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Abstract

We show that all simple dense gl(n,C)-modules with finite-dimensional weight
spaces admit quantum deformation to the corresponding Drinfeld-Jimbo quantum
group. We also realize almost all such modules via Gelfand-Zetlin construction, pre-
senting them by a basis and precise formulae for the action of generators of gi(n,C).
This construction has a direct analogue on the quantum level, hence for such modules
the main result becomes very easy.

1 Introduction

Let g be a simple finite-dimensional Lie algebra and h be its Cartan subalgebra. A g-
module, M, is called weight if the action of h on M is diagonalizable. If M is a weight
module and A € h*, then the weight space M)y of M is the collection of all v € M, on which
all h € b act via A(h). The set of all A such that M) is non-zero is called the support of
M and is denoted by supp(M). Let A C h* be the root system of g with respect to h and
@ be the abelian subgroup of h* generated by A. A weight module, M, is called dense
provided supp(M) equals a coset from h*/@Q). According to Fernando-Futorny’s Theorem,
[Fe, Fu], any simple weight g-module is either dense or induced from a dense module over
a parabolic subalgebra of g. This, in particular, reduces the classification of simple weight
modules to that of dense modules. Under the assumption that the weight spaces of M are
finite dimensional, all simple dense modules were recently classified by Mathieu, [M] (the
case of modules with one-dimensional weight spaces has been earlier completed by Benkart,
Britten and Lemire, [BBL]). It happens that such modules exist only if g = si(n,C) or
g is of type C, (this result itself belongs to Fernando, [Fe|, but in [M] the reader can
find short and easy proof). As in this paper we will work mostly with weight modules
having finite-dimensional weight spaces, in what follows by weight we will mean weight
with finite-dimensional weight spaces.



The aim of this paper is to show that all si(n, C)-modules, constructed by Mathieu, ad-
mit true quantum deformations to the corresponding Drinfeld-Jimbo quantum group. The
way Mathieu constructed these modules will allow us to avoid the usual A-form technique
used for such kind of problems, see [L, K, FM], which also usually involves some extra
integrality conditions. Moreover, it happens that almost all simple weight modules can be
constructed via Gelfand-Zetlin method, see [Mal] for the overview and references therein
for the original results, which provides a special basis in the module and gives precise for-
mulae for the action of generators of g. This is similar to tableaux realization of weight
modules in the sense of [Ma2]. This construction has a straightforward quantum analogue
by [MT] and thus gives us an easy way to deform corresponding simple weight modules.
We also note that this approach was used by Jimbo, [Ji], to deform finite-dimensional
sl(n, C)-module before the general result of Lusztig, [L].

Our realization of simple dense modules via Gelfand-Zetlin construction is very natural
from the point of view of parameterization of simple dense modules. The series of such
modules (called coherent families in [M]) over si(n, C) are parameterized by special central
characters, which are realized as n + 1-tuples of complex parameters. In an obvious way
each tuple defines a Gelfand-Zetlin tableau, i.e. an element from the distinguished basis,
which extends to a complete basis of the module. However, in each coherent family there
are several modules (the corresponding parameters are defined by some non-trivial linear
equations), such that functions, appearing in Gelfand-Zetlin formulae, have singularities
on certain basis vectors of such modules. This is precisely the case, when we do not
know how to realize the corresponding module via Gelfand-Zetlin construction. But, as we
have mentioned, the parameters of such modules satisfy some non-trivial linear equations
and hence they really form a small set (countable union of hyperplanes in the variety
of all parameters), so we will call them “degenerate” to emphasize the fact the Gelfand-
Zetlin formulae degenerate on these modules. However, for pointed coherent families, i.e.
those with one dimensional weight subspaces, the functions in Gelfand-Zetlin formulae
have removable singularities and thus our construction can be extended even to degenerate
modules. Here we have to remark that for coherent families the notions of pointed, i.e.
having a one-dimensional weight space, and completely pointed, i.e. whose all weight spaces
are finite-dimensional, coincide. So, in what follows we will use the first one, which is
shorter.

In case of “degenerate” simple dense sl/(n,C)-modules (i.e. those modules, which can
not be constructed via Gelfand-Zetlin method) we adjust Mathieu’s technique of localiza-
tion of the universal enveloping algebra for the quantum group case and use it to construct
simple dense modules starting from another simple dense module. In this way we do not
have a nice realization of obtained simple dense modules, but comparison of parameters
allows us to claim that they tend to the necessary classical simple dense modules under
the classical limit. It happens that the set of simple dense modules, which can be realized
via Gelfand-Zetlin construction, is big enough to obtain all other simple dense modules
applying some twists in the localized algebra. This technique automatically guarantees
that the dimension of the weight spaces is preserved during the deformation process, and
hence the obtained modules are true quantum deformations of the classical modules we



started with.

As a byproduct of our Gelfand-Zetlin realization, we construct several new families of
simple weight sl(n, C)-modules with infinite-dimensional weight spaces, in particular, new
simple Harish-Chandra module with respect to a well-embedded sl(k, C)-subalgebra.

Since the Gelfand-Zetlin method is better adjusted to the reductive algebra gl(n, C) we
will work with it. Using the canonical inclusion sl(n,C) C gl(n,C) one easily translates
all the results to sl(n, C)-case.

In the case of Lie algebras of type C,, the situation with Gelfand-Zetlin approach is
more complicated. The case of finite-dimensional modules has been recently handled by
Molev, [Mo]. However, at the moment it is not clear how to extend his method to infinite-
dimensional modules. Indeed, the localization technique can be easily applied also in this
case. However, it is not apparent how to construct quantum deformation for a big enough
class of modules (the first step), which in the A,, case can be done using the Gelfand-Zetlin
method. This is the reason why this case will be treated in a separate paper.

