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Abstract

We prove that the semigroups B, of all binary relations and the factor-power
FP*(Sy,) of the symmetric group can be asymptotically approximated by nilpotent
semigroups. Further, we show that almost all elements of these semigroups satisfy
the equation z2 = 0, where 0 denotes the full binary relation. All these facts are
obtained from a careful study of the radical R, in FPT(S,). Along this study we
also derive some corollaries for doubly stochastic matrices.

1 Introduction and the main result

Let T be a semigroup of (possibly partial) transformations on the set M. The Boolean
B(T) inherits from T the natural structure of a semigroup. Moreover, the equivalence
relation ~ on B(T), defined as follows: A ~ B if and only if m* = m? for all m € M,
appears to be a congruence on B(7T). The corresponding quotient B(7")/.. is usually denoted
by FP(T,M). The equivalence class of the empty set is always the isolated zero in the
semigroup FP(T, M), so we can form the semigroup FPH(T,M) = FP(T,M) \ {o},
which is called the factor power of (T, M). Extending the action of the semigroup 7" on M
to the Boolean B(M), we get a natural action of FP*(T, M) on B(M).

This construction appeared first in [GM1] and was later studied in [GM2, GM3, M1, M2]
with the special emphasize on the case, when 7' = S,,, the full finite symmetric group with
the natural action on the set N = {1,2,...,n}. In particular, it was shown that FP*(S,)
asymptotically approximates the semigroup 8, of all binary relations on N, moreover,
FP*(S,) has a very nice inner description inside 9B,. The semigroup FP*(S,) appears
naturally also as the quotient of the semigroup €2, of doubly stochastic real matrices.
Several classes of subsemigroups, automorphisms and Green relations for FP*(S,,) have
been already described.

In the present paper we continue the study of the semigroup FP*(S,) with the em-
phasize on its radical R,, which is the intersection of all maximal nilpotent subsemi-
groups in FP*(S,) (see [GM3]). Alternatively, 2R, consists of all 7 € FP*(S,), such that
|T(A)| > |A| for every proper subset A C N. The semigroup DR, is nilpotent of nilpo-
tency degree n ([GM3, Theorem 6]). The main result of the present paper is the following
theorem, which seems to be quite surprising:



Theorem 1. R, asymptotically approzimates FPT(S,) and B, that is,

lim ol iy P
nooo [FPH(S,)|  nooo | By

= 1.

In other words, the semigroup B, is asymptotically approximated by a nilpotent semi-
group. If one recalls, see [McS, S|, that arbitrary semigroup is isomorphic to a transitive
semigroup of binary relations, then our results seem to be quite parallel with and somehow
explain the main result in [SYT], where it was obtained that 99% of all semigroups of order
8 are nilpotent.

The paper is organized as follows: we prove our main theorem in Section 2. In Section 3
we discuss some corollaries, analogous results and other applications of the radical fR,.
In particular, we derive a result about a kind of “row-column symmetric” behavior of
doubly stochastic matrices. Finally, we formulate several conjectures and open problems
in Section 4.

2 Proof of the main result

We have a natural chain of embeddings R, C FPT(S,) C B,. As we have already
mentioned in the Introduction, [GM2, Theorem 6] states that the semigroup FP*(S,)
asymptotically approximates 8,,. Hence, it is enough to prove that the radical R,, asymp-
totically approximates FPT(S,). Actually, we are not going to calculate the necessary
limit but rather would like to show that

L FPH(S)) \ Rl

1
oo |FPH(S,)]

0,

which would clearly imply the necessary statement.

Our aim now is to find an effective upper bound for the number of elements in FP*(S,,),
which do not belong to the radical. From the definition of the radical, an element, 7, belongs
to FP*(S,) \ R, if and only if there exists A C N, A # &, N, such that |7(A)| = |A|. To
get a convenient formula, we even will leave FP*(S,) and make the estimate in 9B,,. In
the next lemma for A C N and ¢ € *B,, we denote

©(A) ={be N : there exists a € A such that apb}.

We call a binary relation, ¢ € B,,, strongly invariant provided that there exist A, B C N,
0 < |A| = |B| < n, satisfying ¢(A) C B and ¢(A) C B.

Lemma 1. The number of strongly invariant binary relations ¢ € B, s less or equal than

n—1 2
=3 (1) s

=1



Proof. We denote i = |A|. Then we can choose A in (}) different ways and B in (7)
different ways. Every binary relation ¢, which we count, is, by assumptions, a subset of
(Ax BYU(A x B). But |(Ax B)U(A x B)| = #*+ (n—1)? and to complete the proof one

has to apply the multiplication rule and sum up over all i. O
Corollary 1. |FP(S,) \ R.| < d,.

