k is
a Lie algebra g over k endowed with a decomposition

g =
⊕
α∈Q

gα such that [gα, gβ] ⊂ gα+β for all α, β ∈ Q.

Recall that a graded Lie algebra is called graded simple if g is not
commutative and does not contain any non-trivial graded ideal.

Let Q′ be another abelian group, g a Q-graded Lie algebra over a field
k and g′ be a Q′-graded Lie algebra over k. We say that graded Lie
algebras g and g′ are graded isomorphic if there is a group isomorphism
τ : Q → Q′ and a Lie algebra isomorphism σ : g → g′ such that
σ(gα) = g′τ(α) for all α ∈ Q.

A Q-graded module V over a Q-graded Lie algebra g is a g-module
endowed with a decomposition

V =
⊕
α∈Q

Vα such that gα · Vβ ⊂ Vα+β for all α, β ∈ Q.

A graded module V is called graded simple if V is not zero and does
not contain any non-trivial graded submodule.

Let g be a Q-graded Lie algebra over k and

W ′ =
⊕
α∈Q

Wα, W =
⊕
α∈Q

W ′
α

be two Q-graded g-module. We say that the graded modules g and
W and W ′ are graded isomorphic if there is a g-module isomorphism
σ : W → W ′ such that σ(Wα) = W ′

α for all α ∈ Q.

1.3. Results and structure of the paper. In Section 2, for a sub-
group P of an abelian group Q and a simple Lie algebra a with a fixed
Q/P -grading, we construct a Q-graded Lie algebra g(Q,P, a) and prove
that g(Q,P, a) is always Q-graded simple. If P is finite and char(k)
does not divide |P |, then the algebra g(Q,P, a) is a direct sum of |P |
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ideals that are isomorphic to a. If char(k) does divide |P |, then the
algebra g(Q,P, a) is not semisimple as an ungraded algebra.

In Section 3, for finite Q whose order is not a multiple of char(k)
we prove that any Q-graded simple Lie algebra has to be of the form
g(Q,P, a) for some simple Lie algebra a with a Q/P -grading, see Corol-
lary 13 (we actually prove a more general result in Theorem 12). Our
main tool is to analyze properties of the character group of Q. Due to
the recent classification of all gradings on finite dimensional simple Lie
algebras, see [EK2, El, Yu], we actually obtain a full classification of all
finite-dimensional Q-graded simple Lie algebras over any algebraically
closed field of characteristic 0.

In Section 4 we establish a graded analogue of Schur’s Lemma. It is
frequently used in the remainder of the paper. In Section 5, for a finitely
generated additive abelian group Q, we prove that any Q-graded simple
Lie algebra with dim g < |k| has to be of the form g(Q,P, a) for some
simple Lie algebra a with a Q/P -grading, see Theorem 20. We also
obtain some necessary and sufficient conditions for twoQ-graded simple
Lie algebras to be isomorphic in Theorem 25.

In Section 6, using our classification of Q-graded simple Lie algebras,
we prove a graded analogue of the Weyl’s Theorem, see Theorem 26.
Namely, we show that any Q-graded finite dimensional module over
a Q-graded semi-simple finite dimensional Lie algebra over an alge-
braically closed field of characteristic 0 is completely reducible. Here
the crucial observation is that any finite dimensional Q-graded sim-
ple Lie algebra over an algebraically closed field k of characteristic 0
is semi-simple after forgetting the grading, which is a consequence of
Theorem 20.

Finally, in the last section of the paper, we reduce classification of all
Q-graded simple modules over any Q-graded Lie algebras g for any
finitely generated abelian group Q to the study of gradings on sim-
ple g-modules. For any simple g-module V with a Q/P -grading, we
first construct a Q-graded g-module M(Q,P, V ) and then show that
M(Q,P, V ) is Q-graded simple if and only if the Q/P -grading of V is
fine, see Theorem 28. We prove that any Q-graded simple g-module W
with dimW < |k| has to be of the form M(Q,P, V ) in Theorem 30. In
Theorem 32 we give some necessary and sufficient conditions for two
Q-graded simple g-modules to be isomorphic.

2. Construction of graded simple Lie algebras

2.1. Construction. Let Q be an abelian group and P a subgroup of
Q. Assume we are given a simple Lie algebra a over k with a fixed
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Q/P -grading

a =
⊕
ᾱ∈Q/P

aᾱ.

Consider the group algebra kQ with the standard basis {tα : α ∈ Q}
and multiplication tαtβ = tα+β for all α, β ∈ Q. Then we can form the
Lie algebra a⊗ kQ. For x, y ∈ a and α, β ∈ Q, we have

[x⊗ tα, y ⊗ tβ] = [x, y]⊗ tα+β.

Define the Q-graded Lie algebra

g(Q,P, a) :=
⊕
α∈Q

g(Q,P, a)α, where g(Q,P, a)α := aᾱ ⊗ tα.

For example, g(Q,Q, a) = a⊗ kQ (with the obvious Q-grading) while
g(Q, {0}, a) = a (with the original Q-grading). From the definition it
follows that dim g(Q,P, a) = dim(a)|P | if a is finite-dimensional and P
is finite.

Lemma 1. If Q is an abelian group, then the algebra g(Q,P, a) is a
Q-graded simple Lie algebra.

Proof. Consider the ideal I in CQ generated by {tα − 1 : α ∈ P}, and
let

b = g(Q,P, a)/(g(Q,P, a) ∩ (a⊗ I)).

The algebra b is naturally Q/P -graded and is, in fact, isomorphic to
the Q/P -graded Lie algebra a with the original grading. We have that

b =
⊕
ᾱ∈Q/P

aᾱ ⊗ tᾱ,

where {tᾱ : ᾱ ∈ Q/P} is a basis for the group algebra of Q/P . Let

π : g(Q,P, a) � b,

be the canonical epimorphism.

From [ā, ā] = ā it follows that for every ᾱ ∈ Q/P we have

(1) aᾱ =
∑
β̄∈Q/P

[āβ̄, āᾱ−β̄].

We use this property to prove graded simplicity of the Lie algebra
g(Q,P, a). Take a nonzero homogeneous element

xβ̄ ⊗ tβ ∈ gβ

and denote by K the graded ideal of g(Q,P, a) which this element
generates. Then π(K) = b, that is, for every ξ ∈ Q/P we fix one
representative α ∈ ξ, thus we have ξ = ᾱ. Then there is a basis

{x(i)
ᾱ : i ∈ N(ᾱ)} in aᾱ, and there exists β

(i)
α ∈ P such that

x
(i)
ᾱ ⊗ tα+β

(i)
α ∈ g

α+β
(i)
α
∩K.
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For any γ ∈ Q, we see that∑
ᾱ∈Q/P

∑
i∈N(ᾱ)

[x
(i)
ᾱ ⊗ tα+β

(i)
α , g

γ−α−β(i)
α

]

=
∑

ᾱ∈Q/P

∑
i∈N(ᾱ)

[x
(i)
ᾱ ⊗ tα+β

(i)
α , aγ̄−ᾱ ⊗ tγ−α−β

(i)
α ]

=
∑

ᾱ∈Q/P

∑
i∈N(ᾱ)

[x
(i)
ᾱ , aγ̄−ᾱ]⊗ tγ

=
∑

ᾱ∈Q/P

[aᾱ, aγ̄−ᾱ]⊗ tγ

=aγ̄ ⊗ tγ ⊂ K,

where the third step is justified by (1). Thus K = g(Q,P, a) and hence
g(Q,P, a) is graded simple. �

Later on we will prove that the above graded simple Lie algebras ex-
haust all Q-graded simple Lie algebras. Making a parallel with affine
Kac-Moody algebras [Ka, MP], it is natural to divide these algebras
into two classes. The algebras g(Q,Q, a) will be called untwisted graded
simple Lie algebra while all other algebras will be called twisted graded
simple Lie algebra.

