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Abstract. Work of Clifford, Munn and Ponizovskĭı parameterized the
irreducible representations of a finite semigroup in terms of the irre-
ducible representations of its maximal subgroups. Explicit construc-
tions of the irreducible representations were later obtained indepen-
dently by Rhodes and Zalcstein and by Lallement and Petrich. All
of these approaches make use of Rees’s theorem characterizing 0-simple
semigroups up to isomorphism. Here we provide a short modern proof of
the Clifford-Munn-Ponizovskĭı result based on a lemma of J. A. Green,
which allows us to circumvent the theory of 0-simple semigroups. A
novelty of this approach is that it works over any base ring.

1. Introduction and preliminaries

Work of Clifford [3, 4], Munn [12, 13] and Ponizovskĭı [14] parameterized
the irreducible representations of a finite semigroup in terms of the irre-
ducible representations of its maximal subgroups. (See [5, Chapter 5] for a
full account of this work.) Explicit constructions of the irreducible represen-
tations were later obtained independently by Rhodes and Zalcstein [19] and
by Lallement and Petrich [11] in terms of the Schützenberger representation
by monomial matrices [20]. All of these approaches make use of Rees’s the-
orem [17] characterizing 0-simple semigroups up to isomorphism, thereby
rendering the results somewhat inaccessible to the non-specialist in semi-
group theory. As a consequence, it seems that when researchers from other
areas need to use semigroup representation theory, they are forced to rein-
vent parts of the theory for themselves, e.g. [1,2]. This paper, like [16,22,23],
aims to reconcile semigroup representation theory with representation the-
ory at large.

The goal of this note is to give a self-contained accounting of the theory of
simple modules over the semigroup algebra of a finite semigroup using only
the tools of associative algebras. This should make the results accessible to
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the general mathematician for the first time. Our key tool is a lemma of
J. A. Green [9]. An advantage of this approach is that it avoids Wedderburn
theory and hence works over an arbitrary commutative ring with unit.

We collect here some basic definitions and facts concerning finite semi-
groups that can be found in any of [5, 10, 18]. Let S be a (fixed) finite
semigroup. If e is an idempotent, then eSe is a monoid with identity e; its
group of units Ge is called the maximal subgroup of S at e. Two idempotents
e, f are said to be isomorphic if there exist x ∈ eSf and x′ ∈ fSe such that
xx′ = e, x′x = f . In this case one can show that eSe is isomorphic to fSf
as monoids and hence Ge

∼= Gf .
If s ∈ S, then J(s) = S1sS1 is the principal (two-sided) ideal generated

by s (here S1 means S with an adjoined identity). Following Green [8], two
elements s, t of a semigroup S are said to be J -equivalent if J(s) = J(t).
In this case one writes s J t. In fact there is a preorder on S given by
s ≤J t if J(s) ⊆ J(t). This preorder induces an ordering on J -classes in
the usual way.

Fact 1. In a finite semigroup, idempotents e, f are isomorphic if and only

if e J f , that is, SeS = SfS.

An element s of a semigroup S is said to be (von Neumann) regular if
s = sts for some t ∈ S. Each idempotent is of course regular.

Fact 2. Let S be a finite semigroup and J a J -class of S. Then the

following are equivalent:

(1) J contains an idempotent;

(2) J contains a regular element;

(3) all elements of J are regular;

(4) J2 ∩ J 6= ∅.

A J -class satisfying the equivalent conditions in Fact 2 is called a regular

J -class. The poset of regular J -classes is denoted U (S). It was shown
by Putcha [16] that over an algebraically closed field of characteristic zero
the module category of a regular semigroup (one in which all elements are
regular) is a highest weight category [6] with weight poset U (S). We need
one last fact about finite semigroups in order to state and prove the Clifford-
Munn-Ponizovskĭı theorem.

Fact 3. Let S be a finite semigroup and J a regular J -class. Let e ∈ J be

an idempotent. Then eSe ∩ J = Ge.

