SUBMODULE STRUCTURE OF GENERALIZED VERMA MODULES
INDUCED FROM GENERIC GELFAND-ZETLIN MODULES
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ABSTRACT. For complex Lie algebra sl(n,C) we study the submodule structure of gener-
alized Verma modules induced from generic Gelfand-Zetlin modules over some subalgebra
of type sl(k,C). We obtain necessary and sufficient conditions for the existence of a
submodule generalizing the BGG theorem for Verma modules.

1. INTRODUCTION

One of the basic facts in the theory of highest weight representations of finite - dimen-
sional complex Lie algebras, established by Bernstein - Gelfand - Gelfand ([1], [4]) is the
description of the submodule structure of Verma modules in terms of the Weyl group action
on the weight space, considered as a parameter space of the isomorphism classes of Verma
modules. The original theorem asserts that

if M(\) and M(u) are Verma modules with highest weights X\ — p and p — p, then
M(p) € M(X) if and only if there exist reflections wg,, wg,, ... ,ws, in the Weyl group
such that

K= wWg,Wg,_, -- 'wﬂl()‘) < wg,_y - 'wﬂl(/\) <... < wﬂl()‘) <A

A generalization of these results in the case of generalized Verma modules (GVM) in-
duced from the infinite-dimensional simple weight si(2, C)-modules with no highest or
lowest weight was obtained in the case of sl(n,C) in [11] and in the case of arbitrary
simple algebra except Gy in [8]. Those articles deal with the so-called a-stratified GVM,
i.e. those induced from simple weight s/(2, C)-module with no highest or lowest weight.
A criterion of the existence of a non-trivial homomorphism between a-stratified GVM'’s is
formulated (as in the classical case) in terms of the Weyl group action on some algebraic
variety which parametrizes a set of corresponding GVM’s.

We note some peculiar features of that description:

e the space of parameters A is a 2-sheets covering of the variety of the isomorphism
classes of GVM’s;

e the submodules are parametrized by the cosets W/H, where H is the subgroup of W,
corresponding to the root system {«a, —a};

e an action of the Weyl group on A is not originated from the action on the weight

space $* and does not induce an action on the isomorphism classes of GVM.
1
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In the present paper we apply the technique from [11], [8] for a new class of modules. We
consider the standard inclusion si(k,C) < sl(n,C) on the first k£ rows and columns and
investigate the submodule structure of GVM’s associated with this inclusion. We induce
generalized Verma sl(n,C)-module M(A, V) from the so-called simple generic Gelfand-
Zetlin sl(k, C)-modules V' ([5]). This seems to be a natural generalization of the results
discussed above. The answer is obtained in the same terms as in [1],[11],[8]. Moreover, our
results coincide with classical BGG-theorem in the case kK = 1 and with results of [11],[8]
in the case k = 2.

Note, that modules discussed in our paper are not “weight modules” in a standard sense.
More precisely, in the case k£ > 2 their weight spaces (with respect to a Cartan subalgebra)
are infinite-dimensional.

We use a technique of Gelfand - Zetlin modules developed in [5]. These modules are
defined by some finite-dimensionality conditions with respect to the so called Gelfand -
Zetlin subalgebra T instead of S(£)) in the classical case.

We define a special partial order on the set of parameters of GVM and obtain our main
result in terms of the Weyl group action on this set. We also reformulate our results in
terms of Bruhat order on the quotients S, /Sy where S is the Weyl group corresponding
to subalgebra sl(k, C) and give a criterion for GVM to be simple.

Let us briefly describe a structure of the paper. In section 2 we give some previous
notations and results about generalized Verma modules. In section 3 we collect all the
preliminaries about Gelfand-Zetlin modules, following closely [5] (see also [13]). The only
difference is a way of parametrizing of such modules. In section 4 we discuss modules
induced from subalgebra of corank one. In section 5 we introduce a set which parametrizes
GVM and define an action of the Weyl group on this set. Theorem 3 of this section is
an analogue of Harish-Chandra isomorphism theorem ([4, Theorem 7.4.5]). In section 6
we define an analogue of the Kostant function and show that it describes the growth of
GVM. This allows us to prove some analogue of [4, Theorem 7.6.6]. Finally, in section 7
we obtain the BGG-like criterion for the existence of a submodule in GVM induced from
a simple generic GZ-module. As a corollary we give a criterion for GVM to be simple and
obtain some results related to the Bruhat order on the quotients of the Weyl group.

2. GENERALIZED VERMA MODULES

Let C denotes the complex numbers, Z denotes the ring of integers, N denotes the set
of all positive integers and Z, denotes the set of all non-negative integers.

Let & be a simple complex finite-dimensional Lie algebra. We fix a Cartan subalgebra
$H in &. Let A be the corresponding root system and W be the Weyl group of A. For
some base m of A let A = A, UA_ be the partition of A into positive and negative roots
with respect to 7. For a € A we denote by &, the corresponding root space in &. Set p =

1

3 Z « and let < -, - > be the standard form on $*. For a € A we denote by X, € &,
aEA 4

an element from the fixed Weyl-Chevalle basis.
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For a Lie algebra 2 we will denote by U = U(2) the universal enveloping algebra of 2,
by Z(2) the center of U and by -mod its category of finitely generated left modules.

Let ny be the Lie subalgebras in &, generated by X.,, where o runs through the set of
all positive roots. Then we have the following triangular decomposition of &:

@zn_@f)@m_.

Consider a subset S C 7 and let Ag = (Ag); U (Ag)- be the root system generated
by vectors of S together with the standard decomposition with respect to the base S.
Denote by Ws the Weyl group of Ag (Ws is a subgroup of W). Let &5 be a semisimple
Lie subalgebra of &, generated by X, for all @ € Ag. We will denote by $g its Cartan
subalgebra and by Ug its enveloping algebra. We denote by ng (= n}) the subalgebra of
n; generated by vectors &, for @« € Ag and by ng the corresponding subalgebra of n_.
Set %5 = @5'{‘5)‘*‘1’15.