2.2. Properties of g(Q,P, a) in the case of finite Q. Now we need
to establish some properties of the graded simple Lie algebras g(Q,P, a)
for finite groups Q. So in the rest of this subsection we assume that Q
is finite and char(k) does not divide |Q|.

Let Q̂ denote the character group of Q, that is the group of all group
homomorphisms Q → k∗ under the operation of pointwise multiplica-
tion. Note that Q̂ ∼= Q because of our assumption on char(k). For any

f ∈ Q̂, we define the associative algebra automorphism

τf : kQ→ kQ via τf (t
α) = f(α)tα for all α ∈ Q.

This induces the Lie algebra automorphism

(2)
τf : g(Q,P, a) → g(Q,P, a)

xᾱ(α) 7→ f(α)xᾱ(α)

for all α ∈ Q and xᾱ ∈ aᾱ. Note that τfg = τfτg for all f, g ∈ Q̂, in

other words, Q̂ acts on g(Q,P, a) via automorphisms τf . We will use
the following:

Remark 2. If Q is a finite abelian group, P a subgroup of Q, Q̂
the group of characters of Q over a field k such that char(k) does

not divide |Q| and P⊥ := {f ∈ Q̂ : f(α) = 1 for all α ∈ P}, then

|Q̂/P⊥| = |P |. Indeed, because of our assumption on k, we know that
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|P̂ | = |P |. Therefore it is enough to prove that each character of P can
be extended to a character of Q. The latter follows directly from the
Frobenius reciprocity.

Lemma 3. If Q is finite and char(k) does not divide |Q|, then the
algebra g(Q,P, a) is a direct sum of |P | ideals. Each of these ideals is
Q/P -graded and, moreover, isomorphic to a as Q/P -graded Lie alge-
bras.

Proof. For α ∈ Q set

tα := tα
∑
β∈P

tβ.

Then, for any α, α′ ∈ Q, we have tα = tα
′

if and only if α − α′ ∈ P .
Consider the vector space

(3) I =
⊕
ᾱ∈Q/P

aᾱ ⊗ tα,

which is well-defined because of the observation in the previous sen-
tence. Since tαtβ = tα+β for all α, β ∈ Q, the space I is an ideal.
Note that [I, I] 6= 0 since a is a simple Lie algebra and char(k) does
not divide |Q| (and thus it does not divide |P | either, which implies
tαtα = |P |tα 6= 0). It follows that I ∼= a as a Q/P -graded Lie algebra.
Simplicity of a even implies that I is a minimal ideal.

Define the invariant subgroup Inv(I) of I as

Inv(I) = {f ∈ Q̂ | τf (I) = I},

which is a subgroup of Q̂. Then the set I := {τα(I) : α ∈ Q̂} consist of

|Q̂/Inv(I)| different minimal ideals of g(Q,P, a). From the definitions
it follows that

Inv(I) ⊂ P⊥ := {f ∈ Q̂ : f(α) = 1 for all α ∈ P}

and hence |Q̂/Inv(I)| ≥ |Q̂/P⊥| = |P |, see Remark 2 for the latter
equality. Comparing the number of non-zero homogeneous components
in g(Q,P, a) and in the subspace⊕

J∈I

J ⊂ g(Q,P, a),

we deduce that these two algebras coincide. The statement of the
lemma follows. �

Example 4. In case Q is finite and char(k) does divide |Q|, the algebra
g(Q,P, a) is not a direct sum of simple ideals in general. For example,
let us consider the case that char(k) = |Q|, Q = Zp and P = 0. Since

(t1)p − 1 = (t1 − 1)p, we have that

g(Q,P, a) ' a⊗ (C[x]/〈xp〉) ,
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where x = t1− 1. The latter algebra has an abelian ideal a⊗ xp−1 and
a nilpotent ideal a⊗ xC[x] which is, in fact, a maximal ideal.

Example 5. Let Q = Z2 × Z16 and a = sl2 with standard basis
{e, h, f}. Let P = 〈(1, 4)〉. Then Q/P ∼= Z8 with generator (0, 1).
Consider the following Z8-grading on a:

deg(h) = 0̄, deg(e) = 1̄, deg(f) = 7̄.

Then the non-zero homogeneous components of g(Q,P, a) are:

a(0,0) ⊗ 1, a(0,1) ⊗ t
(0,1), a(0,7) ⊗ t

(0,7);

a(1,4) ⊗ t
(1,4), a(1,5) ⊗ t

(1,5), a(1,11) ⊗ t
(1,11);

a(0,8) ⊗ t
(0,8), a(0,9) ⊗ t

(0,9), a(0,15) ⊗ t
(0,15);

a(1,12) ⊗ t
(1,12), a(1,13) ⊗ t

(1,13), a(1,3) ⊗ t
(1,3).

3. Classification of graded simple Lie algebras: the case
of finite Q

3.1. Preliminaries. In this section, for a finite abelian group Q, we
will classify all Q-graded simple Lie algebras in the case when char(k)
does not divide |Q|. In fact, we even obtain a more general result.

We first assume that Q is an additive abelian group and g =
⊕
α∈Q

gα a

Q-graded simple Lie algebra.

Every x ∈ g can be written in the form x =
∑
α∈Q

xα where xα ∈ gα. In

what follows the notation xα for some α ∈ Q always means xα ∈ gα.
We define the support of x as

supp(x) := {α ∈ Q |xα 6= 0}.
Similarly, we can define supp(X) for any nonempty subset X ⊂ g.
Without loss of generality, we may assume that the grading on g is
minimal in the sense that supp(g) generates Q.

Classification of graded simple Lie algebras for which the underlying
Lie algebra g is simple reduces to classification of gradings on simple
Lie algebras. Grading on simple Lie algebras are, to some extent, well-
studied, see [EK1, EK2], and we will not study this problem in the
present paper. Instead, we assume that g is not simple.

For α ∈ Q, define πα : g → gα as the projection with respect to the
graded decomposition. Take a non-homogeneous non-zero proper ideal
I of g. Define the size of I as

size(I) = min
{
|supp(x)| : x ∈ I \ {0}

}
.
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Lemma 6.

(a) For any nonzero x ∈ I we have |supp(x)| > 1.

(b) We have πα(I) = gα for each α ∈ Q.

Proof. Claim (a) follows from the observation that the set

J = {x ∈ I : |supp(x)| ≤ 1}
is a nontrivial graded ideal of g which has to be zero as g is graded
simple.

To prove claim (b), let Ī =
∑
α∈Q

πα(I). It is easy to see that Ī is a

nonzero graded ideal of g which has to be g itself since g is graded
simple. This completes the proof. �

3.2. Auxiliary lemmata. Now we assume that Q = Q0 × Q1 where
Q0 if finite and any ideal of g is Q1-graded. Then we have the graded
isomorphisms τf : g → g for any f ∈ Q̂0 defined as in (2) (with the
convention that f(α) = 1 for all α ∈ Q1).

Lemma 7.

(a) An ideal I of g is Q-graded if and only if τf (I) ⊂ I for all f ∈ Q̂0.

(b) The center of g is zero.

Proof. Claim (a) is clear. Claim (b) follows from claim (a) since the
center is an ideal and is invariant under all automorphisms. �

For convenience, we redefine

Inv(I) = {f ∈ Q̂0 | τf (I) = I},
and set

P0 = Inv(I)⊥ := {α ∈ Q0 : f(α) = 1, for all f ∈ Inv(I)}.
From Remark 2 it follows that |P0| = |Q̂0/Inv(I)|.