Let J be a J -class of S. Set IJ = {s ∈ S | J * J(s)}; it is the ideal of
all elements of S that are not J -above some (equals any) element of J .

2. Characterization and Construction of Simple Modules

Fix a finite semigroup S and a commutative ring with unit K. The semi-
group algebra KS need not be unital. If A is a K-algebra, not necessarily
unital, then by a simple module M , we mean a (right) A-module M such that
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MA 6= 0 and M contains no proper non-zero submodules, or equivalently
for all 0 6= m ∈ M , the cyclic module mA = M . Of course if K is a field and
A is finite-dimensional, then every simple A-module is finite dimensional,
being cyclic and hence a quotient of the regular module A. The category of
(right) A-modules will be denoted mod-A. We adopt the convention that if
A is unital, then by mod-A we mean the category of unital A-modules. The
reader should verify that all functors considered in this paper respect this
convention.

If M is a KS-module, then AnnS(M) = {s ∈ S | Ms = 0}. Clearly
AnnS(M) is an ideal of S. The following definition, due to Munn [13], is
crucial to semigroup representation theory.

Definition 4 (Apex). A regular J -class J is said to be the apex of a KS-

module M if AnnS(M) = IJ .

It is easy to see that M has apex J if and only if J is the unique ≤J -
minimal J -class that does not annihilate M .

Fix an idempotent transversal E = {eJ | J ∈ U (S)} to the set U (S)
of regular J -classes and set GJ = GeJ

. Let AJ = KS/KIJ . Notice that
the category of KS-modules with apex J can be identified with the full
subcategory of mod-AJ whose objects are modules M such that MeJ 6= 0.

Our first goal is to show that every simple module has an apex. This
result is due independently to Munn and Ponizovskĭı [12–14].

Theorem 5. Let M be a simple KS-module. Then M has an apex.

Proof. Since MKS 6= 0, there is a ≤J -minimal J -class J so that J *
AnnS(M). Let I = S1JS1; of course, I is an ideal of S. Since I \ J
annihilates M by minimality of J , it follows 0 6= MKJ = MKI. From the
fact that I is an ideal of S, we may deduce that MKI is a KS-submodule
and so by simplicity

M = MKI = MKJ. (2.1)

Therefore, since JIJ ⊆ I \ J ⊆ AnnS(M), it follows from (2.1) that IJ =
AnnS(M). Now if J is not regular, then Fact 2 implies J2 ⊆ I \J and hence
J annihilates M by (2.1), a contradiction. Thus J is regular and is an apex
for M . �

Now we wish to establish a bijection between simple KS-modules with
apex J and simple KGJ -modules. This relies on a well-known result of
Green [9]. Let A be an algebra and e an idempotent of A. Then eA is an
eAe-A-bimodule and Ae is an A-eAe-bimodule. Hence we have a restric-
tion functor Res : mod-A → mod-eAe and induction/coinduction functors
Ind,Coind : mod-eAe → mod-A given by

Ind(M) = M ⊗eAe eA, Res(M) = Me and Coind(M) = HomeAe(Ae,M).

Moreover, Ind is right exact, Res is exact, Coind is left exact and Ind and
Coind are the left and right adjoints of Res, respectively. This follows from
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observing that HomA(eA,M) = Me = M ⊗A Ae and the usual adjunction
between hom and the tensor product. Moreover, it is well known that unit
of the first adjunction gives a natural isomorphism M ∼= Ind(M)e while the
counit of the second gives a natural isomorphism Coind(M)e ∼= M .

There also two important functors N,L : mod-A → mod-A given by
N(M) = {m ∈ M | mAe = 0} and L(M) = MeA. It is easily verified that
N(M) is the largest A-submodule of M that is annihilated by e, while L(M)
is the smallest A-submodule of M with L(M)e = Me. Our next result can
be found in [9, 6.2], but we reproduce the proof here for convenience of the
reader.

Lemma 6 (Green). Let A be an algebra and e an idempotent of A.