Let us briefly describe the structure of the paper. In the next section we collect nec-
essary preliminaries about U,(gl(n,C)), Gelfand-Zetlin construction and Mathieu’s clas-
sification. In Section 3 we construct tableaux realization for simple dense modules over
gl(n,C). This works for almost all modules, but, in the case of pointed modules, a vari-
ation of our construction works always. This is the content of Section 4. Section 5 is a
quantum version of two preceding sections. In Section 6 we show how one can use Gelfand-
Zetlin tableaux to construct new simple modules over gi(n, C) and U,(gl(n,C)). Finally, in
Section 7 we complete the picture with constructing quantum deformations for all simple
dense gl(n, C)-modules.

2 Preliminaries

2.1 Quantum algebra U,(gl(n,C))

Here we give the basic definitions for quantum groups and refer the reader to [Ja, Jo, KS]
for details.

Let g = gl(n,C), b be the standard Cartan subalgebra of gl(n,C), consisting of all
diagonal matrices, and A be the corresponding root system of g. We fix the standard basis
7 of A and denote by «; the root corresponding to the matrix unit e; ;41,7 =1,...,n— 1.
Then W is the Weyl group and (-, -) is the standard W-invariant form on h*. Choose ¢ € C
such that ¢ # 0 and ¢! # 1, | € N. Fix some h € C such that ¢ = exp(h) and for x € C
set ¢ = exp(hai). Denote by 1(g) the set of all z € C such that ¢ = 1. For z € C we put
[z], = % Clearly, [z]|, = 0 if and only if 2z € 1(g).

The quantized universal enveloping algebra U, = U,(gl(n,C)) is defined as the unital
associative C-algebra with generators E;, F;, i1 =1,...,n—1; K, Ki_l, 1=1,...,n,subject
to the following relations (here indices of K run through {1,...,n} and indices of E, F



run through {1,...,n —1}):
KK — KUK =1, KK — gttt
oy =80y A= i By = 8RR

KE; = ¢® % EK;, K F; = q % FK;,

KK — K 'K,
E;Fj — F;E; = §;;— "1 1 1
q—q
ElEi1 — (q+ ¢ )EEinEi + EinE} =0, F'Fu1— (q+ ¢ )FiFinFi + F F) = 0.

) [EiﬂEj]:[E’Fj]:Oﬂ |i_j|22’

A weight Uz-module is a module, on which the action of the subalgebra IC, generated by
all K;, is diagonalizable. Let V be a weight U(g)-module. There is a natural correspondence
between weight spaces with respect to h and weight spaces with respect to K given by
h* 3 A — ¢, the last being evaluated on KZ! as ¢*M% . However, the inequality
X # pu € b* does not guarantee g+ £ ¢=2) for some o € w. At the same time, as
¢ is a non-zero non-root of unity, for any non-zero p € () there always exists o € 7 such
that ¢t £ ¢*O+m®)  Then a true quantum deformation of a weight g-module, V| is a
module, V,, over U,, such that V' is obtained from V; by taking the limit ¢ — 1 and the
dimensions of the corresponding weight spaces in V' and V, are the same.

2.2 Tableaux and Gelfand-Zetlin construction for gl(n,C) and
Uy(gl(n, C))

The Gelfand-Zetlin method of constructing simple finite-dimensional sl(n, C)-modules is,
in fact, a restriction from the gl(n,C) case. Denote by e; j, 1 <1i,j < n, the matrix units.
By a tableau we will mean a doubly-indexed complex vector, [I] = (I; J)f 11 - ’Z. Let [0%7]
denote the Kronecker tableau, i.e. ¢; ’J =1 and 5”1 =0ifk#iorl#j.

Simple finite-dimensional gl(n (C) modu]es are parameterized by complex vectors, m =

(my,...,my,), satisfying m; — m;,; € N. The correspondmg module V(m) can be realized
as a space with the basis B(m) = {[l]{l,; = mi; lij —lic1; € Zyslisaj—lijs1 € N1 <5 <
i < n} on which the action of generators e;;, i =1,...n and €;;41, €41, ¢ =1,...,n—1,

is given by the following Gelfand-Zetlin formulae:

i+1 i—1

o L0 = lisag) [ =tk

ei’mm:_; (O ol e”“[”_z [10s = tis) o

k#j k#j
A i—1
6,',1'[[] = (Z li,j — Zli_l,j> [l]
7j=1 7j=1

Restricting V' (m) to the canonical copy of s/(n, C) inside gl(n,C) we get a simple sl(n, C)-
module, which we will denote also by V(m). Moreover, all simple finite-dimensional
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sl(n, C)-modules are obtained in this way. Two modules V(m®) and V (m®) are isomor-
phic as gl(n, C)-modules if and only if m™®) = m®, and are isomorphic as sl(n, C)-modules
if and only if there exists ¢ € C such that mgl) = mgz) + ¢ for all 7. In particular, for finite-
dimensional modules over sl(n, C) it is always sufficient to assume that all entries of m are
integers.

In [Ji] it is noticed that this construction has a straightforward analogue for U,(sl(n, C)).
Indeed, for si(n, C) we can assume that all entries of m are integers. Then the quantum
deformation V,(m) of V(m) has the same basis B(m) and the action of generators of

U,(gl(n,C)) is given by the following quantum Gelfand-Zetlin formulae.

i+1

i—1
o Tl =t ilg o T — i ilg

Ell=-) = 1+0%9), El=) = 1 — &),
(1] 2 it~ by [ I, ] 2 it = il [ ]
k#j k#j
g i—1
(Z lig =) zz-_l,j>
Kill] = ¢ V=1 = [1].