For I := {τf (I) : f ∈ Q̂0}, we have that |I| = |Q̂0/Inv(I)|.

Lemma 8. If J ∩ J ′ = 0 for any J 6= J ′ in I, then we have:

(a) [J, J ′] = 0 for any J 6= J ′ in I;

(b) g =
⊕
J∈I

J ;

(c) I is a simple Lie algebra.

In particular, if I is a minimal non-homogeneous non-zero proper ideal
of g, then all the above statements hold.
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Proof. Claim (a) follows from the fact that [J, J ′] = J ∩ J ′ = 0.

To prove claim (b), we first note that
∑
J∈I

J = g as the left hand side,

being closed under the action of Q̂0, is a homogeneous ideal of g (and
hence coincides with g as the latter is graded simple). Let us prove
that this sum is direct. For J ∈ I, consider

XJ = J ∩
∑

J ′∈I\{J}

J ′,

which is an ideal of g. We have [XJ , g] = 0 by claim (a). Hence XJ = 0
by Lemma 7(b). Claim (b) follows.

Finally, suppose I is not simple as a Lie algebra. If [I, I] = 0, then from
claims (a) and (b) we have [g, g] = 0, which contradicts Lemma 7(b). If
[I, I] 6= 0, then we take a non-zero proper ideal I1 of I. From claims (a)
and (b) it follows that ⊕

f∈Q̂0/Inv(I)

τf (I1)

is a homogeneous non-zero proper ideal of g which contradicts graded
simplicity of g. This completes the proof. �

Now we can consider g as aQ/P0-graded Lie algebra. The homogeneous
spaces in this graded Lie algebra are indexed by ᾱ = α + P0, where
α ∈ Q. Note that all these homogeneous components are eigenspaces
for each τf , where f ∈ Inv(I). For α ∈ Q we thus have

(4) gᾱ =
⊕
β∈P0

gα+β.

The decomposition

g =
⊕

ᾱ∈Q/P0

gᾱ

is the decomposition of g into a direct sum of common eigenvectors with
respect to the action of all τf , where f ∈ Inv(I). Since I is preserved
by all such τf , we obtain

Iᾱ = I ∩ gᾱ.

Now we can prove existence of a minimal non-homogeneous non-zero
proper ideal of g.

Lemma 9. Assume that g is not simple. Then it has a minimal non-
homogeneous non-zero proper ideal.
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Proof. Take a non-homogeneous non-zero proper ideal I of g. Then I
is a Q/P0-graded Lie algebra

I =
⊕

ᾱ∈Q/P0

Iᾱ.

From (4) it follows that size(I) ≤ |P0|. Directly from the definitions
we also have Inv(I) ⊂ Q0.

If J ∩ J ′ = 0 for any J 6= J ′ in I, then from Lemma 8 it follows that I
is a minimal ideal of g. Therefore we assume that I ∩ τf (I) = I1 6= 0

for some f ∈ Q̂0 \ Inv(I). We see that Inv(I) ⊆ Inv(I1) ⊂ Q̂0.

Let r = size(I) and r1 = size(I1). Note that r ≤ |P0| and r1 ≤ |P0|.
Let I2 be the subideal of I1 generated by all x ∈ I1 with |supp(x)| = r1.
Take a nonzero x ∈ I1 with |supp(x)| = r1. Then x = τf (y) for some
y ∈ I. If x 6∈ ky, then I contains a linear combination of x and y which
has strictly smaller support. This means that r < r1. Consequently,
in the case r = r1 the previous argument shows that τ−1

f (x) ∈ I1 for
any x ∈ I1 with |supp(x)| = r1. This means that τf (I2) ⊂ I2 and thus
either Inv(I2) properly contains Inv(I) or r1 > r.

Now we change our original ideal I to I2. In this way we either increase
the size of the ideal or the cardinality of the invariant subgroup and
start all over again. Since both the size and the cardinality of the
invariant subgroup are uniformly bounded, the process will terminate
in a finite number of steps resulting in a minimal ideal of g. �

Because of Lemma 9, from now on we may assume that I is a minimal
non-homogeneous non-zero proper ideal of g.

Let α ∈ Q and x ∈ Iᾱ \ {0}. Since

Iᾱ = I
⋂⊕

β∈P0

gα+β,

there are unique vectors xα+β ∈ gα+β, where β ∈ P0, such that

(5) x =
∑
β∈P0

xα+β.

Applying τf , where f ∈ Q̂0/Inv(I), to both side of (5), we obtain |P0|
identities: ∑

β∈P0

f(α + β)xα+β = τf (x), f ∈ Q̂0/Inv(I).

From Lemma 8 (b), we have that {τf (x) : f ∈ Q̂0/Inv(I)} is a set of

linearly independent elements. Since |P0| = |Q̂0/Inv(I)|, we see that
{xα+β : β ∈ P0} is a set of linearly independent elements and

span{τf (x) : f ∈ Q̂0/Inv(I)} = span{xα+β : β ∈ P0}.
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Thus {xα+β : β ∈ P0} can be uniquely determined from the above |Q0|
identities in terms of {τf (x) : f ∈ Q̂0/Inv(I)}. Therefore the coeffi-

cient matrix
(
f(α+β)

)
, where f ∈ Q̂0/Inv(I) and β ∈ P0, is invertible.

The above argument yields the following linear algebra result:

Lemma 10. Let α ∈ Q and

x =
∑
β∈P

xα+β ∈ Iᾱ \ {0},

where xα+β ∈ gα+β for β ∈ P0. Then {xα+β : β ∈ P0} is a set of
linearly independent elements and each xα+β can be uniquely expressed

in terms of elements in {τf (x) : f ∈ Q̂0/Inv(I)} and the invertible

matrix
(
f(α + β)

)
, where f ∈ Q̂0/Inv(I) and β ∈ P0. Consequently,

size(I) = |P0|.

We will also need the following recognition result.

Lemma 11. Let g and g′ be two Q-graded simple Lie algebras with
minimal non-homogeneous non-zero proper ideals I and I ′, respectively.
If Inv(I) = Inv(I ′) and I ' I ′ as Q/P0-graded Lie algebras, then g and
g′ are isomorphic as Q-graded Lie algebras.

Proof. From the discussion above we know that both I and I ′ are simple
Lie algebras. Let ϕ0 : I → I ′ be an isomorphism of Q/P0-graded Lie
algebras. We know that, for each α ∈ Q, we have the decomposition

Iᾱ ⊂
⊕
β∈P0

gα+β.

For any f̄ ∈ Q̂0/Inv(I), set

ϕf := τf ◦ ϕ0 ◦ τ−1
f : τf (I)→ τf (I

′).

By taking the direct sum, we obtain an isomorphism of Q/P0-graded
Lie algebras as follows:

Φ :=
⊕

f̄∈Q̂0/Inv(I)

ϕf : g =
⊕

f̄∈Q̂0/Inv(I)

τf (I) −→ g′ =
⊕

f̄∈Q̂0/Inv(I)

τf (I
′).

The isomorphism Φ commutes with all τf by construction. Therefore,
Φ is even an isomorphism of Q-graded Lie algebras. �

3.3. Classification. The following theorem is the main result of this
section.

Theorem 12. Let Q = Q0×Q1 be an additive abelian group where Q0

is finite and g =
⊕
α∈Q

gα be a Q-graded simple Lie algebra over a field

k such that char(k) does not divide |Q0|. Assume that any ideal of g
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is Q1-graded. Then there exists a subgroup P0 ⊂ Q0 and a simple Lie
algebra a with a Q/P0-grading such that g ' g(Q,P0, a).