For a &-module V' and A € $* set

Vi={veV : hw=AMhw, VheH}.

If V) # 0, then we will call A a weight of V and V) the corresponding weight space. We
will call a & — module V' weight module if it is a direct sum of V) where A runs through
$* (we remark, that we do not assume the finite-dimensionality of the spaces V,.) For a
weight module V' and A € $* a non-zero element v € V), is called S-primitive (with respect
to m) provided ngv = 0.

Consider a weight &g-module V and A € ($°)*, where $° = (Hs)* is the orthogonal

1
subspace in §) with respect to the standard form. Let pg = 3 Z B and p° = p — ps.
Be(As)+
Putting ngv = 0 for all v € V and hv = (A — p%)(h)v for all h € $° we turn V into
$Bg-module. Then we can define a -module

M\ V)=U®) &) V.
Bs)

This module is called Generalized Verma Module (GVM) corresponding to the module V/
and $°-weight \ provided V is simple.

From now on all the modules of the form M (X, V') are assumed to be Generalized Verma
Modules.

First of all we recall some basic properties of GVM:

Proposition 1. 1. M (A, V) is a weight module.
2. M (A, V) has the unique mazimal submodule.
3. Every S-primitive vector of M(\, V') generates a submodule isomorphic to some mod-
ule M(u, V1), where p € (%)% and Vi is a weight &g-module.
4. LetT be a weight &-module generated by S—primitive vector v of weight A— p andTg =
Usv be a simple Us-module. Then there ezists a canonical epimorphism ¢ : M (N5,
Ts) — T, where \° = /\|5,Js, such that p(1 ®t,) = t,, t, € Ts.
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5. If X € M(\,V) is a nontrivial submodule then X contains a submodule Y generated
by S-primitive element.
6. The module M (A, V) is U(ng)-free with V as a space of free generators.

Proof. 1 follows easily from the fact that the module, generated by a weight vector over
parabolic subalgebra is a weight module. The proof of 2 is quite analogues to that of [4,
Proposition 7.1.11]. 3 follows from the PBW theorem by standard arguments. 4 follows
from the universal property of tensor product. 5, 6 are obvious. O

We denote by L(A, V) the unique simple quotient of M (A, V).

In this paper we will consider the case of the Lie algebra sl(n, C) with a Cartan subalge-
bra $) consisting of all diagonal matrices with zero trace. We denote by {ay, ..., ap_1} the
standard set of simple roots. The root space corresponding to the root v = +(a;+ -+
;) is generated by X, that is a matrix unit e; j41 or e;11, in the case + or — respectively.

3. GELFAND-ZETLIN ALGEBRA AND (GELFAND-ZETLIN MODULES

Consider the Lie algebras &,, = gl(m,C) and fix the notations U,, = U(®,,) and
Zm = Z(&p), m > 1. Let us fix some n > 1, set & = &, U = U, and identify &,, for
m < n with the Lie subalgebra of & generated by the matrix units {e;;|i,7 = 1,...,m}.
Then we obtain the inclusions

®1C®2C...®n=®
and the induced inclusions
U cU,C Un:U

Let I' (= I',,) be the subalgebra of U generated by {Z,, |m =1,...,n}. We will call it
Gelfand-Zetlin subalgebra (GZ-subalgebra) of U.

Proposition 2 ([13]). The algebra Z,, is a polynomial algebra in m variables {cni| k =
1,...,m}, where

Cmk = E €i1i26i2i3 e 6iki1
i15eenin€{1,...;m}

+1)

The algebra I' is a polynomaial algebra in variables ¢;;, 1 < j < i < n.
We need more convenient set of generators in GZ-algebra I'. Following [13] to present
new generators for I' we will use the notion of tableauz.
n(n+1)

Let £L = C 2. The elements of £ will be called tableauzr and considered as double
indexed families

[=A{lgm|k=1,...,n;m=1,... k}.

We denote by §* the Kronecker tableaux, i.e. df' = 1 and other coordinates are equal 0.
For arbitrary tableaux [1] we will denote

o [I]l.={li;|i=1,2,...,i} — the i-th row of [[];
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° [l]Z ={lk;|k=1,2,...,45=1,2,...,k} — the tableaux formed by the first ¢ rows
of [1].

For a vector a = (a1,-..,a,) € C* we denote
L<a>={leL|lyy=a; i=1,...,n}.

We consider a polynomial algebra A in @ variables \,,;, where m =1, ..., n and
i=1,...,m. Putting \;([!]) = lm; we identify A with the algebra of polynomial functions
on L. The product of the symmetrical groups G = S1x Syx ... XS, acts on L as follows:
Sy permutes elements of [/],. Clearly this induces an action of G on the algebra A.

Proposition 3 ([13],[5]). Leti: [ — A be a homomorphism, which maps

(1) Coe g“m +m) ] (1 - %) .

i mi /\mj
The image of 1 coincides with the set of G-invariant elements in A.

We will identify I with it’s image in A.

We choose a new set {v;;}, 1 < j < i < n of generators of the polynomial ring I', where
7i; denotes j—th elementary symmetrical function on A1, ..., Aj.

By [1] we denote the universal tableauz which contains element );; on the place ij.

For any n > 1 denote

Eo(n) = {[l”l”EZ,lS]Slgn—l,ln]:(),lgjén},

Li(n) = {1l = lmj 2,1 <i<j<m<n—1};

Lo(n) = Li(m)N A[1]|lmi = lms1; € Z,
1<i<m;l<j<m+L1<m<n-1};

Ls(n) = Lom)N {[l]|lpi—ln; €Z,1<i<j<n}.

Remark that if [1] € £o(n) then [1]"7" € L3(n —1).
The set Lo(n) is obviously a lattice in C*5 . To simplify our notations we will write

L; instead of £;(n), i = 0, 1, 2, 3 since n will be fixed.