It is obvious that quantum Gelfand-Zetlin formulae tend to usual Gelfand-Zetlin formulae
if ¢ — 1 and thus the above construction defines a true quantum deformation of simple
finite-dimensional gl(n, C)-modules (and hence sl(n,C)-modules as well).

The idea how one can use these formulae to construct new (infinite-dimensional) weight
gl(n,C)- (resp. U,(gl(n,C))-) modules goes back to Drozd, Futorny and Ovsienko, see
[DFO] and references therein (resp. [MT]). For this we start with a tableau, [{], satisfying
li,j _li,k: Ql Z for all 1 and all] 7é k. Set B([l]) = {[t”li,j—ti,j € Z, ln,z' = tn,z’, 1 S j S 1 S n}
Then (quantum) Gelfand-Zetlin formulae define on the linear span V([l]) of B([l]) the
structure of a gl(n,C)- (resp. U,(gl(n,C))-) module of finite length.

Sometimes it is also useful to know that there is a special subalgebra, I, of U(g) which
separates the elements of the Gelfand-Zetlin basis B(m), resp. B([!l]). This one is con-
structed as follows (see [DFO]): we fix the standard inclusions of gl(i,C) to gl(i + 1,C)
with respect to the upper left corner. Then the commutative subalgebra I' of U(gl(n, C)),
generated by the centers of all U(gl(i,C)), i = 1,...,n, is called the Gelfand-Zetlin sub-
algebra of U(gl(n,C)). All elements from B(m) and B([l]) above are eigenvectors with
respect to I', moreover, for 1 < i < n there is a basis in the center of U(gl(i,C)), such
that the eigenvalues of the action of these basis elements on [¢] are precisely the elementary
symmetric functions in t; ;, 7 = 1,...,4. In particular, if [{] and [s] are tableaux and there
exists ¢ such that (¢;1,...,%;;) can not be obtained from (s; 1, ..., s;;) by a permutation of
components, then the action of I separates [¢t] and [s].

2.3 Mathieu’s classification of simple dense modules

The Mathieu’s approach to the classification of simple dense modules is based on the notion
of coherent family. Denote by U(g)o the centralizer of b in U(g). Then a coherent family
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is a weight g-module, M, satisfying the following two conditions:
1. dim(M,) = dim(M,,) for all A, u € b*;
2. the function A\ — T'r(u)|, is polynomial in A for all u € U(g)o.

One of the main steps in the Mathieu’s classification is that each simple dense module is a
direct summand of some coherent family. The next step of reduction is that each coherent
family contains an admissible simple highest weight module as a subquotient. Here by
admissible we mean a module, whose dimensions of weight spaces are uniformly bounded.
So the irreducible coherent families can be classified by admissible simple highest weight
module they contain, which is a relatively easy technical problem. It turns out that infinite-
dimensional admissible simple highest weight modules, and hence coherent families, exist
only if g is of type A, or C},. Moreover, if g = sl(n,C), then irreducible coherent families
are in bijection with tuples (my,...,m,) satisfying Y-, m; = 0, and m; — m;;; € N,
i =2,...,n— 1. A certain permutation of entries in (my,...,m,) defines the (shifted)
highest weight of a simple admissible highest weight module, occurring in this coherent
family. However, the central character of this module is computed as certain invariant
function in entries of m and hence does not change under permutations.

We will need (a restricted version of) one more technical tool used in [M], which we
will call Mathieu’s localization of U(g). Fix any Weyl-Chevalley basis, X,, a € A, and
H,, aem ing Let a € A. As X_, is locally ad-nilpotent on U(g), the multiplicative
set {X' |i € N} satisfies Ore’s condition for localizability in U(g) and we can form the
corresponding localized algebra U,. On U, there exists a unique 1l-parameter family of
automorphisms 6, : U, — U, satisfying

1. 0,(u) = XZ uX"2, z €Z;

2. the map z — 6,(u) is polynomial in z for all u € U(g).

We refer the reader to [M] for details.

3 Tableaux realization of dense gi(n, C)-modules

In this section we realize almost all simple dense g = gl(n, C)-modules via Gelfand-Zetlin
construction and then transfer this to the quantum case. As quantum Gelfand-Zetlin
formulae tend to classical Gelfand-Zetlin formulae in the classical limit, we automatically
get that our construction gives us a true quantum deformation of simple dense modules
we consider (see Section 5).

Let m = (my,...,m,) € C" be a tuple satisfying the following condition: m; —m; 1 €
N, i =2,...,n—1. Choose z = (z1,...,%5_1) € C*! such that z; —my & Z, i =
1,...,n—1, and consider the set B(m, ) which consists of all tableaux [/] satisfying the

following conditions:

Lil,j=mjji=1...,m



2. ip—wz€Z,i=1,...,n—1;
3. Ly —li1, €0y, i=3,...,m =2 ..,i
4 1y —lij €N, i=3,...,n,j=2,...,i.
Denote by M(m, z) the C-vector space, spanned by B(m, z).
Lemma 1. The Gelfand-Zetlin formulae define on M(m,z) the structure of a g-module.