Proof. Let 7 € FPT(S,) \ R, and A C N, A # &, N, such that |7(A)] = |A|. Then
we have s(A) = A for every permutation s € 7 (here 7 is considered as the maximal
element in the corresponding equivalence class of B(S,)), and hence s(4) = A. This
implies 7(A) = A. Therefore 7 is a strongly invariant binary relation and the statement
follows from lemma 1. O

Denote

2 2
dl _ n 212+(n_1)2 4 n 2(n_1)2+12 _ 2n22n2_2n+2
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and d) =d, —d,.
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Now we can compute the limit lim 2—:2, using (") < 2" and the fact that 2 + (n —
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This completes the proof of Theorem 1.

3 Corollaries, applications and some other facts for
the radical ‘R,

Let B, C A,, n € N, be two families of sets. We say that almost all elements of A,
belong B, if |B,|/|A,] — 1, n — oo (we refer the reader to [K]| for the corresponding
terminology in graph theory). The following statement contains several direct corollaries
from Theorem 1.

Corollary 2. 1. B, is asymptotically approrimated by a nilpotent semigroup.
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FPH(Sn) is asymptotically approximated by a nilpotent semigroup.
Almost all elements in B, are nilpotent with respect to the full binary relation 0.
Almost all elements in FP1(S,,) are nilpotent.

Almost all elements in FPY(S,) are contained in the radical.

S G e

The transitive closure of almost all oriented graphs coincides with the full oriented
graph (with loops).

7. Almost all oriented graphs are connected.
8. Almost all oriented graphs are strongly connected.

Quite amazing property of the radical R,, obtained above is a good motivation to study
R, more detailed. We start this study with one more asymptotic property of the radical.
We recall that the element 0 in FP7*(S,) corresponds is the full binary relation N x N in
B,,.

Proposition 1. Almost all elements of R, (and hence of FP1(S,) and B, ) satisfy equa-
tion 22 = 0.

Proof. Because of Theorem 1 and [GM2, Theorem 6], it is enough to prove the statement
for B,. We try to estimate the number of those binary relations ¢ for which ¢? # 0. If
0% # 0, then there exist z,y € N (possibly z = y) such that ¢? does not contain (z,y).
First we assume z # y. That ©? does not contain (x,y) means that for every z € N the
elements (x, z) and (z,y) can not be contained in ¢ together, that is either both (x, z) and
(z,y) do not belong to ¢ or (z,z) does not belong to ¢ or (z,y) does not belong to .
Hence, the number of such ¢ does not exceed 3" - on’=2n

If = y, then ¢ can not contain (z,z) and for every z € N either both (z, z) and (z, x)
do not belong to ¢ or (z,z) does not belong to ¢ or (z,z) does not belong to ¢. Hence,
the number of such ¢ does not exceed 3"~ 1. 27" ~2n+1 Therefore the number of all binary
relations ¢, satisfying ¢? # 0, does not exceed (}) -3"- on*=2n 4 . gn-logn® =204l Dividing
with [B,| = 2" we get

n(n—l)-3"+n-3"‘1-4: 3"(n(n — 1) + 3n)

92n+1 22n+1

Since 3® < 2°, we can rewrite and estimate the last expression in the following way:

3"(n(n —1) + 3n) _ (n(n—1) + 3n) - (n(n—1)+ 3n)
922n+1 25n/3 92.9n/3 2.9n/3

—0, n— o0



Since R, is a two-sided ideal of FP*(S,), we can consider the corresponding Rees
congruence p = pg, and the quotient FP*(S,), modulo this congruence. The semigroup
FP*(Sy), is quite small in comparison with FP*(S,,). Indeed, from Theorem 1 it follows

immediately that .
lim 2P ()|
novoo [ FPH(Sh)|
The natural embedding S, C S,41, which fixes n + 1, extends to the natural em-
bedding FP*(S,) € FP*(S,y1). It is obvious that the image of FP*(S,) under this
embedding does not intersect R, and hence |FP*(S,),| > |FP*(S,)|. Hence the semi-
group FP*(S,), grows quicker than the radical of the previous factor power. At the same
time most of properties can be easily translated from FP*(S,) to FP*(S,), (using the
identification of non-zero elements from FP*(S,), with the corresponding elements in
FP*(S,)). In particular, we get the following.

=0.

Theorem 2. 1. The idempotents in FP*(S,), are equivalence relations.
2. FP*(Sn), and FP*(S,) have the same mazimal subgroups.
3. The Green relations on FP*(S,), are induced from FP*(S,).