Proof. We may assume that g is not simple. Using Lemma 9, fix a
minimal nontrivial non-graded ideal a of g. Then from the lemmata
above it follows that a is a simple Lie algebra. The Q/P0-grading for
a is given by

(6) a =
⊕

ᾱ∈Q/P0

aᾱ,

where

aᾱ = a
⋂ ⊕

β∈α+P0

gβ.

From the definition of P0 it follows that Inv(a) = P⊥0 . Now the
claim follows from Lemma 11 applied to the graded Lie algebras g and
g(Q,P0, a), where in both cases the distinguished Q/P0-graded ideal is
a. �

The following result is a direct consequence of Theorem 12.

Corollary 13. Let Q be a finite additive abelian group and g be a Q-
graded simple Lie algebra over k such that char(k) does not divide |Q|.
Then there exists a subgroup P ⊂ Q and a simple Lie algebra a with a
Q/P -grading such that g ' g(Q,P, a).

Classification of Q-graded simple Lie algebras over a field k for a finitely
generated additive abelian group Q in the general case has to be dealt
with by different methods. In what follows we approach this problem
using a graded version of Schur’s lemma. At the same time, this will
allow us to remove the restriction that char(k) does not divide the
cardinality of the torsion subgroup of Q.

4. Graded Schur’s Lemma

In this section we prove a graded version of Schur’s lemma which we
will frequently use in the rest of the paper. This is a standard state-
ment, but we could not find a proper reference for the generality we
need.

Let Q be an abelian group, g =
⊕
α∈Q

gα a Q-graded Lie algebra over a

field k and W =
⊕
ᾱ∈Q

Wα a Q-graded module over g. For α ∈ Q, we

call a module homomorphism σ : W → W homogeneous of degree α
provided that σ(Wβ) ⊂ Wβ+α.
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Theorem 14 (Graded Schur’s Lemma). Let Q be an abelian group and
g a Q-graded Lie algebra over an algebraically closed field k. Let W
be a Q-graded simple module over g with dimW < |k|. Then, for any
fixed α ∈ Q, any two degree α automorphisms of W differ by a scalar
factor only.

Proof. Let End0(W ) be the algebra of all homogeneous degree zero
endomorphisms of W . It is enough to show that End0(W ) = k. The
usual arguments give that End0(W ) is a division algebra over k. Then
W , viewed as an End0(W )-module, is a sum of copies of End0(W ). In
particular,

dim End0(W ) ≤ dimW < |k|.
Since k is algebraically closed, if End0(W ) were strictly larger than k,
then End0(W ) would contain some σ which is transcendental over k.
Then the fraction field k(σ) would be contained in End0(W ). However,
we have the elements 1

σ−a ∈ k(σ), where a ∈ k, which are linearly
independent. Therefore

dim End0(W ) ≥ dimk(σ) ≥ |k|,
contradicting the fact that dim End0(W ) < |k|. Thus we conclude that
End0(W ) = k. �

5. Classification of graded simple Lie algebras: general
case

5.1. Preliminaries. Let Q be a finitely generated additive abelian
group and g a Q-graded simple Lie algebra such that dim g < |k|.

As before, we assume that g is not simple. Let I be a nonzero non-
homogeneous ideal in g. Set r := size(I) > 1 and define

R(I) := span{x ∈ I : size(x) = r}.
Then R(I) is an ungraded non-zero proper ideal of g. We will say
that an ideal J of g is pure of size r if size(J) = r and, moreover,
R(J) = J .

Take a nonzero y = yγ + yγ+α1 + yγ+α2 + · · · + yγ+αr−1 ∈ I. Denote
by Iα1,α2,...,αr−1 the set of all x ∈ I for which there exists β ∈ Q such
that

x = xβ + xβ+α1 + xβ+α2 + · · ·+ xβ+αr−1 .

Then the linear span of Iα1,α2,...,αr−1 is an ideal in g, so we may assume
that it coincides with I.

Thus, for any xβ ∈ gβ, where β ∈ Q, there are unique

xβ+α1 ∈ gβ+α1 , xβ+α2 ∈ gβ+α2 , . . . , xβ+αr−1 ∈ gβ+αr−1
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such that

(7) x = xβ + xβ+α1 + xβ+α2 + · · ·+ xβ+αr−1 ∈ I.
This allows us to define, for every i = 1, 2, . . . , r − 1, the map

ΛI,αi : g→ g which sends xβ 7→ xβ+αi .

For any yγ ∈ gγ, from

[yγ, x] = [yγ, xβ] + [yγ, xβ+α1 ] + · · ·+ [yγ, xβ+αr−1 ] ∈ I
we have that ΛI,αi([yγ, xβ]) = [yγ,ΛI,αi(xβ)]. Thus, ΛI,αi is a Q-graded
g-automorphism of the adjoint g-module g which is, moreover, homoge-
neous of degree αi. Since the adjoint representation is simple, these Q-
graded g-module automorphisms are independent of I up to a nonzero
scalar multiple, due to Theorem 14. Denote by G the group generated
by all such ΛI,αi (taken over all ideals I as above). Note that, for each
α ∈ Q, all elements of the group G which are homogeneous of degree α
differ only by a scalar multiple. Let P ′ denote the set of all α ∈ Q for
which G contains an element which is homogeneous of degree α. For
each α ∈ P ′ we now fix some Λα ∈ G which is homogeneous of degree
α. Set

D′ = span{Λα : α ∈ P ′}.
Then the following lemma is obvious.

Lemma 15.

(a) The set P ′ is a subgroup of Q.

(b) The vector space D′ has the structure of an associative division
algebra induced by composition of endomorphisms. Moreover, D′ is
naturally Q-graded with deg(Λα) = α.

Now we need the following lemma.

Lemma 16. The Q-graded associative division algebra D′ has a max-
imal Q-graded commutative subalgebra D.

Proof. Define the support supp(X) for any set X ∈ D′ in the obvious
way. For any Q-graded commutative subalgebra A of D′, it is clear
that supp(A) is a subgroup of Q. Then, for any ascending chain of
Q-graded commutative subalgebras A1 ⊂ A2,⊂ · · · ⊂ An ⊂ · · · , we
have the corresponding ascending chain of subgroups

supp(A1) ⊂ supp(A2) ⊂ · · · ⊂ supp(An) ⊂ · · · .
Since Q is a finitely generated abelian group, any ascending chain of
subgroups of Q stabilizes. Thus, there is n ∈ N such that supp(An) =
supp(An+i) for all i ∈ N. This means that An = An+i for all i ∈ N.
Therefore D′ has a maximal Q-graded commutative subalgebra D by
Zorn’s lemma. �
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Set P = supp(D). Then P is a subgroup of Q. Later on we will show
that D = D′.

Lemma 17. The P -graded associative division algebra D is isomorphic
to the group algebra kP .

Proof. Since P is a subgroup of Q, the group P is also a finitely gen-
erated abelian group. There exist α1, α2, · · · , αn ∈ P such that

P = Zα1 × Zα2 × · · · × Zαm.
Denote by mi the order of αi in Q (possibly infinite). Since k is al-
gebraically closed, we may replace each Λαi , if necessary, by its scalar
multiple such that (Λαi)

mi = 1. Redefine now

Λk1α1+k2α2+···+kmαm := (Λα1)
ki(Λα2)

k2 · · · (Λαn)kn ,

where ki = 1, 2, . . . ,mi if mi < ∞ and ki ∈ Z otherwise, for all i =
1, 2, . . . , n. It is easy to see that the set Λ := {Λk1α1+k2α2+···+kmαm}
obtained in this way is a basis of D. The set Λ is also a commutative
group with respect to composition and is isomorphic to P . Thus D is
isomorphic to the group algebra kP . �

From the proof of Lemma 17 we have that elementS Λα, for α ∈ P ,
now satisfy

ΛαΛβ = Λα+β for all α, β ∈ P.
Let I be the span of the set

{xβ − Λα(xβ) : β ∈ Q, xβ ∈ gβ and α ∈ P}.
Then I is an ideal of g.