Proof. Let u = 0 be a relation in U(g). It is sufficient to prove that u[l] = 0 for any
[[] € B(m, z). We use Gelfand-Zetlin formulae and write u[l] = ¢ 10,m f(u: [1; [E])[1+1].
The coefficients f(u, [l], [t]) can be considered as rational functions in entries of [{|. Write u
in U(g) as a linear combination of monomials in {e;;11,€;;} and let N be the length of the
longest monomial occurring (it may be different for different decomposition of u, but we
fix one of them). Define m as follows: t; = m;, j > 1, and m; —my is a very big positive
integer, say is bigger than 3N™ + 1, and consider the finite-dimensional simple g-module
V(rh). Take any tableau, [I'], from the Gelfand-Zetlin basis for V() satisfying I ; = I; j,
i=2,...,m,5=2...,4 0, >lhy+Nand l;; >l ;;+N,i=2,...,n Then our

choice of m; guarantees that u[l] = 3¢ ¢ w ( [l ] [t ])[l +t] and I(u,[l']) = I(u,[l]).
In particular, we get f(u,[l'],[t]) = 0 as ratlonal functions in [; ;, evaluated in entries of
[I'l. As there exists mﬁnltely many independent ways to choose l{,, i = 1,...,n, and
f(u, [l [t]) are rational functions, we derive that f(u,[l'],[t]) does not depend on I, and
hence f(u,[l],[t]) does not depend on l; ;. In particular, f(u, [l], [t]) = f(u, [I'], [t]) = 0 since
li j = lij, 1,5 > 1. This implies u[l] = 0 and completes the proof. O

Define ¢o(m) = (ma, ..., m,). From our assumptions about m it follows that ¢(m) is

a parameter of some simple finite-dimensional gl(n — 1, C)-module.

Lemma 2. M(m, z) is a weight, dense gl(n, C)-module and all non-trivial weight subspaces
of M(m, z) have dimension dim(V (¢(m))) (the last is the dimension of the simple finite-
dimensional gl(n — 1, C)-module V (p(m))).

Proof. The first assertion (M (m,z) is weight and dense) is obvious by construction of
M (m, ). To prove the second we fix [I]] € B(m,z). By Gelfand-Zetlin formulae, [I] €
M (m, z),, for some A € h* (it can be precisely computed, but we do not need this). But
from Gelfand-Zetlin formulae it also follows that another element, [t] € M (m, z),, belongs
to M(m, ), if and only if for any i = 1,...,n—1 there holds Y 75 _, l;j = >%_, i ;. Now it
is easy to construct a bijection between Gelfand-Zetlin basis of V' (¢(m)) and the subset S
of B(m, x), which consists of all tableaus, lying in M (m, x)A If [s] € B(p(m)) we define
[t*] € S as follows: #}; = s; 15 1,1 =2,...,n, 5 = 2,...,45 8], = D5 lij— > otij,
i=1,...,n. Hence dim(M(m,z),) = dlm(V(ga(m))). O

Corollary 1. M(m, z) has finite length.

Proof. Follows from Lemma 2 and [Fe, Section 4]. O
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We note that from the definition of B(m, ) it follows that I separates the elements in
B(m, z).

Lemma 3. M(m, z) is simple if and only if t;— 21 € Z,i=1,...,n—2, and xp,_1—my &
7.

Proof. By [Fe, Section 4], the simplicity of M(m,z) is equivalent to the fact that all
eiir1 and all e;y1; act injectively (hence bijectively) on M(m,z). Fix ¢ and let v =
Yoapll] € M(m,z). Then Gelfand-Zetlin formulae and the fact that I' separates the
elements of B(m, z) imply that e;;.1v = 0 (resp. e;+1,0 = 0) is equivalent to e;;41[[] =0
(resp. ei1,4[l] = 0) for all [I] such that ap # 0. Therefore the injectivity of e; ;1 (resp.
ei+1,;) should be checked only on elements from B(m, z). But, by Gelfand-Zetlin formulae,
eiit1ll] = 0 if and only if I;; = ;41 for all j = 1,...,7 and e;41;[l] = 0 if and only
if l;; = 1l;_q; forall j =1,...,9 — 1. According to the definition of B(m, ), the non-
existence of such [[] is obviously equivalent to the conditions of the lemma. O

Our choice of m above uniquely defines a coherent family, M = M(m). All simple
dense modules in M have form M()) = @ erroM,, for some A € b* (we remark that not
all A € b* define simple modules). So, now we can formulate our main result about the
realization of M(\) via Gelfand-Zetlin construction. Take some u € h* and consider the

following system of linear equations with indeterminates y;, 1 =1,...,n — 1:
(v = pler,)
—Y1 t Y2 = pleg2) — my
{ —Yi-1+ Y = pleiz) —m; (%)
—Yn—2 + Yn—-1 = U(en—l,n—l) — Mp—
\ —Yn—1 = U(en,n) —mp —my

Clearly, () has a (unique) solution if and only if M,, # 0. So, we assume that M, # 0 and
denote by y(u) the solution of (k). It follows from Gelfand-Zetlin formulae that, taking
z = y(u), the Gelfand-Zetlin tableau [l], defined by ;1 = z;, i =1,...,n —1; 1,1 = my
and l; ; = mj, 1,7 > 1, represents a vector of weight p.

Theorem 1. Let A € b* and x = y(\) does exist. Then the module M(N) is simple if and
only if M (m, ) is simple. Moreover, if M(X) is simple then M(\) ~ M (m, ).

Proof. After the previous results about M (m,x) this is an easy corollary of Mathieu’s
classification. Indeed, M (m,z) is a dense module with finite-dimensional weight spaces
and has, by construction, the same central character as M. Moreover, M(m,z), # 0 by
the choice of A\. As the coherent family, corresponding to m is unique, the one, generated by
M (m, x) is precisely M (since, after the applications of the Mathieu’s twisting functor, we
will come to the same simple admissible highest weight module, which correspond to m).
Therefore the simple subquotients of finite length modules M (m,z) and M, coincide, in
particular, these modules are isomorphic as soon as one of them is simple. This completes
the proof. O



This theorem defines almost all simple M, via its tableaux realization. Those, which
can not be constructed in this way correspond to A such that there exist ¢ € {1,...,n—1}
having the property that y; — my € Z. So these modules are defined by some linear
equations in the variety of all parameters. It the next section we show that in the case
dim(V (p(m))) = 1 even these degenerate cases can be covered.