Denote by S;, ¢ = 1, 2, 3 the multiplicative sets in A, where

e S is generated by (Api— Amj —t ), 1 <m<n—1,i#j,teZ;

e S, is generated by S; and (Api— Apg1;— 1), 1 <i<m, 1<j<m+1,1<m<

n—1,t€Z;

e S; is generated by S; and (Api— A\pj— 1), 1 <i< j<n,teZ.
Let A; be the localization of A by S;, ¢« = 1,2,3. Obviously, £; can be identified with the
set of maximal ideals of A;.

An U-module V is called Gelfand-Zetlin module (GZ-module) provided it is a direct sum
of finite - dimensional ['-modules. For y : I' — C set

VX={veV]|(c—x(c)'v=0forall c € T and some ¢ € N} .
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We will call VX the GZ-root subspace corresponding to the root y € I'*. Then the direct

sum above can be rewritten as @ VX. We will write Supp V' for the set of all non-zero
xer-

GZ-roots of V, i.e. for the set of all x € ['* such that VX # 0.

The subspace VX is called GZ - weight subspace provided an action of I is diagonalizable
on it. We will denoted such a subspace by V,.

For a commutative complex algebra A we define a family V of U-modules over A as
an U-A-bimodule (equivalently, as Yy = U ® A-module), free as A-module. Denote by
Specm A the space of maximal ideals of A endowed with Zariski topology. For a point x €
Specm A, which we identify with the corresponding homomorphism x : A — C, we define
the specialization V, of V in the point x as ¥V ® 4 C,, where C, is the field C endowed by
x with an A-module structure. As an example of such family over S[$)°] one can consider,
following PBW theorem, the family of all modules M (A, V') with fixed V.

We will identify £; with Specm A; and will consider the families of U-modules over A;.
We will also say that such a family is parametrized by L;.

The GZ-formulae allows us to define a universal GZ-module as a family over A; and «a
universal generic GZ-module as a family over A,.

Proposition 4. Consider a free Ai-module V with free generators {vy| [1] —[1] € Lo}.
1. The following formulae defines an U ® A1 — module structure on V:

Crko1) = b ([1])0pigs Emvri) = Y Gy (1) Vy19ms)
=1

where EY = emmi1, B, = €miim, m=1,...,n—1 and
- 1
ensll1) = 3l +m) 1;[( )

Hj(lmzl:lj - lmz)
H#i(lmj - lmi)
2. If [1], [I'] € Ly, then Vi1 = Vi if and only if there exists g € G, such that [I']—

g[l] € Lo.
3. A specialization Vi) of V, where [1] € Ly is a simple U-module.

ami([1]) = F

Proof. Follows from [5, Proposition 21| and Harish-Chandra theorem [5, Proposition 22].
U

A simple module V;;; will be called generic GZ-module provided [I] € £, and strongly
generic provided [1] € L;.

We can naturally view Vj;; as sl(n, C)-module. Fix the standard inclusion map si(n, C) C
gl(n,C). This inclusion allows us to consider every gl(n,C)-module as sl(n,C)-module.
Then the sets £; will also parametrize the corresponding sets of sl(n, C)-modules with the
only difference that the layer of an isomorphism class is not countable (as for gl(n,C)),
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but 1-dimensional. Analogously, tableaux will parametrize the weights of GZ-algebra T' N
U(sl(n, C)) for si(n, C).

From now on we will consider all modules as sl(n,C)-modules but keep all notation from
this chapter. It will not lead us to the ambiguity. The main goal of our paper is to describe
the submodule structure of M (A, V) for a generic GZ-module V.

Let S be the subset of 7 corresponding to the subalgebra si(k, C) (we will say that such
subset is well-defined). Let V' be a simple generic GZ-module over si(k, C) of the form Vy;;
and M (X, V) be the corresponding GVM. The modules M (A, V) in a natural way form a
family over Specm Af, where A7 = A1® S(9H%). Let U; = U;(8) ( UP(Bs)) denotes the
algebra U(B)® A; (U(Bs)® A7), i =1, 2, 3. Then V¥ = V® S(H°) is endowed with a
natural structure of U (Bg)-module by setting ng) = 0. Denote

MWV)=U; Q) V5.
US (8)

We will call the A5-family M(V) universal generic GVM. At the same way we will
call universal strongly generic GVM the restriction of this family on the parameter set
L3. Clearly, we can obtain GVM M (A, V) induced from generic GZ-module V' = V};; by
specialization of M(V) with respect to [/] and .

For a GZ-module V' we will also denote by V; the root space corresponding to a tableaux
[!] and say that any non-trivial v € V; has GZ-tableauz [1].

Corollary 1 (of Theorem 30 in [5]). For[l] € L there exists a unique simple GZ-module
V with V; # 0.

We will also need the following lemma [5, Proposition 21].

Lemma 1. IfV is a GZ-module, V] is it’s root space with the tableauz [I] € L, then
i i
eiir1 (Vi) C @Vigsu,i=1,...,n =1 ez1:(V)) C PVis, i =2,...,n.
j=1 j=1

For a vector x = (x1,Z,...,x,) we define mx = (21,..., % 1,Ziz1,---,Ty). We will
write  ~ y if there exists o € S, such that £ = (Yo(1), - - -, Yo(n))-

Theorem 1. Let V be a simple GZ-module over sl(k,C) and X € ($°)*. A module
M\, V) is GZ-module over sl(n,C).

Proof. Since the module M (), V) is generated over sl(n,C) by some eigenvector for I" it
should be GZ-module ([5]). O

4. MODULES INDUCED FROM SUBALGEBRA OF CORANK ONE

The aim of this section is to establish some sufficient conditions for the existence of a
submodule in M (X, V) in some special case (see below). Theorem 2 is a substitution in
the proof of the main theorem 8 of the theory of finite-dimensional representations of the
algebra sl(2, C) (see [4, proposition 7.1.15]), as it used in [1],[4].
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Let & = gl(n+1,C), m = {a, ..., a,} be the standard set of simple roots, S = {ay,
ey Qg 1}, G5 = gl(n,C) C gl(n+ 1,C). Consider a strongly generic GZ-module V' over
Bs.