Lemma 18. The ideal I is a proper ideal of g.

Proof. Let {βj : j ∈ B} be a set of representatives for cosets in Q/P ,

where B is an index set. Let {x(k)
βj

: k ∈ Bj} be a basis of gβj , where

Bj is an index set. Then the set

{Λ(x
(k)
βj

) : j ∈ B, k ∈ Bj}

is a basis for g. For j ∈ B and k ∈ Bj, set

Sjk := {x(k)
βj
− Λ(x

(k)
βj

) : Λ ∈ Λ}

and

S =
⋃
j∈B

⋃
k∈Bj

Sjk.

Comparing supports of involved elements, it is easy to see that the sum

I =
∑
j∈B

∑
k∈Bj

span(Sjk)



16 VOLODYMYR MAZORCHUK AND KAIMING ZHAO

is direct. Define the linear map

(8) σ : g→ k such that Λ(x
(k)
βj

) 7→ 1 for all Λ ∈ Λ.

Clearly σ is onto and σ(I) = 0. Therefore I 6= g and thus I is a proper
ideal. By construction, this ideal is pure of size two. �

Lemma 19. The ideal I is a maximal ideal of g.

Proof. Assume that I is not maximal. Then there is a proper ideal
I ′ of g which properly contains I. There must exist different elements
β, β+γ1, β+γ2, . . . in Q and non-zero elements xβ ∈ gβ, xβ+γ1 ∈ gβ+γ1 ,
xβ+γ2 ∈ gβ+γ2 , . . . , xβ+γr ∈ gβ+γr such that

(9) x := xβ + xβ+γ1 + xβ+γ2 + · · ·+ xβ+γr ∈ I ′ \ I.

Assume that the support of the latter element has the minimal possible
size among all elements in I ′ \ I. Then all γi ∈ P ′ and we have

x := xβ + Λγ1(xβ) + · · ·+ Λγr(xβ).

For any j = 1, 2, . . . ,m, we have

Λαj(x) = x− (x− Λαj(x))
= Λαj(xβ) + ΛαjΛγ1(xβ) + · · ·+ ΛαjΛγ2(xβ) ∈ I ′ \ I.

At the same time, we have

y = Λαj(xβ) + Λγ1Λαj(xβ) + · · ·+ ΛγrΛαj(xβ) ∈ I ′,

as this element has the form (9) with xβ replaced by Λαj(xβ).

Since Λαj(x) and y are both in I ′ and have the same minimal sup-
port, they must differ by a scalar factor only. Since their β + αj-terms
coincide, it follows that y = Λαj(x). Hence ΛαjΛγi = ΛγiΛαj for all
j = 1, 2, . . . ,m and i = 1, 2, . . . , n. Thus all γi ∈ P and hence I = g
or I ′ = I, a contradiction. The claim follows. �

5.2. The main result.

Theorem 20. Let Q be a finitely generated additive abelian group and
g be a Q-graded simple Lie algebra over a field k such that dim g < |k|.
Then there exists a subgroup P ⊂ Q and a simple Lie algebra a with a
Q/P -grading such that g ' g(Q,P, a).

Proof. Let I be the ideal constructed in Lemma 18. Then from Lemma 19
it follows that a = g/I is a simple Lie algebra with a (Q/P )-grading.

Now, the Q-graded canonical map

g → g(Q,P, a),
xα 7→ (xα + I)⊗ tα
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is, clearly, bijective (note that I is not mapped to zero as it is not
homogeneous). Moreover, this map is a homomorphism of Lie algebras
since

[xα, xβ] 7→
(
[xα, xβ] + I

)
⊗ tα+β = [(xα + I)⊗ tα, (xβ + I)⊗ tβ].

Therefore, this map is an isomorphism of Lie algebras. Consequently,
g ' g(Q,P, a). �

Combining Theorems 12 and 20, we obtain the following:

Corollary 21. Let Q be an abelian group and g a finite dimensional
Q-graded simple Lie algebra over an algebraically closed field k. Then
there exists a subgroup P ⊂ Q and a simple Lie algebra a with a Q/P -
grading such that g ' g(Q,P, a).

Combining Lemma 3 with Theorems 12 and 20, we obtain:

Corollary 22. Let Q be a finite additive abelian group and g a Q-
graded simple Lie algebra over a field k such that char(k) does not
divide |Q| or dim g < |k|. Then g is a direct sum of at most |Q| copies
of isomorphic ideals, each of which is a simple Lie algebra.

The following result is a generalization of [Ma, Main Theorem (a)]
which follows directly from Theorem 20.

Corollary 23. Let Q = Q0 × Q1 be an additive abelian group where
Q0 is torsion subgroup of Q. Let g be a finite dimensional Q-graded
simple Lie algebra. Then g is a Q0-graded simple Lie algebra.

Next we determine some necessary and sufficient conditions for two
graded simple Lie algebras to be isomorphic. To do this, we need some
properties for the Lie algebras g(Q,P, a) constructed in Section 2.

Lemma 24. Let g(Q,P, a) be as in Theorem 20 with dim a < |k| and
α ∈ Q. Then there is a degree α homogeneous g(Q,P, a)-module auto-
morphism of the adjoint module g(Q,P, a) if and only if α ∈ P .

Proof. Suppose α ∈ P . By construction, aᾱ+β̄ = aβ̄ for any β̄ ∈ Q/P .
It is easy to verify that the linearization of following map is a degree α
homogeneous g(Q,P, a)-module automorphism of the adjoint module
g(Q,P, a):

g(Q,P, a) → g(Q,P, a),
xβ̄ ⊗ tβ 7→ xβ̄ × tα+β,

where β ∈ Q.

Now suppose α ∈ Q \ P . Assume that the following is a degree α
homogeneous g(Q,P, a)-module automorphism of the adjoint module
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g(Q,P, a):

τ : g(Q,P, a) → g(Q,P, a),
xβ̄ ⊗ tβ 7→ µ(xβ̄)× tα+β,

where β ∈ Q and where µ is a degree ᾱ linear automorphism of the
Q/P -graded vector space a. For any xγ̄ ⊗ tγ ∈ g(Q,P, a)γ, we have

µ([xγ̄, xβ̄])⊗ tγ+β = τ([xγ̄ ⊗ tγ, xβ̄ ⊗ tβ])
= [xγ̄ ⊗ tγ, τ(xβ̄ ⊗ tβ)]
= [xγ̄ ⊗ tγ, µ(xβ̄)⊗ tβ]
= [xγ̄, µ(xβ̄)]⊗ tγ+β,

where for the second equality we use that τ is a homomorphism of the
adjoint module g(Q,P, a). This implies µ([xγ, xβ̄]) = [xγ, µ(xβ̄)] for all
β, γ ∈ Q, that is, µ is an automorphism of the adjoint module a. Then
µ is a scalar by Schur’s lemma. Therefore aβ̄ = aβ̄+ᾱ, which contradics
our assumption that α 6∈ P . �

We note that from Lemma 24 it follows that the division algebra D′

in Lemma 16 is actually commutative, that is, D′ = D. Now we
can formulate some necessary and sufficient conditions for two graded
simple Lie algebras to be isomorphic.