4. There is a natural bijection between the nilpotent subsemigroups in FP1(S,), and
the nilpotent subsemigroups in FPT(S,), which contain R,,. This bijection preserves
incluston, in particular, for n > 2 there is a natural bijection between the mazimal
nilpotent subsemigroups in FP1(S,), and the mazimal nilpotent subsemigroups in

FPH(Sy).
5. All automorphisms of FP*(Sy,), are inner.

Proof. The first statement follows from the fact that 2R, is nilpotent and hence contains
exactly one idempotent, which is 0. The second statement follows from the observation that
all elements of fR,, are nilpotent and hence fR,, does not intersect any maximal subgroup,
corresponding to a non-zero idempotent.

The third statement follows from the fact that FP*(S,), is a Rees factor of FP*(S,).

The forth statement follows from the definition of R,, as the intersection of all maximal
nilpotent subsemigroups of FP*(S,).

The last statement can be obtained mutatis mutandis from [M1] if one remarks that all
arguments used in [M1] can actually be applied to the set FP*(S,) \ R,. O

We refer the reader to [M2] and [GM3] for the description of Green relations and
maximal nilpotent subsemigroups of FPT(S,) respectively. By Theorem 2, the same
statements hold for the semigroup FP*(S,), as well.

We would like to finish this section with one more property of the radical and an
application to the doubly stochastic matrices. Recall that there exists the canonical anti-
involution * on FP*(S,), defined for the elements 7 € FP*(S,), 7 = A € B(S,)/~, as
follows: (A)* = {a~' : a € A}.




Lemma 2. R} =R,

Proof. Since * is an anti-involution, it is bijective on FP*(S,,), and hence it is enough to
prove that (FPT(S,) \ R,)* = FPH(S,) \ R,. Let 7 = A € FPH(S,) \ R,. Then there
exists a proper subset, T C N, such that |A(T)| = |T|. Set T" = 7(T). Then for every
a € A we have a(T) = T" and hence a=!(T") = T. Therefore (4)*(T") = T. In particular,
|(A)*(T")| = |T"| and thus (A)* € FP*(S,) \ R,. This completes the proof. O

Recall that an n x n real matrix, M, is called doubly stochastic provided that it has
non-negative entries and in every row and in every column the sum of all elements is equal
to 1. The set of all doubly stochastic matrices is a semigroup under the usual matrix
multiplication. We say that two doubly stochastic matrices are equivalent if their entries
are equal to zero simultaneously. It was shown in [GM2, Theorem 2| that this equivalence
is, in fact, a congruence and that the corresponding quotient semigroup is isomorphic to
FP*(S,). We say that a doubly stochastic matrix, M, satisfies C-condition, if for every
positive integer k£ and every 1 < j < n the number of zeros in the j-th column in the
matrix M* is either zero or strictly less than the number of zeros in the j-th column in the
matrix M*~1. Analogously we define R-condition with respect to the rows of M.

Lemma 3. A doubly stochastic matriz, M, belongs to the equivalence class, corresponding
to some element in R, if and only if M satisfies C-condition.

Proof. This follows from the fact that the natural action of FP*(S,) on N is coordinated
with the natural action of doubly stochastic matrices on vectors from R . O

Corollary 3. A doubly stochastic matriz, M, satisfies C-condition if and only if it satisfies
R-condition.

Proof. According to Lemma 3, the matrix M satisfies C-condition if and only if it belongs
to the equivalence class, corresponding to an element from fR,. The anti-involution x
naturally extends to the transposition of doubly stochastic matrices. The transposition of
matrices interchange rows and columns and preserves classes, which correspond to ®R,, by
Lemma 2. Now the statement follows from Lemma 3, applied to M?. O

4 Problems and conjectures

We would like to finish the paper with a list of several problems and conjectures related
to the radical fR,, and the results of this paper. The first conjecture is very natural and
is motivated by Theorem 1 and the results from [SYT]. For a positive integer, n, let us
denote by a, the number of isomorphism classes of semigroups with n elements, and by
b, the number or the isomorphism classes of nilpotent semigroups with n elements. We
also denote by a] the total number of semigroups on N, and by b/, the total number of
nilpotent semigroups on NN of nilpotency degree at most 3. Clearly b, < a,, and b}, < a;,.

Conjecture 1. lim — = 1. In other words, almost all finite semigroups are nilpotent.
n—00 (y,



Conjecture 1 is an “up-to-isomorphism” version of the following conjecture, mentioned
in [SYT] with the reference to [KRS], where a stronger statement (for nilpotent semigroups
of nilpotency degree 3) is formulated as a theorem, but the proof is only outlined.

!