In this case we are able to give an alternative construction of GVM induced from strongly
generic GZ-module over B, as a family over the polynomial ring A3[p], where p is a free
variable. Let v € V' be a GZ-vector which has a tableaux [1]. Since V is strongly generic
it follows that so is [/].

For p € C consider an algebra homomorphism ®,,,, : Aj(n+1) — As(n)[p] induced from
the following map of tableaux: [/]+ [l|p], where ([/|p])" = [I] and [I|p], , = ([1],, ).

Lemma 2. Let T C L,
T ={[t]|tns1; =0V j; tn; € Z~ U{0}Vy; ti; € ZVj,i<n}.
and
T=A{llp]+[t][[t]e T} =Z(lp])
Then for As[p](n)-family Vp, = V@, As[p] a As[p]-submodule My = V,|; is also U-
submodule.

Proof. Follows from proposition 4. O

A specialization of My, in the point [I/|p] will be denoted by Mj;,;. The following
statement is an easy corollary of GZ-formulae.

Lemma 3. A restriction of the module My,) on the GZ-weights
[lp]+{[t] €T [ty;=0,j=1,2,...,n},
is a simple &g-module isomorphic to V = V];).

Remark, that for any GZ-module M and any S-primitive element v € M with weight
decomposition v = Z ar4)vre) (v € My) all the components vy are also S—primitive.

We will call an element [s] € Z S-primitive tableauz if there exists j € {1,...,n+ 1}
such that [s], ~m[s], ;-

Lemma 4. An element v;5) € Myy,) which has a tableauz [ s] is S-primitive if and only if
[s] is S-primitive tableau.

Proof. Let v, be an S-primitive vector. Then by GZ-formulae (proposition 4, lemma 1)

CnntlV[s] = Za:;(s)v[lwm] =0
i=1
so a;.(s) = 0 for all 7. Thus [s] is S-primitive.
Conversely, suppose that [s] is an S-primitive tableaux. It follows easily from GZ-
formulae that e, ,41v[,) = 0. Assume that for some 1 < 7 < n + 1 holds €;,417[,1 = 0 and
show that e;_1n41v[5] = 0. One have

€i—1n+1V[s] = [61—1i,€m+1]?)[s] = €i-1i€in+1V[s] — €in+1€i—1iV[s] =
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0 — €int1(€i—14v[5]) = 0.
Hence v, is S-primitive. O

Lemma 5. 1. Ifl,; —p & N holds for all i then My, is simple.
2. If there erists k, 1 < k < n such that I,y — p € N then My, contains the unique
submodule isomorphic to M), 1, where [s] is defined as follows:

(sl =1l];, 1 #n; [s],; =1[lpl,;, 7 # k5 [sly =p
Moreover, such k is uniquely defined.

Proof. The reducibility of M|, causes the existence of a non-trivial S-primitive tableaux
in Z by lemma 4. But in the case 1 there were no S-primitive tableaux in I except of the
form [l|p] + [t], where

[t] € TI = {[t”] € T . tn]‘ = 0}
This proves 1.
The same arguments imply that in the second case there exists a unique (up to shift

on 7') tableaux [s] which is S-primitive. Clearly, it defines the unique submodule M.
Lemma is proved. O

Lemma 6. Let V be an simple generic GZ-module over &5 and A € (9°)*. Then M(\,V)
has a composition series.

Proof. We denote by v some GZ-weight generator of V. For p € Supp M (A, V) consider
the &5 — module N = UsM (A, V),. Obviously, N is GZ-module over &g. It follows from
lemma 1 that there exist only a finite number of GZ-weights in N up to a shift on 7" (see
proof of lemma 5). But then one have

N= Y Xa.. XoUsv,
(al,...,as)
where each a; € A_\ (Ag)_.

Following lemma 1 for a fixed GZ-tableaux [t'] of N there is finitely many GZ-tableaux
[t] of V such that for any GZ-element v which has GZ-tableaux [¢] holds

FXal .. .XasU N N[tl] 7é 0.

This means that all GZ-root spaces of N are finite - dimensional and belong to the finite
number of the cosets [u ]|+ Ly(n). Therefore N has a composition series as Ug -module.
By [6, Proposition 3] there exist only finitely many cosets p+ (£s)* with the property that
there can exist a subquotient of M (A, V') with S-primitive vector of weight in p + ($s)*.
This implies that U-module M (A, V) has a composition series.

0

Lemma 7. Let Myy,; be a module satisfying the conditions of lemma 5.1 and generated
by GZ-weight S-primitive vector v. Denote Vi) = Usv and let A— p° be a H%-weight of v.
Then the canonical epimorphism

P M(A Vi) — My
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is an isomorphism (Note, that A does not depend on the choice of v.)

Proof. Clearly, M) appears exactly ones as a subquotient in a composition series for
M (X, V};)) and the lemma follows. O

Lemma 8. Let My, contains the unique submodule M,y (equivalently, My, satisfy con-
ditions of lemma 5.2)) and X and V}; are defined as in lemma 7. Then there exists an
S-primitive element in M (X, V(1) that has GZ-tableaur | s ).

Proof. By universal property of M(\,V];]) we can consider an epimorphism
@ M(A V) = M)

The same arguments as in lemma 7 imply that a composition series of ker ¢ contains only
M, as subquotients. Let v be an element of M (X, V};;) such that ¢(v) = v[,), where v,
denotes a canonical generator of M,j. Then €;,.1v € ker ¢, since p(€;n410) = €in410[s] =
0. But by lemma 1 any GZ-weight of e;, v does not belong to Suppker ¢ and thus
eint1v = 0. Finally, we obtain that v is S-primitive vector. O

Let M(A,V) be GVM generated by S-primitive vector v which has the GZ-tableaux
[llp] (note that now we consider the case of generic, but not necessary strongly generic
module V). We assume that there exists j € {1,...,n} such that [{] ;—p € N and denote
by [s] the following tableaux:

(sl = it # 15 [s]p = [ B # 55 [s]; =1

Theorem 2. Under the conditions above there exists an S-primitive vector v in the module
M (X, V) such that v has an S-primitive GZ-tableauz [ s|l,; ].