(1) If M is a simple A-module, then Me = 0 or Me is a simple eAe-
module.

(2) If V is a simple eAe-module, then Ind(V ) has unique maximal sub-

module N(Ind(V )) and Ind(V )/N(Ind(V )) is the unique simple A-

module M with Me ∼= V .

(3) If V is a simple eAe-module, then Coind(V ) has a unique minimal

A-submodule L(Coind(V )) and L(Coind(V )) is the unique simple

A-module M with Me ∼= V .

Consequently, restriction yields a bijection between simple A-modules that

are not annihilated by e and simple eAe-modules.

Proof. To prove (1), assume Me 6= 0. Let m ∈ Me be non-zero. Then
meA = mA = M , so meAe = Me. Thus Me is simple.

Now we turn to (2). Let V be a simple eAe-module and suppose w ∈
Ind(V ) with w /∈ N(Ind(V )). Then 0 6= wAe ⊆ Ind(V )e. But Ind(V )e ∼= V
is a simple eAe-module, so

(wAeAe)A = Ind(V )eA = (V ⊗eAe eA)eA = (V ⊗eAe e)A = Ind(V )

and thus N(Ind(V )) is the unique maximal A-submodule of Ind(V ). In
particular, Ind(V )/N(Ind(V )) is a simple A-module. Since restriction is
exact and N(Ind(V ))e = 0 by construction, it follows

[Ind(V )/N(Ind(V ))]e ∼= Ind(V )e/N(Ind(V ))e ∼= Ind(V )e ∼= V.

It remains to prove uniqueness. Suppose M is a simple A-module such
that Me ∼= V . Then, using the adjunction between induction and restriction,
we have HomeAe(V,Me) ∼= HomA(V ⊗eAe eA,M). Hence the isomorphism
V → Me corresponds to a non-zero homomorphism ϕ : Ind(V ) → M ,
which is necessarily onto as M is simple. But N(Ind(V )) is the unique
maximal submodule of Ind(V ), so ker ϕ = N(Ind(V )) and hence M ∼=
Ind(V )/N(Ind(V )), as required.

Finally, to prove (3) first observe that if M is any non-zero A-submodule
of Coind(V ), then Me 6= 0. Indeed, suppose Me = 0 and let ϕ ∈ M . Then,
for any x in Ae, we have ϕ(x) = (ϕxe)(e) = 0 since ϕxe ∈ Me = 0. It follows
that M = 0. Since Coind(V )e ∼= V is a simple eAe-module, it now follows
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that if M is a non-zero A-submodule of Coind(V ), then Me = Coind(V )e
and hence

L(Coind(V )) = Coind(V )eA ⊆ MeA ⊆ M.

This establishes that L(Coind(V )) is the unique minimal A-submodule.
Since L(Coind(V ))e = Coind(V )eAe = Coind(V )e ∼= V , it just remains to
prove uniqueness. Suppose M is a simple A-module with Me ∼= V . Then the
existence of a non-zero element of HomeAe(Me, V ) ∼= HomA(M,Coind(V ))
implies that M admits a non-zero homomorphism to Coind(V ). Hence M
is isomorphic to a simple A-submodule of Coind(V ). But L(Coind(V )) is
the unique simple submodule of Coind(V ) and so M ∼= L(Coind(V )), as
required. �

We may now complete the proof of the Clifford-Munn-Ponizovskĭı theo-
rem, with an explicit construction of the simple modules equivalent to the
one found in [11,19].

Theorem 7 (Clifford, Munn, Ponizovskĭı). Let S be a finite semigroup, K
a commutative ring with unit and E = {eJ | J ∈ U (S)} an idempotent

transversal to the set U (S) of regular J -classes of S. Let GJ be the maxi-

mal subgroup GeJ
. Define functors IndS

GJ
,CoindS

GJ
: mod-KGJ → mod-KS

by

IndS
GJ

(V ) = V ⊗KGJ
eJ (KS/KIJ)

CoindS
GJ

(V ) = HomKGJ
((KS/KIJ )eJ , V ).