Theorem 25. Let Q, Q′ be abelian groups, g(Q,P, a) be a Q-graded
simple Lie algebra over k with dim a < |k| and g(Q′, P ′, a′) be a Q′-
graded Lie algebra over k with minimal gradings. Then g(Q,P, a) is
graded isomorphic to g(Q′, P ′, a′) if and only if there is a group iso-
morphism τ : Q→ Q′ such that τ(P ) = P ′ and the simple Lie algebras
a and a′ are graded isomorphic.

Proof. The “if” part is clear. Now suppose that g = g(Q,P, a) is
graded isomorphic to g′ = g(Q′, P ′, a′). There is a group isomorphism
τ : Q→ Q′ and a Lie algebra isomorphism

σ : g→ g′, xβ̄ ⊗ tβ 7→ x′
τ(β)
⊗ tτ(β),

where β̄ ∈ Q/P , τ(β) ∈ Q′/P ′, and the map µ : xβ̄ 7→ x′
τ(β)

is a vector

space isomorphism from a→ a′. Suppose that α ∈ P . Then

θ : g→ g, xβ̄ ⊗ tβ 7→ xβ̄ ⊗ tβ+α

is a Q-graded g-module automorphism of degree α. Then there is a
unique linear map θ′ : g′ → g′ which makes the following diagram
commutative:

g

σ
��

θ // g

σ
��

g′
θ′

// g′
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This means that the following diagram is commutative:

xβ̄ ⊗ tβ

σ
��

θ // xβ̄ ⊗ tα+β

σ
��

x′
τ(β)
⊗ tτ(β)

θ′
// x′
τ(β)
⊗ tτ(α)+τ(β)

We claim that θ′ is a homomorphism of Q′-graded g′-modules. Indeed,

θ′([x′
τ(γ)
⊗ tτ(γ), x′

τ(β)
⊗ tτ(β)]) = θ′([σ(xγ̄ ⊗ tγ), σ(xβ̄ ⊗ tβ)])

= θ′σ([xγ̄ ⊗ tγ, xβ̄ ⊗ tβ])
= σθ([xγ̄ ⊗ tγ, xβ̄ ⊗ tβ])
= σ([xγ̄ ⊗ tγ, θ(xβ̄ ⊗ tβ)])
= [σ(xγ̄ ⊗ tγ), σθ(xβ̄ ⊗ tβ)])
= [σ(xγ̄ ⊗ tγ), θ′σ(xβ̄ ⊗ tβ)])
= [x′

τ(γ)
⊗ tτ(γ), θ′(x′

τ(β)
⊗ tτ(β))],

for any β, γ ∈ Q. Here we use that σ is an algebra isomorphism and θ
is an automorphism of the adjoint module g(Q,P, a). By construction,
θ′ is homogeneous and has degree τ(α).

By Lemma 24, τ(α) ∈ P ′ and thus τ(P ) ⊂ P ′. By symmetry, we obtain
that P ′ ⊂ τ(P ) and thus τ(P ) = P ′. Then

µ([xγ, xβ])⊗ tτ(γ)+τ(β) = σ([xγ ⊗ tγ, xβ ⊗ tβ])

= [σ(xγ ⊗ tγ), σ(xβ ⊗ tβ)] = [µ(xγ), µ(xβ)]⊗ tτ(γ)+τ(β)),

and thus µ([xγ, xβ]) = [µ(xγ), µ(xβ)] for all β, γ ∈ Q. It follows that
µ is a graded isomorphism from the Q/P -graded Lie algebra a to the
Q′/P ′-graded Lie algebra a′. The theorem follows. �

From Corollary 21, we actually obtain a full classification of all finite-
dimensional Q-graded simple Lie algebras over any algebraically closed
field of characteristic 0 due to the recent classification of all gradings on
finite dimensional simple Lie algebras, see [EK2, El, Yu]. For a similar
classification over an algebraically closed field of characteristic p > 0 it
remains only to determine all gradings on finite dimensional simple Lie
algebras. Some partial results in this direction can be found in [EK2],
see also references therein.

6. Graded Weyl Theorem

One consequence of our classification in Theorem 20 is that any finite
dimensional Q-graded simple Lie algebra over an algebraically closed
field k of characteristic 0 is semi-simple after forgetting the grading
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(note that this property is not true in positive characteristic). This
allows us to prove a graded version of the Weyl Theorem.

Theorem 26 (Graded Weyl Theorem). Let Q be an abelian group and
g a finite dimensional Q-graded semi-simple Lie algebra over an alge-
braically closed field k of characteristic 0. Then any finite dimensional
Q-graded module V over g is completely reducible as a graded module,
that is, V is a direct sum of Q-graded simple submodules of V .

Proof. Since g is finite-dimensional, the minimal grading of g is by a
finitely generated subgroup of Q. From Theorem 20 and Lemma 3,
it follows that, as an ungraded Lie algebra, g is a finite-dimensional
semisimple Lie algebra.

We need to show that any Q-graded submodule X of a Q-graded finite
dimensional g-module W has a Q-graded complement. By Weyl Theo-
rem, we have an ungraded g-submodule Y1 such that W = X ⊕Y1. By
[EK1, Lemma 1.1] (see also [CM, Theorem 2.3’]), there is a Q-graded
submodule Y of W such that W = X ⊕ Y. The theorem follows. �

7. Graded simple modules over graded Lie algebras

7.1. Construction. LetQ be an abelian group and P a subgroup ofQ.

Let, further, g be a Q-graded Lie algebra over k. Consider g =
⊕
ᾱ∈Q/P

gᾱ

as a Q/P -graded Lie algebra with gᾱ =
⊕
β∈P

gα+β. Let V =
⊕
ᾱ∈Q/P

Vᾱ

be a simple g-module with a fixed Q/P -grading.

Then we can form the g-module V ⊗ kQ as follows: for x ∈ gα, v ∈ V
and β ∈ Q, define

x ·
(
v ⊗ tβ) = (xv)⊗ tα+β.

Define the Q-graded g-module

M(Q,P, V ) :=
⊕
α∈Q

M(Q,P, V )α, where M(Q,P, V )α := Vᾱ(α).

For example, M(Q,Q, V ) = V ⊗kQ (with the obvious Q-grading) while
M(Q, {0}, V ) = V (with the original Q-grading). From the definition
it follows that dimM(Q,P, V ) = dim(V )|P | if V is finite-dimensional
and P is finite.

We say that a simple g-module V with a Q/P -grading is grading ex-
tendable if there is a decomposition

V =
∑
α∈Q

Xα with Vᾱ =
∑
β∈P

Xα+β
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for any α ∈ Q (here both sums are not necessarily direct) such that
gβXα ⊂ Xα+β for all β ∈ Q and at least one Xα 6= Vᾱ.

Now we can obtain some necessary and sufficient conditions for the
Q-graded module M(Q,P, V ) to be Q-graded simple.

Lemma 27. The Q-graded module M(Q,P, V ) is Q-graded simple if
and only if the simple module V is not grading extendable.

Proof. If V is grading extendable, there is a decomposition V =
∑
α∈Q

Xα

with Vᾱ =
∑
β∈P

Xα+β, for any α ∈ Q, such that gαXβ ⊂ Xα+β and at

least one Xα+β 6= Vᾱ. Then the module M(Q,P, V ) has a nonzero
proper Q-graded submodule ⊕

α∈Q

Xα ⊗ tα.

Thus M(Q,P, V ) is not Q-graded simple.

Now suppose that M(Q,P, V ) is not Q-graded simple. Consider the
ideal I in CQ generated by {tα − 1 : α ∈ P} and let

N = M(Q,P, V )/(M(Q,P, V )) ∩ (V ⊗ I)).