Proof. 1t follows from lemmas 7,8 that the statement is true in the case of strongly generic
tableaux [[].

We consider the modules M(), V) as a Aj-family. Put [¢] = [|p] — [s|ln;]. First of all
we will show that the set

{[u]: there exists S-primitive vector in M (X, V], ») which has the tableaux [u] — [¢]}

is Zariski closed in (9°)* x Ly(n).
For m = {ay,...,a,} and 1 < k < n we denote

Ve =0+ -+ oy €A,

For N € N we consider a finite dimensional space Fiy C U generated by all elements of
the form

k k kn
[y, .. ky) = X0 XE X
such that Zkz = N. One can choose N such that an Ug-module UgsFy v contains a
i=1
non-zero element which has GZ-tableaux [s].
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By lemma 1 there exists only tableau [ ¢ ] such that for any GZ-element v, of the module
V with GZ-tableaux [ ¢] holds:

I'Fy Uq) M M()\, V)[S} # 0.

Clearly, this intersection depends only on N and [t¢]. By PBW-theorem there exists a A5-
free submodule N of finite rank in M (V) containing all such tableaux in any specialization
of M(V). Thus we can rewrite the condition for the existence of a non-trivial S-primitive
element which has the GZ-tableaux [p]—[#] as a closed condition in ($*)* X L5(n). Clearly,
for some k € N this condition is equivalent to the condition that A5-linear operators z.,,
s=1,...,n

Ty, : FNN — (UM)F, m = X, .m

have (after a specialization) common non-trivial kernel. And the last is equivalent to the
condition that some determinant with coefficients from AS equals zero.

To complete the proof we only need to note that the set of strongly generic modules is
dense in topology considered. O

5. WEYL GROUP ACTION AND GENERALIZED
HARISH-CHANDRA ISOMORPHISM

Here we introduce a set of parameters of GVM’s and define an action of the Weyl group
on it. We prove an analogue of the classical Harish-Chandra isomorphism theorem that
gives necessary conditions for the existence of a submodule in GVM.

The following statement follows easily from [5] and previous section, so we omit it’s
proof:

Lemma 9. Let V be a &,-module, generated by S-primitive vector v for some well-defined
S. Suppose that v is GZ-weight vector which has a tableauz [1]. Consider a &, 1-module
Vi=M(\V) for some X € (9°)*. Then the module V; is generated by S-primitive vector
v1 = 1 ® v, moreover vy is a GZ-vector and there exists p € C (depending on \) such that
v1 has the tableauz [s] = [l|p].

This statement allows us to introduce the main construction. We return to the situation
where &g = gl(k,C) C gl(n,C) = &. Consider a map & : C* & L(k — 1) — L(n) defined
as follows: for (z,[y]) e C*® L(k—1), z = (21, ..., x,) we set D(x,[y]) = [I], where

[l]k_l =[yl; [l]ij =x;,1> k.

We will also denote ®(z,[y]) by [ytz] and we will denote by A the image of ®. Define
an action of the symmetrical group S,, = W (recall that it is the Weyl group of A) on the
set A as follows: for o € S, set

[ytz]” = [ytoz],

where 0z = (Z5(1), - - -, To(n))- W acts also on the quotient space Ag = A/®(0@ L(k—1)).
We will call this action the action of the Weyl group on the space of parameters of GVM
and denote it by Wrs.

The following lemma is obvious:
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Lemma 10. 1. Let [y] € L3(k — 1), x € C*. Let V be a simple GZ-module over &g,

generated by vector which has a tableauz [yt ]k Then there exists a unique X € (H5)*
such that M (X, V') is generated by GZ-weight vector which has tableauz [ytz].

2. Let 'V be a simple GZ-module over &g generated by an S-primitive element which has
tableauz [y]. Assume that GVM M (A, V') is generated by GZ-weight vector vy, which

has tableauz [1]. Then [1] is of the form [[y]*'1z] for suitable z € C.
We will also work with the subset B C A of parameters corresponding to the modules
that are induced from generic GZ-module. Clearly, B is invariant under Wr g. Lemma 10
allows us to define GVM M ([]) for [I] € B. In this way the action of W on the set of

parameters of GVM is correctly defined (note, that this action does not induce an action
on the isomorphism classes).

Lemma 11. Consider a natural inclusion Wg ~ Sy, — W ~ S,, as a subgroup, permuting
first k components. Then for o € Wy holds M;) ~ M.

Proof. Follows from the second part of proposition 4. O

Let ¢g denotes an S-homomorphism of Harish-Chandra (see [6] for more details). Con-
sider an automorphism vy of S(£)) defined by v(p)(A) = p(A—p) for A € H* and polynomial
function p on $*. Similarly define an automorphism 75 of S($s) by v1s(p)(A) = p(A — ps).

Set 7° = 7]5(59)-
Define a homomorphism is : Z(&5) ® S(H°) — S(A*) as a composition

Z(85) ® S(H%) 25 T - §(AY),

where i is defined in (1) and p is the canonical inclusion. We consider the following
commutative diagram:

S(A) I S(9)

7(6) L2095, 766) @ 5(55) L5 g5 @ §(555)

Here j is an isomorphism which commutes with the actions of W on S(.A*) and on S(9)
and which makes the diagram above commutative. One can construct j applying this
diagram to the primitive generators of classical Verma module.

We can extend our commutative diagram by the row of the invariant algebras:

S(A7) — 5(9)

2(8) L0, 7(64) @ $(6%) L5 5(a4Ws @ S(5°)

| T

S(AnWes L5, S(H)"
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Here g denotes the canonical inclusion and jg is isomorphism. Consider the composition
s = q¢ Lo (1®~%) o ps. The commutativity of the diagram above gives us the following
generalization of Harish-Chandra theorem:

Theorem 3.
7(8) % (A7) s

Denote by M([l]) the GVM generated by S-primitive element which has GZ-tableaux
[1]. Assume that [1]* € £,. Denote by 01) the central character of GVM module M([7]).