Conjecture 2. lim = =1.

n—00 a,;b

By [SYT], the ratio bs /ag, where the corresponding numbers are counted up to iso-
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morphism and anti-isomorphism, is approximately 1Z;. Further, each finite semigroup S
is a subsemigroup in some B,. One can hardly expect that the classical representation
of S in 9B, will be related to the radical. However, as it was shown in [McS]|, every finite
semigroup is isomorphic to a transitive semigroup of binary relations on a finite set. Fur-
ther the transitive semigroups are usually contained in the radical and thus it is natural
to expect that almost all S will be represented inside fR,, and therefore will be nilpotent.

The positive answer to Conjecture 1 would clearly imply the positive answer to the

following statement, which however can be viewed as a separate claim.

Conjecture 3. Let bl! denote the number of the isomorphism classes of semigroups with
/!

n elements having exactly 1 idempotent. Then lim — = 1.
n—0o0 a/n
The next problem is a natural continuation of the previous one. Conjecture 1 states
that almost all semigroups are nilpotent and a motivation for this is that ®8,, contains a very
big nilpotent subsemigroup R,,. It is then natural to expect that nilpotent subsemigroups
can be represented inside ‘R,,.

Problem 1. Which finite nilpotent subsemigroups embeds into R, for some n?

The following conjecture represents our point of view on this problem, however, we do
not have so much evidence for it as in the case of Conjecture 1.

Conjecture 4. All finite nilpotent subsemigroups embed into R,,.

Now several problems and conjectures about R,,. The semigroup R, is nilpotent and
hence it has trivial (1-element) classes for all Green relations. However, inside FP*(S,)
the picture is quite different. Of course, R,,, as a two-sided ideal, is still closed under
Green relations, but now it is possible that even #-classes in fR,, are quite big. Here are
the Green classes for the semigroup FP*(S;) (we set N = {1,2,3}, H}, = L}, N R}, and
remark that J = D):

1 _ 1 _ p1 1 1 2 3 1 2 3
b _Rl_ﬁl_ﬂlﬂ_{<1 2 3)’(2 1 3)’



D3 -

L Ri | R} | R} |
00 o )0 5 e (G 1)
1 1,2 1,2 3 1,2 3 1,2 3 1,2 1,2
D? o 1 2 3 1 2 3 1 2 3
2 {(2,3 2,3 1)} {(2,3 1 2,3)} {(1 2,3 2,3)}
{0 G 2 )f G 2 5 PG 5 i)
3 1,3 1,3 2 1,3 2 1,3 2 1,3 1,3
H RY | R} | R} |
= 1 2 3 1 2 3 1 2 3
IHGEEIR(C RS EEE)
D3 : = 1 2 3 1 2 3 1 2 3
IHEERIRCENIEET)
8 1 2 3 1 2 3 1 2 3
JHEER R ERENIHEETD)
4 d d 1 2 3 1 2 3
p _Rl_ﬁl_Hlﬂ_{<1,2 2,3 3,1)’(2,3 1,2 3,1)’
1 2 3 1 2 3 1 2 3 1 2 3 ,
(3,1 2,3 1,2)’(1,2 3,1 2,3)’(2,3 3,1 1,2)’(3,1 1,2 2,3)}’
L R | R | RS
1 2 3 1 2 3 1 2 3
o { 1,2 2,3 N)’ {(1,2 N 2,3)’ N 1,2 2,3)’
! 1 2 3 1 2 3 1 2 3
(2,3 1,2 N)} (2,3 N 1,2)} (N 2,3 1,2)}
1 2 3 1 2 3 1 2 3
o { 1,3 1,2 N )7 {(1,3 N 1,2)’ {(N 1,3 1,2)’
2 1 2 3 1 2 3 1 2 3
(1,2 1,3 N)} (1,2 N 1,3)} (N 1,2 1,3)}
1 2 3 1 2 3 1 2 3
5 { 1,3 2,3 N )° {(1,3 N 2,3)’ {(N 1,3 2,3)’
3 1 2 3 1 2 3 1 2 3
<2,3 1,3 N)} (2,3 N 1,3)} (N 2,3 1,3)}
p-rt—ct=nt, = {(y ¥ ¥ )}




For FP*(S3) we haver Ry = D3 U D*U D> UDE and we see that even the H-classes of
M3, viewed as a semigroup in FP1(Ss), can be non-trivial. Actually, it is easy to see that
in this case we have only 10 elements in 2R3 forming trivial H-classes. One can also remark
that all elements from R? satisfy 22 = 0.

Problem 2. Let ¢, denote the number of those elements in R, which form trivial H-

classes in FPY(S,). Find the asymptotic |§{;|, n — oo.