The module N is naturally Q/P -graded and is, in fact, isomorphic to
the Q/P -graded module V with the original grading. We have that

N =
⊕
ᾱ∈Q/P

Vᾱ ⊗ tᾱ,

where {tᾱ : ᾱ ∈ Q/P} is a basis for the group algebra of Q/P . Let

π : M(Q,P, V ) � N,

be the canonical epimorphism.

Take a proper Q-graded submodule X =
⊕
α∈Q

Xα ⊗ tα of M(Q,P, V ).

Since π(X) = N , we have Vᾱ =
∑
β∈P

Xα+β for any α ∈ Q and, also,

gαXβ ⊂ Xα+β. Since W is proper, we have Xα 6= Vᾱ. Thus V is
grading extendable. �

Before giving some better necessary and sufficient conditions for the
Q-graded module M(Q,P, V ) to be Q-graded simple in the case of a
finitely generated P , we need to introduce some concepts on grading
refinements in parallel to the corresponding concepts for Lie algebras
(cf. [EK2]).
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Let R ⊂ P be subgroups of Q, let g be a Q-graded Lie algebra. Assume
that

(10) V =
⊕
ᾱ∈Q/P

Vᾱ

is a Q/P -graded g-module. We call a Q/R-grading

(11) V =
⊕

¯̄α∈Q/R

V ¯̄α

a refinement of the grading (10) if for any α ∈ Q we have

Vᾱ =
⊕

¯̄β∈P/R

V ¯̄α+¯̄β.

The grading (10) is then said to be a coarsening of the grading (11).
The refinement (11) is proper if V ¯̄α 6= Vᾱ for some α ∈ Q. The grading
(10) is called fine if it does not admit any proper refinement.

Now we can obtain some better necessary and sufficient conditions for
the Q-graded module M(Q,P, V ) to be Q-graded simple in the case
when P is finitely generated.

Lemma 28. Let P be a finitely generated subgroup of the abelian group
Q. Assume that dimV < |k|. Then the Q-graded module M(Q,P, V )
is Q-graded simple if and only if the Q/P -grading of the simple module
V is fine.

Proof. First suppose that the Q/P -grading of V is not fine, i.e., it has
a refinement of the form (11) for some subgroup R ( P with V ¯̄α 6= Vᾱ
for some α ∈ Q. Then M(Q,P, V ) has a nonzero proper Q-graded
submodule ⊕

α∈Q

V ¯̄α ⊗ tα

and hence is not Q-graded simple.

Now suppose that M(Q,P, V ) is not Q-graded simple. Consider the
ideal I in CQ generated by {tα − 1 : α ∈ P} and let

N = M(Q,P, V )/(M(Q,P, V )) ∩ (V ⊗ I)).

The module N is naturally Q/P -graded and is, in fact, isomorphic to
the Q/P -graded module V with the original grading. We have that

N =
⊕
ᾱ∈Q/P

Vᾱ ⊗ tᾱ,

where {tᾱ : ᾱ ∈ Q/P} forms a basis for the group algebra of Q/P . Let

π : M(Q,P, V ) � N,

be the canonical epimorphism.
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For any nonzero proper Q-graded submodule X =
⊕
α∈Q

Xα ⊗ tα of

M(Q,P, V ), where Xα ⊂ Vᾱ, we have that π(X) = N since N is
simple. Consequently,

(12) Vᾱ =
∑
β∈P

Xα+β

for any α ∈ Q and gαXγ ⊂ Xα+γ for any γ ∈ Q. Since X is a proper
submodule, we have Xα 6= Vᾱ for some α ∈ Q.

Since P is finitely generated, in particular, noetherian, there is a (not
necessarily unique) maximal subgroup R of P such that the Q/R-
graded module M(Q/R, P/R, V ) is not simple. In this case for any
subgroup R1 of Q such that R ( R1, the corresponding Q/R1-graded
module M(Q/R1, P/R1, V ) is simple.

Without loss of generality we may assume that R = 0. Take a nonzero
proper Q-graded submodule X. We will show that the sum (12) is
direct.

For any β ∈ P , the map

Λβ : M(Q,P, V ) → M(Q,P, V ),
vᾱ ⊗ tα 7→ vᾱ ⊗ tα+β,

is a homogeneous automorphism of M(Q,P, V ) of degree β. Moreover,
we have Λβ1Λβ2 = Λβ1+β2 for any β1, β2 ∈ P .

If Xα+β ∩ Xα 6= 0 for some nonzero β ∈ P and some α ∈ Q, the
submodule X(1) := Λβ(X) ∩ X 6= 0. Clearly Λβ(X(1)) = X(1). Thus

X
(1)
γ = X

(1)
γ+β for any γ ∈ Q, that is

X(1)
γ = X

(1)
γ+kβ, for any γ ∈ Q, k ∈ Z.

Let R1 = Zβ which is a subgroup of P . Then⊕
¯̄α∈Q/R1

X
(1)
¯̄α ⊗ t

¯̄α, where X
(1)
¯̄α = X(1)

α ,

is a nonzero proper submodule of M(Q/R1, P/R1, V ). This contradicts
our assumption on P . Thus

(13) Xα+β ∩Xα = 0, for all α ∈ Q and β ∈ P \ {0}.

Let U be the universal enveloping algebra of g. We have the obvious
decomposition

U =
⊕
γ∈Q

Uγ

corresponding to the Q-grading of g.
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Assume that the sum in (12) is not direct and

vα + vα+β1 + vα+β2 + · · ·+ vα+βr = 0

where vα ∈ Xα, vα+β1 ∈ Xα+β1 , . . . , vα+βr ∈ Xα+βr , vα 6= 0 and r
is minimal possible. Let X(2) be the Q/P -graded submodule of X
generated by the element

v = vα ⊗ tα + vα+β1 ⊗ tα+β1 + vα+β2 ⊗ tα+β2 + · · ·+ vα+βr ⊗ tα+βr .

Elements in X(2) are linear combinations of vectors of the form

uγvα ⊗ tα+γ + uγvα+β1 ⊗ tα+β1+γ + · · ·+ uγvα+βr ⊗ tα+βr+γ,

where uγ ∈ Uγ. By construction, X(2) is a pure submodule of size
r+ 1 satisfying (13). By varying γ and uγ, the element uγvα will cover
the whole of V since V is a simple g-module. Define the vector space
homomorphisms Φi : V → V , for i = 1, 2, . . . , r, such that

uγvα ⊗ tα+γ + uγvα+β1 ⊗ tα+β1+γ + · · ·+ uγvα+βr ⊗ tα+βr+γ =

= uγvα ⊗ tα+γ + Φ1(uγvα)⊗ tα+β1+γ + · · ·+ Φr(uγvα)⊗ tα+βr+γ.

From the minimality of r it follows that that each Φi is a nonzero
g-module homomorphism (for otherwise, taking a linear combination,
we get an element in X(2) of smaller size). From Theorem 14 it thus
follows that that each Φi is a nonzero scalar. In particular, vα+β1 = avα
for some nonzero a ∈ k. So Xα ∩ Xα+β1 6= 0, which contradicts (13).
Thus the sums (12) are direct. Hence the Q/P -grading of V is not fine.
This completes the proof. �

7.2. Classification of graded simple modules. Let Q be a finitely

generated additive abelian group and g =
⊕
α∈Q

gα a Q-graded Lie alge-

bra over a field k. Let W =
⊕
α∈Q

Wα be a Q-graded simple g-module

such that dim(W ) < |k|. Similarly to the above, we define supp(v) for

any v =
∑
α∈Q

vα ∈ W , where vα ∈ Wα, and size(N) for any subset N of

the module W .

We assume that W is not simple as a g-module. Let N be a proper
nonzero submodule of W . Set r := size(N) > 1 and define

R(N) := span{v ∈ N : size(v) = r}.
Then R(N) is a non-homogeneous non-zero proper submodule of g. We
will say that a submodule N of W is pure of size r if size(N) = r and,
moreover, R(N) = N .