Corollary 2. The following statements are equivalent

1. H[l] = 0[11];
2. there exists g € Wr.g such that ' ([1] — g[I']) € 0 x Lo(k — 1).
Proof. Is analogues to [4, Proposition 7.4.7] and [8, Theorem 6.3]. O

Corollary 3. Let M(\,V) be a GVM, isomorphic to M([1]) for some [1] with [1]F €
Lo(k). Then
1. For arbitrary tableaus [t] € Supp M(\, V) holds [t]* —[1]* € (Lo(k + 1))*;
2. for any S-primitive element v and for any ¢ € Z(&) holds
cv = Yg(c)v.
6. KOSTANT S-FUNCTION AND GELFAND-KIRILLOV DIMENSION

In this section we establish two basic facts (corollary 4, 5) about GVM which are the
analogues of [4, proposition 7.6.3] and [4, proposition 7.6.6]. To prove these facts we need
some S-analogue for the notion of the dimension of the weight space. As a substitute we
propose the length of certain composition series. Moreover, we calculate this value using
the notion of Kostant S -function.

Let A’ be some root system with a fixed base 7’. Consider some S’ C 7'. For

y=> ash

Ben!
set
br()= D ash.
Be(n'\S")

We recall that 7 = {aq,...,an_1}, S ={a1,-..,ap_1}, 7\ S = {ag,...,an_1}. Define
the Kostant S-function cs : (Z,)"* — N as follows: for x = {zy,...,2n_1} € (ZL)" % set
cs(z) to be a number of the following decompositions

TpQp + Ty 101 + - Ty 10 1 = Z naPs(a)
a€AL\(As)+

with integer n, > 0.
Let M (A, V) be GVM induced from a generic GZ-module V' with S-primitive generator
V[1tz] Which has tableaux [/fz] € A (see lemma 10). For the non-negative integers sy,
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..., 81 we define the growth function H{j51(S, ..., s,—1) € Z as the length of the &g —
module UsM (A, V), p= A — p¥— spap— -+ — $p_10n_1.

Theorem 4. 1. H{yyg|(Sk; - - -, 8n—1) is a polynomial growth function H (s, ..., sp—1) that
does not depend on [ 11z ].
2. H(Sk, ceey Sn—l) = CS(SICJ ceey Sn—l)

Proof. Let M(A,V) be a GVM generated by S—primitive vector vj;,] which has tableaux

[tz ] such that [lTa:]k € L3. Suppose that M(A,V) is simple. Then, following lemma 7
and general construction of tableaux modules from section 4, one can consider M (A, V) as a
tableaux module M[;;,), which is a submodule of corresponding specialization V;4z]. Thus
it follows from GZ-formulae that UsM (), V), is a direct sum of simple generic modules over
Us. Hence both statements of the theorem can be easily obtained by direct calculations.
Following corollary 1 one can check that all the subquotients of &g-module VS# =
UsM(A, V), are generic GZ-modules. If a simple generic &¢ — module 7' generated by

GZ-vector vj;) has multiplicity pr(V5#) in a composition series of V5# then dimg¢ V[f]“ =

pr (V).

Consider M()\,V) as a specializations of Aj-family M(V). At the same way as in
theorem 2 one can show that for any [s] € Lo(n) there exists a free AS-direct summand
N5l of M(V) such that after any specialization M i12) all GZ-root subspaces of the weight
[t] = [tz ]+ [s] belong to the subspace J\/'[[ISTL] C Ms;). Consider a A3-linear map X :

k(k+1)

Nl — M(V)™5 defined by

= (i — lij)Nl“)lgz'q'gk

for N large enough. Then every specialization Mj;;1(V) induces a linear map Ajjq1.
Obviously, the kernel of A7;4,] is the root space of M[;441(V). Thus the property of X,
to have the smallest possible dimension of the kernel is open in Lo(k)% = Lo(k) & (£°)*.

We will prove that the value of Hjjz1(sk, ..., Sp—1) with fixed s, ..., s,_1 can only
increase in some neighborhood of any [/fz]. Then the last two facts together with the
observation that there exists simple M ([I'?z']) in every neighborhood of [/1z] complete
the proof.

Fix M()X,V) generated by an S-primitive vector of weight X' — p° and some sy, ..., s, 1.
Denote pp = N — p° —spoy, — -+ — Sp_10m_1. Let {f1,..., f.} C U be the set of all elements
of the form Xt_lﬁ1 . .Xﬁﬂl with ; € Ag U A, such that

LWbi+ -+ 4f = sgap + -+ Sy 10 1
b
It is obvious that UsM (A, V), = Z Us fiv[11¢], Where v;1,] is an S-primitive generator
i=1
of M(A, V).
Consider the standard filtration of Ug:

US,OCUSJC...,
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where Ug; is the set of all linear combinations of monomials whose length less or equal i.

By PBW theorem we have Ug = U Us,.

=0

Denote by p(i) the dimension of the space P; = < Ug,; fiv[i12]s - - - Us,iftV142] >. Ome
can easily check that if for two modules M (A, V}) and M (s, V5) holds Hy (Sg+1, - - -, Sn) >
H(Sk41, - - -, Sn), then there exists j such that for all 2 > j holds p; (i) > p2(2). Conversely,
if for all ¢ large enough p;(i) > po(i), then Hy(Sgt1,---55n) > Hao(Sk41,---,5,). On the
other hand consider the A5-module P; C M(V) generated by Us; f1v[1121, - - - » Us,i fev[ita)-
It’s specialization coincides with P;. Thus the property of P; to have the specialization of
maximal possible dimension is an open property in A5. Hence p(i) can not decrease in a
small neighborhood and neither can H(sg11,-- -, Sn)- O

Let A and B be associative algebras, B C A, A is finitely generated over B, say A =
B{x1,23,...,zn}. One can associate with this pair a filtration of B — B bimodules

B=By,CB, CBy,C...,
where
B;= Y  Buz;Bz;,B...Bz,B.
1<g15-Js <m;8<s
Let M be an A-module, N C M be a B-submodule such that M = AN and for every

i the module B;N is of finite length {(B;N) as B-module. We define B-Gelfand-Kirillov
dimension dg of an A-module M via

2 dg(M) = lim ——————.
(2) 5(M) 00 log 1
One can check that dg(M) does not depend on the choice of N and on the choice of
{z1,.. ., 2w}

For a module M we will write

_U(BN)
ST(M) = im 276

in the case when this limit exists.