4 Tableaux realization of pointed g/(n,C)-modules

In this section we extend the above realization of simple dense g = gl(n, C)-modules to all
pointed modules, i.e. ones with one-dimensional weight spaces.

Let m = (my,...,my,) € C" be a tuple satisfying the following condition: m; = m;y; =
¢, 7 =2,...,n—1and z = (z1,...,7,_1) € C*! (we note that the parameterization
we have chosen here differs from the one used by Mathieu by a constant shift of parame-
ters). Consider the set B(m,z) which consists of all tableaux [/] satisfying the following
conditions:

1. lpy = my;
2. li,l—.TiEZ,izl,...,n—l;
3. li,jzmj:c,i:2,...,n,j:2,...,i.

Denote by M (m, z) the C-vector space, spanned by B(m,x). For [l] € B(m, z) define the
action of the generators of gl(n,C) on [[] by the following pointed Gelfand-Zetlin formulae:

eiivilll = —(lin — L)L+ 671, i>1
ei+1,z’[l] = (li,l - li—1,1)[l — 5“], 1> 1
eroll] = —(liy — loy) (I — ) [l 4+ 001,
e[l = [l — 61,
eiill] = (lix — lici,n + ©)[I]-

Let M(m, ) denote the vector space spanned by B(m, z).

Lemma 4. The pointed Gelfand-Zetlin formulae define on M(m, z) the structure of poin-
ted gl(n, C)-module. Moreover, M (m,x) is simple if and only if x1 —c € Z, xp 1 —m1 & Z
and x; —x; 1 € L foralli=1,...,n—2.

One can prove this statement by a careful checking of Serre’s relations for gl(n,C) on
M (m, z). However, the referee of the paper has suggested the following shorter and more
elegant proof:

Proof. 1t is well known and easy to show that

N(ay,...,a,) = spang{zd TFggethk  gan=kn-1ip c 71



is a gl(n, C)-modules where the action is defined by e; ; — z;0;. One can set up a module
isomorphism. Select a tableau, [l], so that [;; = a; is not a negative integer and then
define the map:

a1+ ax+---+a, c C C
a1+a2+"'+kn,1 C c ... ¢C
] = : —
a; + kl
(0
H (al +p)x(111+k1x62l2+k27k1 o ‘,L.?Ln*kn—l if kl <0
p=k1+1
> xR gan—kny ifki =0
k1 -1
(H(a1 + p)) githiggztheh g keotif gy >0
A \p=1
The pointed Gelfand-Zetlin formulae are now easily checked for the generators e; ;. O
J

Let M = M(m) be the coherent family defined by our choice of m. Take some p € h*
such that M, # 0 and consider the system (x) of linear equations with indeterminates y;,
1 =1,...,n— 1. It is easy to see that this system has a unique solution, which we will
denote by y(u).

Theorem 2. Let A € b* and x = §(\). Then the module M(\) is simple if and only if
M(m, x) is simple. Moreover, if M(X) is simple then M(X\) ~ M (m, z).

Proof. The same as for Theorem 1. O

As now we did not have any restriction on x, Theorem 2 gives a realization for all
pointed simple dense sl(n, C)-modules.

5 Quantum deformation of dense modules with tab-
leaux realization

Theorem 3. Let m, z, B(m,z) and M(m,zx) be as in Section 3 and, additionally,
2(x; —mo) € 1(q) +2Z, i = 2,...,n — 1. Then quantum Gelfand-Zetlin formulae define
on M(m,z) the structure of an U,(gl(n,C))-module, which we will denote by M,(m, z).
Moreover, M,(m,x) is a true quantum deformation of M(m,z).

Proof. The condition 2(z;—ms) & 1(q)+27Z,i = 2,...,n—1, guarantees that all coefficients
in quantum Gelfand-Zetlin formulae are well-defined. Now the proof for the first part is
the same as that of Lemma 1, with substitution of I;; by ¢, see also proof of [MT,
Theorem 2].
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Comparing the classical and quantum Gelfand-Zetlin formulae one gets that if an ele-
ment, [[] € B(m, ), has h-weight A in M (m,z) then it has K-weight ¢*7) in M,(m,z).
As both M(m,z) and M,(m,z) have B(m,z) as a basis, we get that the dimensions of
the corresponding weight spaces are the same. And, finally, the remark that quantum
Gelfand-Zetlin formulae tend to classical ones under ¢ — 1 completes the proof. O

Now we deform the pointed modules. Let m and z be as in Section 4. For [I] € B(m, z)
define the action of the generators of U,(gl(n,C)) on [I] by the following quantum pointed
Gelfand-Zetlin formulae:

El] = —[lix — Ligia] [l + 61, i>1
Fi[l] =[lix — lLici1]ql — 5i’1], 1>1
Ei[l) = —[liy = loalg[li,n — clgll + 61,
Rl = [l -,

K;[l] = qUiatntely),

Theorem 4. Let m, x, B(m,z) and M(m, ) be as in Section 4. Then quantum pointed
Gelfand-Zetlin formulae define on M(m,x) the structure of an Uy(gl(n, C))-module, which
we will denote by My(m,x). Moreover, M,(m,z) is a true quantum deformation of
M(m,z).

Proof. Analogous to that of Theorem 3. O

There is one interesting effect appearing in the above theorems in the case of non-
integral weights. It happens that for a fixed ¢ the module M,(m,z) may be reducible
even if the original module M (m, z) was simple. Why this may happen is explained in the
following simplicity criterion for M,(m, z).

Lemma 5. 1. Let m, z, and B(m,z) be as in Section 3. Then M,(m, z) is simple if
and only if 2(x; — i) € 1(¢) +2Z,i=1,....,n—1, and 2(z,_1 — m1) & 1(q) + 27Z.