Consider a nonzero element vβ + vβ+α1 + · · · vβ+αr−1 ∈ N . Fix these
α1, α2, · · · , αr−1 ∈ Q0. Then the subset of N spanned by all elements
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of the form wγ +wγ+α1 + · · ·wγ+αr−1 , where γ ∈ Q, which belong to N ,
forms a nonzero submodule of N which is pure. Now we replace our N
with this pure submodule of size r. Since W is graded simple, we can
define a linear map

ΛN,αi : W → W, wγ 7→ wγ+αi ,

where wγ +wγ+α1 + · · ·+wγ+αr−1 ∈ N . Similarly to Subsection 3.1, one
shows that each ΛN,αi is a homogeneous degree αi automorphism of the
module W . From Theorem 14 it follows that ΛN,αi does not depend on
the choice of N up to a scalar multiple. We thus simplify the notation
ΛN,αi to Λαi . Set

P ′ = {α ∈ Q : there is a degree α module isomorphism of W},
D′ = span{Λα : α ∈ P ′}.

It is easy to check that we have analogues of Lemmata 15, 16, and 17
for these P ′ and D′.

Let D be a maximal Q-graded commutative subalgebra of D′ and let
P = supp(D) which is a subgroup of Q. Using Lemmata 15, 16, and
17, from now on, we may take Λα for α ∈ P such that

ΛαΛβ = Λα+β for all α, β ∈ P.
Let V ′ be the span of the set

{vβ − Λα(vβ) : β ∈ Q, vβ ∈ Wβ and α ∈ P}.
Then V ′ is a submodule of W .

Lemma 29. The submodule V ′ is a proper maximal submodule of W .

Proof. Mutatis mutandis the proof of Lemmata 18, 19. �

Now we have the following:

Theorem 30. Let Q be a finitely generated additive abelian group and
g be a Q-graded Lie algebra over a field k. Let W be a graded simple
g-module such that dim(W ) < |k|. Then there is a subgroup P ⊂ Q
and a simple g-module V with a fine Q/P -grading such that we have
W 'M(Q,P, V ).

Proof. From Lemma 29 we have that the module V = W/V ′ is a simple
g-module with a Q/P -grading. It is easy to verify that the Q-graded
canonical map

W → M(Q,P, V ),
vα 7→ (vα + I)⊗ tα

is a degree 0 isomorphism of g-modules. Thus W ' M(Q,P, V ). The
fact that the Q/P -grading V is fine follows from Theorem 28. �
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Lemma 31. Let g be a Q-graded Lie algebra over k and M(Q,P, V )
a graded simple g-module, where P is a subgroup of Q, V is a simple
g-module with a fine Q/P -grading and dim(V ) < |k|. Then the module
M(Q,P, V ) admits a homogeneous g-module automorphism of degree
α if and only if α ∈ P .

Proof. For α ∈ P , we have that Vᾱ+β̄ = Vβ̄ for any β̄ ∈ Q/P . Then the
map

M(Q,P, V ) → M(Q,P, V ),
vβ̄ ⊗ tβ 7→ vβ̄ × tα+β,

where β ∈ Q, is a homogeneous automorphism of M(Q,P, V ) of degree
α.

Now suppose α ∈ Q \ P and we have a homogeneous automorphism τ
of M(Q,P, V ) of degree α given by

M(Q,P, V ) → M(Q,P, V ),
vβ̄ ⊗ tβ 7→ µ(vβ̄)× tα+β,

where β ∈ Q and µ is a degree ᾱ linear automorphism of the Q/P -
graded vector space V . For any xγ ∈ gγ, we have

µ(xγvβ̄)⊗ tα+γ+β = τ((xγvβ̄)⊗ tβ+γ)
= τ(xγ(vβ̄ ⊗ tβ))
= xγ(τ(vβ̄ ⊗ tβ))
= (xγµ(vβ̄))⊗ tα+γ+β.

This means that µ(xγvβ̄) = xγµ(vβ̄) for all β, γ ∈ Q and hence µ is an
automorphism of V . From Schur’s lemma it follows that µ is scalar.
Hence Vβ̄ = Vβ̄+ᾱ, contradicting α 6∈ P . The claim of the lemma
follows. �

Now we can obtain some necessary and sufficient conditions for two
graded simple modules over a Q-graded Lie algebra g to be isomorphic
as graded modules.

Theorem 32. Let g be a Q-graded Lie algebra. Let M(Q,P, V ) and
M(Q,P ′, V ′) be two graded simple g-modules where P, P ′ are subgroups
of Q and V, V ′ are simple g-modules of dimension smaller than |k|
with fine gradings over Q/P and Q/P ′, respectively. Then M(Q,P, V )
is graded isomorphic to M(Q,P ′, V ′) if and only if P = P ′ and the
simple modules V and V ′ are graded isomorphic.

Proof. The “if” part is clear. Now suppose that M = M(Q,P, V ) is
graded isomorphic to M ′ = M(Q,P ′, V ′). There is α0 ∈ Q and a degree
α0 module isomorphism

σ : M →M ′, vβ̄ ⊗ tβ 7→ v′¯̄β+¯̄α0
⊗ tα0+β,
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where β̄ ∈ Q/P , ¯̄β, ¯̄α0 ∈ Q/P ′ and the map µ : vβ̄ 7→ v′¯̄β+¯̄α0
is a vector

space isomorphism from V to V ′ (because σ is an isomorphism). Let
α ∈ P and

θ : M →M, vβ̄ ⊗ tβ 7→ vβ̄ ⊗ tβ+α

be the Q-graded g-module automorphism of degree α. Then there is a
unique linear isomorphism θ′ making the following diagram commuta-
tive:

M

σ

��

θ // M

σ

��
M ′

θ′
// M ′

This means that the following diagram is commutative:

vβ̄ ⊗ tβ

σ
��

θ // vβ̄ ⊗ tα+β

σ
��

v′¯̄β+¯̄α0
⊗ tβ+α0

θ′
// v′

¯̄α+¯̄β+¯̄α0
⊗ tα+β+α0

For any xγ ∈ gγ, we have

θ′(xγ(v
′
¯̄β+¯̄α0
⊗ tβ+α0)) = θ′(xγσ(vβ̄ ⊗ tβ))

= θ′(σ(xγvβ̄ ⊗ tγ+β))
= σθ(xγvβ̄ ⊗ tγ+β))
= xγ(θ

′σ(vβ̄ ⊗ tβ))
= xγθ

′(v′¯̄β+¯̄α0
⊗ tβ+α0)

for all β, γ ∈ Q. This shows that θ′ is an automorphism of g′-modules.
This means that α ∈ P ′ by Lemma 31. Thus P ⊂ P ′. By symmetry,
we even get P ′ ⊂ P and hence P = P ′. Further,

µ(xγvβ)⊗ tγ+β+α0 = σ(xγvβ ⊗ tβ+γ)
= σ(xγ(vβ̄ ⊗ tβ))
= xγσ(vβ̄ ⊗ tβ)
= xγ(µ(vβ̄)⊗ tβ+α0)
= xγµ(vβ̄)⊗ tγ+β+α0 .

Therefore, µ(xγvβ̄) = xγµ(vβ) and hence µ is a graded isomorphism
from the Q/P -graded module V to the Q/P -graded module V ′. The
theorem follows. �

Our Classification Theorem 30 reduces classification ofQ-graded simple
modules over a Q-graded Lie algebra g to classification of fine Q/P -
grading on all simple g-modules, for any subgroup P of Q. Some results
in this direction can be found in [EK1].
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