Then:

(1) If M is a simple KS-module with apex J , then MeJ is a simple

KGJ -module;

(2) If V is a simple KGJ -module, then

N = {w ∈ IndS
GJ

(V ) | wKSeJ = 0},

is the unique maximal KS-submodule of IndS
GJ

(V ) and IndS
GJ

(V )/N
is the unique simple KS-module M with apex J such that MeJ = V ;

(3) If V is a simple KGJ -module, then CoindS
GJ

(V )eA is the unique

minimal A-submodule of CoindS
GJ

(V ) and moreover is the unique

simple KS-module M with apex J such that MeJ = V .

Consequently, if K is a field there is a bijection between irreducible repre-

sentations of S and irreducible representations of the maximal subgroups GJ

of S, J ∈ U (S).

Proof. Theorem 5 implies that every simple KS-module M has an apex.
Again setting AJ = KS/IJ for a regular J -class J , we know that simple
KS-modules with apex J are in bijection with simple AJ -modules M such
that MeJ 6= 0. It follows directly from Fact 3 that

eJAJeJ = KeJSeJ/KeJIJeJ = KGJ .
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Lemma 6 then yields that simple AJ -modules not annihilated by eJ , that is
simple KS-modules with apex J , are in bijection with simple KGJ -modules
in the prescribed manner. �

Let us make a remark to relate the above construction of the simple
modules to the ones found in [11,19]. All the facts about finite semigroups
used in this discussion can be found in the appendix of [18] or in [10].
According to Green [8], two elements s, t of a semigroup are said to be
R-equivalent if they generate the same principal right ideal. Dually s, t
are said to be L -equivalent if they generate the same principal left ideal.
If S is a finite semigroup, then it is well known (retaining our previous
notation) that eJS ∩ J is the R-class ReJ

of eJ and SeJ ∩ J is the L -class
LeJ

of eJ . Furthermore, left multiplication yields a free action of GJ on
the left of ReJ

by automorphisms of the action of S on the right of ReJ

by partial transformations (induced by right multiplication). Moreover, the
GJ -orbits on ReJ

are in bijection with the set of L -classes of J . Let T be
a transversal to the GJ -orbits. Now eJKS/IJ can be identified as a vector
space with KReJ

and the right KS-module structure is the linearization
of the right action of S on ReJ

described above. Moreover, under this
identification, the left KGJ -module structure on KReJ

is induced by the free
left action of GJ on ReJ

and so KReJ
is a free left KG-module with basis

T . In particular, the functor IndS
GJ

is exact. It is straightforward to show
using [7, Theorem 10.4.1] that under the usual identification of maximal
subgroups inside J , the KGJ -KS-bimodule KReJ

does not depend (up to
isomorphism) on the choice of eJ ∈ J .

From the above it follows that EndKGJ
(KReJ

) ∼= Mn(KGJ) where n is
the number of L -classes in J and so there results a representation ρJ : S →
Mn(KGJ), which is easily checked to be the classical right Schützenberger
representation by row monomial matrices [5, 20] since if s ∈ S and t ∈ T ,
then either ts = 0 or ts = gt′ for unique elements t′ ∈ T and g ∈ GJ .

Now let V be a simple KGJ -module affording the irreducible represen-
tation ϕ : GJ → GLr(K). Then the matrix representation afforded by the
module V ⊗KGJ

KReJ
is the tensor product of ϕ with ρJ . Now an element

of SeJ which does not belong to J automatically annihilates V ⊗KGJ
KReJ

,
so the unique maximal submodule consists of those vectors annihilated by
SeJ ∩ J = LeJ

, the L -class of eJ . If one chooses Rees matrix coordinates
for J [5, 18], then it is not hard to show that the vectors annihilated by
the L -class of eJ are those belonging to the null space of the image of the
sandwich matrix under ϕ. Hence the construction of the simple modules we
have provided corresponds exactly to the construction found in [11,19], but
our proof avoids Rees matrix semigroups and Munn algebras.