The following question is closely related to this problem.

Problem 3. Let 7 be an element of FP*(S,) (in particular, of R, ). Find the cardinality
of the H-class (resp. L-class, R-class or D-class) containing the element 7.

The next conjecture is natural after Proposition 1, where it was shown that almost all
elements in R, satisfy 22 = 0.

Conjecture 5. Almost all pairs (x,y) of elements from R, satisfy vy = 0.

Certainly, the elements satisfying 2 = 0 do not form a semigroup of nilpotency degree
2. Denote by f, the maximal cardinality among all nilpotent subsemigroups in R, of
nilpotency degree 2.

Problem 4. Find the asymptotic |91;’;|, n — 0.

Our last collection of problems is related to the study of the so-called cross-sections
for semigroups. Let S be a semigroup and ~ an equivalence relation on S. A ~—cross-
section is a subsemigroup, 7', of S, containing exactly one element from every equivalence
class with respect to ~. The most important are cross-sections with respect to the Green
relations, see [CR, P] and references therein.

Problem 5. Describe all H— and D-cross-sections of FP1(S,).

Problem 6. Denote by ~3 and ~p the equivalence relations on R, obtained by restricting
to R, the Green relations H and D on FP*(S,) respectively. Describe all ~3— and ~p-
cross-sections of R,,.

Connected to these problems is the following general question:

Problem 7. Describe all congruences p on FPT(S,) (resp. Ry) and determine for which
p there exist p—cross-sections (retracts) in FPT(S,) (resp. Ry).

Acknowledgements

This paper was written during the visit of the first author to Uppsala University, which
was supported by The Royal Swedish Academy of Sciences. The financial support of The
Academy and the hospitality of Uppsala University are gratefully acknowledged. For the
second author the research was partially supported by The Swedish Research Council. We
would like to thank Prof. B.Novikov, who attracted our attention to the reference [SYT].

9



References

[CR] D.F.Cowan, R.Reilly, Partial cross-sections of symmetric inverse semigroups. Inter-
nat. J. Algebra Comput. 5 (1995), no. 3, 259-287.

[GM1] O.G.Ganyushkin, V.S.Mazorchuk, Factor powers of semigroups of transformations.
(Ukrainian) Dopov.-Dokl. Akad. Nauk Ukrainy 1993, no. 12, 5-9 (1994)

[GM2] A.G.Ganyushkin, V.S.Mazorchuk, Factor powers of finite symmetric groups. (Rus-
sian) Mat. Zametki 58 (1995), no. 2, 176-188; translation in Math. Notes 58 (1995),
no. 1-2, 794-802 (1996)

[GM3] A.G.Ganyushkin, V.S.Mazorchuk, The structure of subsemigroups of factor powers
of finite symmetric groups. (Russian) Mat. Zametki 58 (1995), no. 3, 341-354, 478;
translation in Math. Notes 58 (1995), no. 3-4, 910-920 (1996)

[KRS] D.J.Kleitman, B.R.Rothschild, J.H.Spencer, The number of semigroups of order n.
Proc. Amer. Math. Soc. 55 (1976), no. 1, 227-232.

[K] A.D.Korshunov, Basic properties of random graphs with big number of verticies and
arrows, Uspekhi Mat. Nauk, 1985, v. 40, No. 1, 107-173 (1985).

[M1] V.Mazorchuk, All automorphisms of FP*(S,) are inner. Semigroup Forum 60, no.
3, 486-490 (2000)

[M2] V.S.Mazorchuk, Green’s relations on FP7*(S,). (English) Mat. Stud. 15, No.2, 151-
155 (2001)

[McS] R.McKenzie, B.M.Schein, Every semigroup is isomorphic to a transitive semigroup
of binary relations. Trans. Amer. Math. Soc. 349 (1997), no. 1, 271-285.

[P] M.Putcha, Monoids with idempotent cross-sections. Internat. J. Algebra Comput. 11
(2001), no. 4, 457-466.

[SYT] S.Satoh, K.Yama, K., M.Tokizawa, Semigroups of order 8. Semigroup Forum 49
(1994), no. 1, 7-29.

[S] B.M.Schein, Representation of semigroups by means of binary relations. (Russian)
Mat. Sb. (N.S.) 60 (102) (1963), 293-303.

O.G.: Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64,
Volodymyrska st., 01033, Kyiv, UKRAINE, e-mail: ganyushk@mechmat.univ.kiev.ua

V.M.: Department of Mathematics, Uppsala University, Box 480, SE 751 06 , Uppsala,
SWEDEN, e-mail: mazor@math.uu.se

10