2. Let m, z, ¢, and B(m, z) be as in Section 4. Then M,(m,zx) is simple if and only if
2(x1 —¢) € 1(q) + 2Z, 2(xp—1 — mq) & 1(q) +2Z and 2(x; — xi41) & 1(q) + 2Z for all
i=1,...n—2

Proof. We prove the first statement and the second one can by done by analogous argu-
ments. Using the quantum Gelfand-Zetlin formulae and the quantum analogue of I, [MT,
Section 3], by arguments, analogous to that of Lemma 3, we get that AM,(m,z) is not
simple if and only if there exists [[| € B(m, z), which is annihilated by some E, or F,.
The last condition is equivalent to the fact that certain coefficients in quantum Gelfand-
Zetlin formulae are zero. In other words that [z; — zi11], = 0 or [z,—1 — my], = 0. But
¢* — ¢ " = 0 is equivalent to 2z € 1(g). So, the reducibility of M,(m,z) is equivalent to
the failure of the conditions of our lemma. O
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6 New simple U(gl(n,C))- and U,(gl(n,C))-modules

The above technique of constructing simple dense modules suggests the following two gen-
eral constructions, which give new classes of simple modules over U(gl(n,C)) (U(sl(n,C)))
and their quantum analogs. In these cases it is not clear what a true quantum deformation
is, because these modules, although being weight, have infinite-dimensional weight spaces.

The first construction is a more or less direct generalization of the one from Section 3.
Fix 1 < k£ < n and a tableau, [t], satisfying the following conditions:

Loty —thjr1 €N k< j<m
2. tij—ti; €Ly, k< j<i;
3. ticy —tigp €N B < <3
A tyj—t,€2,2<i<n—1,1<j<k 1<s<n.
Consider the set B([t]), which consists of all tableaux [{], satisfying the following conditions:
Lolnj=tn 1 <j<mn;
2.t —lij€Z,1<j<i<n-—1;
3. Lij—liij€ly, k< j<i
4l —ligm €N, E<j<i

Let M([t]) denote the C-vector space with B([t]) as a basis. We note that the case k = 2
coincides with the situation considered in Section 3.

Theorem 5. Gelfand-Zetlin formulae define on M([t]) the structure of an U(gl(n,C))-
module, which is weight and has finite length. M ([t]) is simple if and only if t; j—tit1s € Z
foralli =1,...,n—1 and j,s < k. If k > 2, all weight spaces of M([t]) are infinite-
dimensional.

Proof. The U(gl(n, C))-module structure follows by the same arguments as Lemma 1. The
simplicity criterion follows by the same arguments as Lemma 3. The infinite-dimensionality
of the weight spaces is obtained by the same arguments as Lemma 2. The finite length
arguments are the same as in [Ma3, Section 7.4] and can be sketched as follows: The algebra
[ separates the elements of B([t]) by construction of B([t]), so any simple subquotient,
N, of M([t]) comes with a subset of B([t]), which is a basis of N. Now we can draw a
non-oriented graph G with vertices B([t]) and two vertices, [I] and [l + §*7], are connected
if and only if [l + §%/] (resp. [l]) appears with non-zero coefficient in decomposition of
eiir1[l] (resp. eiy14[l+6%7]). It is obvious that simple subquotients of B([t]) correspond to
connected components of G and now one easily derives from Gelfand-Zetlin formulae that
the number of such components is finite. O
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Asin Section 5 the modules above admit a straightforward quantum deformation, which
can be considered as a true quantum deformation in the sense that both U(g) and U,(g)
actually act on the same space M ([t]) the second action tends to the first one under ¢ — 1.

Theorem 6. Assume that 2(t;; —tis) €1(¢) +2Z,2<i<n—-1,1<j<k, 1<s<n.
Then quantum Gelfand-Zetlin formulae define on M([t]) the structure of a U,(gl(n,C))-
module, which is weight and has finite length. We will denote this module by M,([t]).
M,([t]) is simple if and only if 2(t;; — tit1,s) € 1(q) + 2Z for all i = 1,...,m — 1 and
Jys < k. If k > 2, all weight spaces of M([t]) are infinite-dimensional.

Proof. Everything but finite-length is analogous to Theorem 3 and Lemma 5. The finite
length arguments are the same as in [MT, Theorem 2]. O

The second construction, which follows, was inspired by the first one during some
discussions with L. Turowska. We fix £ < n. Choose a tableaux, [t], satisfying the conditions

Ltij—tis €2, k<i<n,1<j<s<i;
2 tii—ti 1 €0, 2<i<k 1<i<i—1;
3.t —ti €N 2<i<k 1<i<i-—L.
Denote by C([t]) the set of all tableaux [l] satisfying the following conditions:
Lolpj=tp;1<j<mn
2. I —ti, €L, 1<j<i<n—1
3.l —li; €0,,2<i<k 1<i<i-—1;
A Ui —lij €N, 2<i<k 1<i<i-—L.
Let N([t]) be the C-vector space with C([t]) as a basis.

Theorem 7. Gelfand-Zetlin formulae define on N([t]) the structure of an U(gl(n,C))-
module, which is weight and has finite length. N ([t]) is simple if and only if t; ; —tiv1,s € Z
for alli = k,...,n — 1 and all j,s. With respect to the subalgebra gl(k,C), which is
embedded with respect to the upper left corner, N([t]) is a direct sum of simple finite-
dimensional modules.