The coinduced module also has a natural semigroup theoretic interpreta-
tion. Indeed, HomKGJ

((KS/KIJ )eJ , V ) ∼= HomGJ
(LeJ

, V ) where we view
LeJ

and V as right GJ -sets. The semigroup S acts on the left of LeJ
by the



ON THE IRREDUCIBLE REPRESENTATIONS OF A FINITE SEMIGROUP 7

left Schützenberger representation and this induces the KS-module struc-
ture on HomGJ

(LeJ
, V ). Since LeJ

is a free right GeJ
-set and the orbits are

in bijection with the set of R-classes in J , elements of HomGJ
(LeJ

, V ) are
in bijection with elements of V m where m is the number of R-classes of J .
The space V m (viewed as row vectors) is naturally a right KS-module via
the left Schützenberger representation λJ : S → Mm(KGJ) and the module
structure agrees with the original one. If one chooses Rees matrix coordi-
nates for J [5, 18], then the structure matrix C takes V n to V m where n is
the number of L -classes of S. One can verify that the image of C is the
unique minimal KS-submodule of V m. (The fact that it is a submodule is a
consequence of the so-called linked equations [10,18].) This yields the other
construction of the irreducible representations found in [19]. Since LeJ

is a

free right GJ -set, it follows that CoindS
GJ

is exact. It should be mentioned
that all coinduced constructions can be obtained from induced constructions
for the opposite semigroup via duality.

Putcha has used both the induced and coinduced modules, which he calls
the left and right induced modules, in his work on representation theory [15,
16].

As an application, we provide the description of the irreducible represen-
tations of an idempotent semigroup that was rediscovered by Brown [1, 2]
and put to good effect in the study of random walks. First we establish a
well-known lemma.

Lemma 8. Let S be a semigroup of idempotents and let J be a J -class of

S. Then the complement of IJ is a subsemigroup of S.

Proof. First we show that J is a subsemigroup. Let e, f ∈ J . Then we
have e = ufv some u, v ∈ S and so efv = ufvfv = ufv = e, establishing
ef ∈ J . Next suppose J ⊆ SsS ∩ Ss′S. We need J ⊆ Sss′S. Let e ∈ J .
Then e = usv and e = u′s′v′ with u, v, u′, v′ ∈ S. Since us(vus)v = e and
u′(s′v′u′)s′v′ = e, it follows vus J e J s′v′u′. Since J is a subsemigroup,
vuss′v′u′ ∈ J and hence J ⊆ Sss′S, as required. �

Corollary 9. Let S be a finite semigroup all of whose elements are idempo-

tents. Then all the irreducible representations of S over a field have degree

one and the unique irreducible representation ϕJ with apex J is given by

ϕJ(s) =

{

0 s ∈ IJ

1 otherwise.
(2.2)

Proof. Let J be a regular J -class. Lemma 8 implies that (2.2) is an irre-
ducible representation with apex J . It is afforded by K with S-action

ks =

{

0 s ∈ IJ

k otherwise.

Since GJ is trivial, there is exactly one simple KS-module with apex J ,
namely the quotient of M = eJKS/KIJ by its unique maximal submodule
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N . Now ReJ
= eJS \ IJ = eJS ∩ J is a basis for M . As a consequence of

Lemma 8, ReJ
s ⊆ ReJ

for s ∈ S \ IJ and ReJ
s ⊆ IJ , otherwise. Thus the

augmentation map ε : M → K sending each element of ReJ
to 1 is a surjec-

tive morphism of KS-modules with kernel the unique maximal submodule
N of M , as K is of course simple. This completes the proof. �

The above argument applies mutatis mutandis to semigroups all of whose
subgroups are trivial and whose regular J -classes are subsemigroups. This
class of semigroups, known as DA, was introduced by Schützenberger in his
study of unambiguous products of regular languages [21].
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