In our case one can calculate the U(®g)-Gelfand-Kirillov dimension of the module

M\ V).
For s = (Sk41,---,5n) set |s| = Sgp1+ -~ -+ S,. For 1 >0 let
G(l)=>_ H(s).
si)s|<l

Obviously, G is a polynomial growth function. Let Dg(M (X, V) be a growth grade of G.

Lemma 12. For generic GZ-modules V,W and \, u € ($H°)* holds
L. Ds(M(A, V) = dyes)(M(X,V));
2. dyes)(M(A, V) = dues) (M (1, W));
3. ST(M(\,V)) = ST(M(u, W)).
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4. dyss) (M (N, V)/N) < dy@s)(M(X,V)) for every non-trivial N C M(X, V).

Proof. The first statement can be obtained by direct calculation using (2), where A =
U(Q5), B = U(ﬁs), T1 = €gk+1y--+y In—k = €n—1ny Tn—k+1 = €k41ky-- -5 L2n—k) = Enn-1,
N = V. In this case it is easy to see that I(B;V) = G ().

The second and the third statements follows from the fact that G is a polynomial function
and theorem 4.

Every non-trivial submodule N of M (A, V) contains some S-primitive vector. Thus we
have dy(eg)(N) > Dg(M(A,V)) and from N C M(A, V) we obtain, that dyeg)(N) =
Dgs(M(A, V). Moreover, ST(N) > ST(M(A,V)) and from N C M (A, V) we obtain, that
ST(N) = ST(M(\,V)). Thus the last statement follows. O

Corollary 4. Let M (A, V) be GVM induced from a generic simple GZ-module V. Every
two non-trivial submodules of M (X, V') have a non-trivial intersection. In particular, there
exists the minimal submodule in M (X, V).

Proof. Using lemma 12,4 one can prove this following the proof of analogues statement [9,
Lemma 2.2.2]. O

The last corollary immediately implies the following.

Corollary 5. Let M(\;, Vi) be GVMs induced from generic simple generalized Verma mod-
ules V;, 1 =1,2. Then

dim HOHIU(M()\l, ‘/1)7 M()‘Z: ‘/2)) S 1
and every non-zero element of this space is an injective map.

Proof. First we note that for every v € M(\;,V;) (i = 1,2) there exists an S-primitive
generator w and an element u € U(n_) such that v = uw. Now the proof is analogues to
the proof of [4, Theorem 7.6.6]. O

7. THE SUBMODULE STRUCTURE OF M()\,V)

We are in position now to obtain our main result: the criterion for M([I1z]) to be a
submodule in M([sTy]).

We have to note that the methods we will use to prove our main results are similar to the
original methods from [1]. For today there exists a simple modern technique to obtain the
BGG-theorem for Verma modules which use the notion of Shapovalov form and Jantzen
filtration (see for example [12]). It seems to be rather non-trivial to develop an analogue of
the Shapovalov form on GVMs induced from generic GZ-modules since I has no bimodule
complement in U. This easily follows from the existence of simple GZ-module which has a
non-trivial GZ-root (not weight!) subspace ([7]).

Recall that for [I] € A we will denote by M([1]) GVM generated by S-primitive GZ-
vector which has tableaux [[].

Let IT : A — L(k — 1) be a canonical projection II([1]) = [[]*"'. For r € Ly(k — 1)
denote A, = II7!(r). It is obvious that Wr A, C A,. One can prove the following by
standard arguments:
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Lemma 13. Letr — 1" & Lo(k — 1) and [I] € A,, [s] € A.. Then
dim Ext;(M([1]), M([s])) = 0,3 > 0.

Lemma 14. A module M generated by S-primitive GZ-weight vector v such that the mod-
ule Usv is a generic GZ-module will be a GVM if and only if M is U(ng)-free.

Proof. The necessity of this condition is obvious. To prove it’s sufficiency consider a GVM
M([1]), generating by S-primitive GZ-weight element w which has the same tableaux as
v. Clearly [1] € B. Then under the conditions of lemma, a map ¢ : M([1]) = M, (w — v)
is monomorphism and thus M ~ M ([[]). O

Lemma 15. Let r € Lo(k — 1) and [1] € A. Then the set
{[sle A« M([s]—[1]) c M([s])}
is Zariski closed in A,.

Proof. Based on lemma 14 the proof is quite analogues to the proof of theorem 2 from
section 4 and to the proof of [8, Proposition 7.1] and [4, Proposition 7.6.12]. O

For z,y € C™ we will write x < y if there exists z ~ x such that y — z € Z'. We define
a partial order on A, by setting [{]| < [s] provided [[], < [s]; holds for all ¢, kK < i < n.

Lemma 16. 1. Consider a subset T, C Ly
Te =A[t]|th; =0,Vyi tij € "2 Vj<i, k<i<n;t; €ZVj<i<k}.
For x € C* such that x; — x; € Z for i # j; i,j <n and fory € L3(k — 1) denote
Iy =A{lytz] + [t]|[t] € Te} -

Then for As[x1,...,Xp|(k)—family Vs =V @, As[X1,. .., Xs] @ As[x1, ..., x,]-submo-
dule My = V,|1 is also U-submodule.
2. If x € C* such that there exists the unique © < n with property ¥; — x, € N then My

has the unique submodule for every y € L3(k — 1).
Proof. Follows immediately from GZ-formulae. O

Proposition 5. If w is a reflection in Wrg and w([l] < [l] for some [l] € A then
M(w[l]) € M([1]).