Proof. First we show how to adjust arguments from Lemma 1 to this case. We write
ull] = > erqpy £ (W, [, [t))[L + t] for some [I] € C([¢]) and some relation u = 0 in U(g).
Now we apply u to all tableaux [s] in all simple finite-dimensional U(g)-modules, which
satisfy s;; = l;;, 1 < j <@ < k. It is easy to see that this set of tableaux is big enough
to conclude that all f(u,[l],[t]) = 0 as in Lemma 1. This gives us the U(gl(n,C))-module
structure on N([t]) and it is obvious that N([t]) is weight. The finite length arguments
are the same as in Theorem 5. Moreover, these arguments also immediately imply the
simplicity criterion for N([t]).
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Consider the subalgebra a; = gl(k, C) of gl(n,C), embedded with respect to the upper
left corner and fix [I[] € C([t]). Denote by D([l]) the set of all [s] € C([t]) satisfying
sij = lij, k <i<mn,1<j<i By Gelfand-Zetlin formulae and definition of N([t]), the
linear span 77 of all [s] € D([l]) and the linear span T3 of all other tableaux are closed under
the ag-action, i.e. N([t]) = T1 &1, as ag-module. Moreover, by our restrictions on elements
in C([t]), the set D([t]) is finite, and hence T is finite-dimensional. This completes the
proof. O

The easiest case is ¥ = n — 1, in which it is easy to see that N([¢]) is a direct sum
of non-isomorphic simple finite-dimensional modules. Again, by out general philosophy of
quantum deformation of Gelfand-Zetlin formulae we immediately get the following:

Theorem 8. Assume that 2(t;j —t;is) € 1(¢) +2Z, k <i<n,1<j<i 1<s<i+]1.
Then quantum Gelfand-Zetlin formulae define on N([t]) the structure of an U,(gl(n,C))-
module, which is weight and has finite length. We will denote this module by N,([t]).
Ny([t]) is simple if and only if 2(t;; — tiy1s) & 1(¢) + 2Z for all i = k,...,n — 1 and all
J,s. With respect to the canonical subalgebra U, (gl(k,C)), the module N,([t]) is a direct
sum of simple finite-dimensional modules.

Proof. Is the quantum version of that of Theorem 7. O

We also remark that in the case k¥ = n — 1 the additional condition of Theorem 8
disappears and hence in this case all N([t]) admit a quantum deformation.

As we have mentioned in the proof of Theorem 5, all simple subquotients of all modules
M(m,z), M([t]) and N([t]) considered above correspond to particular subsets in B(m, z),
B([t]) and C([t]) respectively. Hence analogous quantum construction for them give us
quantum deformation of all these modules, in particular, of all simple gl(k, C) — gi(n,C)
Harish-Chandra modules, which can be realized as simple subquotients of N([t]) con-
structed above.

7 Quantum deformation of simple dense modules in
the general case

In this section we retain all notation from Sections 1 and 2. Let M be an irreducible
coherent family and A € h* be such that M () is simple (hence dense) and has a realization
via Gelfand-Zetlin construction. As we have already mentioned in Section 3, most of A
satisfy this condition. We fix one of them. Let u € h* be such that the module M(u) =
BveutoM, is simple. Then p — A = Z;:ll a;a; for some uniquely defined a; € C. For
k € {l,...,n—1} and z € C denote by Fj, the composition of the following functors:
Ua, ®u(g) —, followed by the 0 -twist, followed by the restriction to U(g). It is a direct
corollary from the definitions of #, and coherent families (see also [M, Proposition 4.8])
that all simple subquotients of Fj, (M) belong to M. The following two lemmas give us
a direct way to represent M () in terms of M(X) and Fy ,.
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Lemma 6. Let v € h* and x € C. Then the modules M(v + zoy,) and Fi,(M(v)) have
the same composition subquotients with the same multiplicity.

Proof. By polynomiality properties of Fj, and coherent families, Fj , “preserves” M,
i.e. sends any module from M to a module, all simple subquotients of which are simple
subquotients of M. Hence it is enough to show that the characters of M(v + zay) and
Fi(M(v)) coincide. But the first step in F, is the induction to U,,, which means
that for any weight 7 of M(v) it is enough to find some N € N such that X_,, acts
injectively on @®;> yM(V)r—iqa,- Now we recall that @;czM (V)r_iq, is an admissible dense
sl(2, C)-module. Hence the kernel of X_,, is finite-dimensional on it. This completes the
proof. O

Lemma 7. M = F,_14, , 00 Fi 4 (M(A)) = M(u).

Proof. If M # 0 then it has finite length by [Fe, Section 4], all its simple subquotients
belong to M and supp(M) C A+ >, ajo; + Q = p+ Q. Hence M ~ M(u) as M(p)
is the only simple subquotient of M, whose support intersects p + ) and the dimension
of weight subspaces of M is less than or equal to that of M (u). So, it is enough to prove
that M # 0. But the last follows directly from Lemma 6. O

Consider now U,(g). By [Jo, 4.4.12], the set F' = {F}|l € N} is an Ore set in U,(g)
and we denote by Uék) the localization of U,(g) with respect to F'. Now we need certain
analogs of 6, for Uék).

Lemma 8. Let u € Uék). Then the vector space T'(u) C Uék), spanned by all FiuF; ",
l € Zy, is finite-dimensional.

Proof. Clearly, we can assume that v is a monomial in Uék), say u = Zy...Z,, where
each Z; equals one of F;, E;, Kiﬂ, KiﬂFk—l, Fk_l, or FkF}F,;l. We will say that another
monomial, v’ = Z]...Z! , is obtained from u by admissible substitution if for all j =

1,...,m the pair (Z;, Z}) belongs to the following list:

Zp | K| KK FT Ey E,i#k F; FEEF " | F'

Z8 | KU K KL Ey E; F; F; P!
KK, L F! F.FF, ' | R FF,!
K'Kp o F?