Proof. We fix t = [1],— w[l],. Tt follows from lemma 15 that the set
C(t)={[s]e€ A [M([s']) c M([s]); [s], —[s'], =1t s € A}
is Zariski closed in A,. Consider a set
Co ={lsl€ A [([s] —w[s])" =t}

Using lemma 16 and following the proof of [11, Lemma 4.3] one can show that there
exists a set D € A, such that the closure of D in Zariski topology contains C!, and for
every [s] € D holds M([s']) € M([s]) for [s'] € A, with [s]" —[§']" =t. O
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For a Verma module M (), A € $* we will denote by x, its central character. For the
next step we need the following fact from [10]:

Theorem 5 ([10]). Let
o V be a &-module with a central character x for some \ € $*;
o V, be a finite-dimensional module with {{, ..., s} as the set of all distinct weights.
Then for any ¢ € Z(®) an element
(e =0 (9))
i=1
annihilates V @ V,,.
This theorem immediately implies the following:

Corollary 6. Let V' be a simple GZ-module and F be a finite-dimensional module over
U. Then SuppV ® F C SuppV+ Supp F. In particular, if SuppV C [s]+ Lo, then
SuppV ® F C [s|+ Lo. Moreover V & F is I'-diagonalizable as soon as V is strongly
generic.

Proof. Can be easily obtained by the restriction of V' ® F to subalgebras si(m,C) for
m < n. O

Lemma 17. Let F be a finite-dimensional U(®)-module and [l] € A. Then there erists
a filtration

OCMyCcM, C---CM,=M]JI])QF
such that for alli =1, ..., m holds M;/M; 1 ~ M([l;]) for some [l;] € A.

Proof. Using corollary 6 and lemma 14 one can obtain the statement following the proof
of [11, Lemma 4.7]. O

The following statement follows easily from comparison of dimensions of GZ-root spaces:

Corollary 7. For all p; € Supp F' a module M([l]) ® F has a subquotient isomorphic to
M([1]+ [p:])-

Consider a complex vector space Ay of dimension n. One can choose the base {zi,
Ty, ..., Tn} in A in such a way that Wr s acts as the Weyl group of the root system of
type An—1 with the base {z1,...,z,-1} and Wr gz, = z,,. Define the Weyl chambers in
(1,...,Tn_1) as connected components in (xq,...,2,_1) \ £, where £ denotes the set of
all points z satisfying < Rz, z; >= 0 for some i, 1 <7 <n —1 (here < -,- > denotes the
standard Wr g-invariant form). For a Weyl chamber C' in (xy,...,2,_1) we will say that
C + (x,) is a Weyl chamber in Ay. For r € L(k — 1) and a Weyl chamber C in A, we
define C'+ [r10] to be a Weyl chamber in A,.

The proof of the subsequent theorem 7 is based on the following reformulation of [1,
Theorem 2] (see also [4, Theorem 7.6.23]):
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Theorem 6. Let A be an algebraicaly open subspace of a C-space parametrizing (not nec-
essary one-to-one) the set of isomorphism classes of &-modules {M(z) € &-mod, x € A}.
Suppose that there exists an action of W on A satisfying the following conditions:

1. W is a Weyl group of some root system ¥ C A with a fized base B.

2. The stabilizer of isomorphism class is a subgroup W1 which is a Weyl group of the
root system generated by some C C B.

3. If < denotes the standard order on A corresponding to B then for any simple root
B € B such that wgx < x holds M (wgz) C M(z).

4. For any x € A and any finite-dimensional module F the module M(x) ® F has a
filtration with quotients of type M(x;), 1 = 1,..., k. Moreover the set {x — x;;1 =
1,...,k} depends only on module F and is a subset of ZB.

5. For any x, y € A central characters of modules M (x) and M(y) coincide if and only
if x € Wy.

6. If a module N has a filtration with quotients {M(z;) : i =1,...,k} and x; is mazimal
in the set Wa; N {z; :i=1,...,k} then M(x;) C N.

7. dimHom(M (x), M(y)) < 1 for any x, y € A and every nonzero homomorphism is a
monomorphism.

Then Hom(M (), M (y)) # O implies that there exists a sequence (1,...,Bs € Xy, such
that

T<wgT < <Wg...WT=1Y.

Proof. One can prove this theorem following step by step the original proof of [1, Theo-

rem 2]. O
Theorem 7. Let [l],[s] € A,NB for somer € Lo(k—1). If M([1]) C M([s]) then there
exist wy, ..., w, — reflections in Wr g such that

[ <wi[l] < <wp...wn[l]=]s].

Proof. We set A = BN A,. Wrg acts on A as a Weyl group with the chosen fixed root
systems and the Weyl chambers defined above. Then conditions 1,5 of theorem 6 follows
from Generalized Harish-Chandra theorem (section 5); 3 follows from theorem 2; 4 follows
from lemma 17 and corollary 6; 2 follows from lemma 11; 6 is obvious and 7 follows
from corollary 5. Now the statement follows immediately from theorem 6 and previous
lemmas. ]

Combining the results obtained in this section one can prove the following main theorem:

Theorem 8. Let [1],[s] € BNA, for somer € Lo(k—1). Then the following statements
are equivalent:

LM([1]) € M([s]);
2. M([s]) has L([1]) as a subquotient in a composition series;
3. There exists reflections w, ..., w in Wr g such that

[ <w[l] < <wp...wn[l] =[s]
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As a corollary we obtain a criterion for M([/]) to be simple:

Corollary 8. M([I1z]) is simple if and only if for alli > k and all j < i holds x;—x; ¢ N.

8. SOME RELATIONS WITH BRUHAT ORDER

Consider the subset Pd* C A containing all [{] such that for all w € W holds w[l] <
[1]. We will call P{" the set of S-dominant weights. Recall that Ws denotes the Weyl
group of the root system with the base S.

Theorem 9. For wy,wy € Wrs and [1] € P§™, M(wi[l]) C M(ws[l]) if and only if
wiWs >2p weWs
(here > denotes the Bruhat order on the quotients of Wr /W, see [2] fore more details).

Proof. Tt follows immediately from theorem 8 and definition of the Bruhat order on the
quotients of Coxeter group [2]. O
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