It is obvious that, for fixed u, the set S(u) of monomials, obtained from u by admissible
substitutions, is finite. Now we claim that if ' is obtained from u by admissible substitu-
tion, then Fyu'F, ' is a sum with some complex coefficients of monomials from S(u). We
write Fyu'F, ' = By Z1F ' Fo ZyF, ' ... Fp Z! F; " and thus reduce the problem to the case
m = 1, in which it follows from the defining relations for U,(g), see Subsection 2.1. Indeed,
from these relations we have: Fy K F,' = %+ %K Fy K7 F ' = g %ustlien K71
FyByF 't = Be— (q— ¢ ") 'Ky K L F o (g— g7 )T K K F Y Ry EF = By i # ky
F.F'F, ' = F'; FyF;F, ' = F;, |i — j| > 1. Finally, from the quantum Serre’s relations
we get F,kaile_Z = —Fpu+ (¢ + qil)Fkaile_l. This completes the proof. O
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Lemma 9. There exists a unique family, 91, of automorphisms of Uék) satisfying the

x
following two conditions:
1. 9%(u) = FFuF,", © € Z;
2. the map C > x> 99(u) is polynomial in q¢=*/? for any u € Uq(k).

Proof. Let u € Uq(k) and u;, 7 € I, be the list of all monomials in u. Set S(u) = U;erS(u;).
Then S(u) is a finite union of finite sets defined in Lemma 8. So, the vector subspace
T C Uék), spanned by S(u), is finite-dimensional and contains all F*uF_* k € N. From
defining relations in U,(g) and construction of S(u;) in Lemma 8 it follows immediately
that the map u — FFuF,* k € N, is polynomial in ¢**¥/2 on T, hence admits a unique
extension for all £ € C. This completes the proof. O

Corollary 2. The automorphisms 9% tend to 0, under ¢ — 1.

Proof. Under ¢ — 1 the relations of U,(g) tend to the relations of U(g), which are poly-
nomial in z. Hence, by construction of 9%, its limit will be a family, ¢,, of automorphisms
of U(g), such that t,(u) = X* uX_3, © € Z, and the map u — ¢,(u) is polynomial in z.

But then ¢, =6, as 6, is the unique family with this property by [M, Lemma 4.3]. O

For k € {1,...,n—1} and = € C we denote by ]-',g,z the composition of the following

three functors: Uq(k) ®u,(g) —» followed by ¥-twist, followed by restriction to Uy(g). Now
we can state our main result.

Theorem 9. 1. Let M, be a true quantum deformation of a weight module, M, k €
{1,...,n—1} and x € C. If the dimensions of the weight spaces of M are uniformly
bounded, then Fj (M) is a true quantum deformation of Fi ,(M).

2. Let A\, p and {a;} be as in the first paragraph of this section. Denote by My(\)
the true quantum deformation of M(\), constructed in Section 5. Then the module
Mg(p) = Fl 14, 00 Fla, (Mg(X) is a true quantum deformation of M(p).

Proof. The second statement follows in an obvious way from the first one and Lemma, 7.
So we will prove only the first statement.

Because of the definitions of F; , and Fj ., which are based on a single root, oy, € ,
the first statement naturally reduces to the case g = sl(2,C). The module M still has
uniformly bounded dimensions of the weight spaces and hence is a module from the BGG-
category O, [Jo, 4.1.4]. The list of indecomposable modules in O for si(2, C) is very short
and contains simple finite-dimensional modules, Verma module, dual Verma modules and
the so-called big projective modules, which can be obtained from a Verma module by
tensoring with a finite-dimensional modules. The main point is that all Verma modules
possess a true quantum deformation in a natural way, [Jo, Chapter 4], [Ja, Chapter 5].
And hence, tensoring with finite-dimensional modules over U,(sl(2,C)) one obtains true
quantum deformations of the big projective modules as well. All finite-dimensional modules
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are, certainly, killed by both f,‘j,w and Fj ., and the part of a dual Verma module, not
killed but these functors, is a Verma module. Hence, over s/(2,C) the question reduces to
calculations with Verma modules and big projective modules, which are filtered by Verma
modules such that this Verma filtration is unique and has length two.

First we note that, if M is a Verma module, the necessary statement follows immediately
from Section 5, since all Verma modules over sl/(2,C) can be realized via Gelfand-Zetlin
construction. This is enough to prove the second statement for s/(2, C), but not enough to
prove the first one in the general case, as the restriction of M to sl(2,C) can also have big
projective modules as direct summands. So, to complete the proof we have to prove our
statement for big projective modules.

Let 0 - M; - N — My — 0 be an exact sequence, where M;, i = 1,2, are Verma
modules and N is a big projective modules. Then there is a corresponding sequence, 0 —
M! — N9 — Mj — 0, for quantum deformations. As X_,, (resp. F}) acts injectively on
all modules in the sequence, the definition of Fj , (resp. .7:,?@) implies that the sequence 0 —
Fra(M1) = Fra(N) = Fro(Mz) — 0 (resp. 0 — F (M{) — F{ (N — F/ (M) — 0)
is also exact. Hence the corresponding weight spaces of Fj ,(N) and F} (N?) have the
same dimension (in fact, it is either 2 or 0). Now, as F} (N?) is a weight module with

finite-dimensional weight spaces, we can apply Corollary 2 and get that the action of Uék)
on F} (N7) tends to the action of U, on Fj,(N) and hence the action of U,(sl(2,C)) on
Fi (N9 tends to the action of U(sl(2,C)) on Fy,(N), when ¢ — 1. So, Fy (N) is a
true quantum deformation of Fj, ,(N) and the proof is complete. O

We remark that the first statement of Theorem 9 can be generalized to weight modules
with finite-dimensional weight spaces with respect to the Gelfand-Zetlin subalgebra.
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