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Abstract

We study 2-representations of finitary 2-categories with involution and adjunctions by
functors on module categories over finite dimensional algebras. In particular, we define,
construct and describe in detail (right) cell 2-representations inspired by Kazhdan-
Lusztig cell modules for Hecke algebras. Under some natural assumptions we show
that cell 2-representations are strongly simple and do not depend on the choice of a
right cell inside a two-sided cell. This reproves and extends the uniqueness result on
categorification of Kazhdan-Lusztig cell modules for Hecke algebras of type A from
[MS].

1. Introduction and description of the results

The philosophy of categorification, which originated in work of Crane and Frenkel (see [Cr, CF])
some fifteen years ago, is nowadays usually formulated in terms of 2-categories. A categorifica-
tion of an algebra (or category) A is now usually understood as a 2-category A , whose decat-
egorification is A. Therefore a natural problem is to “upgrade” the representation theory of A
to a 2-representation theory of A . The latter philosophy has been propagated by Rouquier in
[Ro1, Ro2] based on the earlier development in [CR].

Not much is known about the 2-category of 2-representations of an abstract 2-category.
Some 2-representations of 2-categories categorifying Kac-Moody algebras were constructed and
studied in [Ro2]. On the other hand, there are many examples of 2-representations of various 2-
categories in the literature, sometimes without an explicit emphasis on their 2-categorical nature,
see for example [Kv, St, KMS, MS, KhLa] and references therein. A different direction of the
representation theory of certain classes of 2-categories was investigated in [EO, EGNO].

The 2-categorical philosophy also appears, in a disguised form, in [Kh]. In this article the
author defines so-called “categories with full projective functors” and considers “functors nat-
urally commuting with projective functors”. The former can be understood as certain “full”
2-representations of a 2-category and the latter as morphisms between these 2-representations.

The aim of the present article is to look at the study of 2-representations of abstract 2-
categories from a more systematic and more abstract prospective. Given an algebra A there
are two natural ways to construct A-modules. The first way is to fix a presentation for A and
construct A-modules using generators and checking relations. The second way is to look at
homomorphisms between free A-modules and construct their cokernels. Rouquier’s approach to
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2-representation theory from [Ro1, Ro2] goes along the first way. In the present article, we try
the second one.

Our main object of study is what we call a fiat category C , that is a (strict) 2-category with
involution which has finitely many objects, finitely many isomorphism classes of indecomposable
1-morphisms, and finite dimensional spaces of 2-morphisms that are also supposed to contain
adjunction morphisms. Our 2-setup is described in detail in Section 2. In Section 3 we study
principal 2-representations of fiat categories, which are analogues of indecomposable projective
modules over an algebra. We give an explicit construction of principal 2-representations and prove
a natural analogue of the universal property for them. Adding up all principal representations
we obtain the regular C-bimodule, which gives rise to an abelian 2-category Ĉ enveloping the
original category C . The category Ĉ is no longer fiat, but has the advantage of being abelian.
We show that every 2-representation of C extends to a 2-representation of Ĉ in a natural way.

Inspired by Kazhdan-Lusztig combinatorics (see [KaLu]), in Section 4 we define, for every fiat
category C , the concepts of left, right and two-sided cells and cell 2-representations associated
with right cells. We expect cell representations to be the most natural candidates for “simple” 2-
representations. We even define a class of 2-representations which we call strongly simple, but at
the moment, we are unsure of what the most useful definition of simple should be. We describe the
algebraic structure of module categories on which a cell 2-representation operates and determine
homomorphisms from a cell 2-representation. We also study in detail the combinatorial structure
of two natural classes of cells, which we call regular and strongly regular. These turn out to have
particularly nice properties and appear in many natural examples. Because of the connection
with Kazhdan-Lusztig combinatorics, many constructions in the paper seem quite analogous to
the theory of cellular algebras developed in [GL].

Section 5 is devoted to the study of the local structure of cell 2-representations. We show
that the essential part of cell 2-representations is governed by the action of 1-morphisms from
the associated two-sided cell and describe algebraic properties of cell 2-representations in terms
of the cell combinatorics of this two-sided cell.

In Section 6 we define and study the notions of cyclicity and strong simplicity for 2-
representations. A 2-representation is called cyclic if it is generated, in the 2-categorical sense of
categories with full projective functors in [Kh], by some object M . This means that the natural
map from Ĉ to our 2-representation, sending F to FM is essentially surjective on objects and
surjective on morphisms. A 2-representation is called strongly simple if it is generated, in the
2-categorical sense, by any simple object. We show that all cell 2-representations are cyclic and
prove the following main result:

Theorem 1. Let C be a fiat category. Then, under some natural technical assumptions, every cell
2-representation of C associated with a strongly regular right cell is strongly simple. Moreover,
under the same assumptions, every two cell 2-representations of C associated with strongly
regular right cells inside the same two-sided cell are equivalent.

Finally, in Section 7 we give several examples. The prime example is the fiat category of
projective functors acting on the principal block (or a direct sum of some, possibly singular,
blocks) of the BGG category O for a semi-simple complex finite dimensional Lie algebra. This
example is given by Kazhdan-Lusztig combinatorics and our cells coincide with the classical
Kazhdan-Lusztig cells. As an application of Theorem 1 we reprove, extend and strengthen the
uniqueness result on categorification of Kazhdan-Lusztig cell modules for Hecke algebras of typeA
from [MS]. We also present another example of a fiat category CA given by projective endofunctors
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of the module category of a weakly symmetric self-injective finite dimensional associative algebra
A. We show that the latter example is “universal” in the sense that, under the same assumptions
as mentioned in Theorem 1, every cell 2-representation of a fiat category gives rise to a 2-functor
to some CA.

The 2-categories constructed by Rouquier in [Ro2] and by Khovanov and Lauda in [KhLa] are
not fiat categories because of our strong finiteness restrictions. It is not difficult to extend all main
constructions and some of the results of the present paper to certain locally finite cases (relaxing
either the condition of having finitely many objects or the condition of having finitely many
isomorphism classes of 1-morphisms) and to the graded case (when the space of 2-morphisms is
graded with finite-dimensional graded components). This would, however, substantially increase
technical difficulty and decrease readability of the paper.

Acknowledgements
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2. 2-setup

2.1 Notation

For a 2-category C , objects of C will be denoted by i, j and so on. For i, j ∈ C , objects of
C(i, j) (1-morphisms of C) will be called F,G and so on. For F,G ∈ C(i, j), morphisms from
F to G (2-morphisms of C) will be written α, β and so on. The identity 1-morphism in C(i, i)
will be denoted 1i and the identity 2-morphism from F to F will be denoted idF. Composition
of 1-morphisms will be denoted by ◦, horizontal composition of 2-morphisms will be denoted by
◦0 and vertical composition of 2-morphisms will be denoted by ◦1. We often abbreviate idF ◦0 α
and α ◦0 idF by F(α) and αF, respectively.

For the rest of the paper we fix an algebraically closed field k. As we will often consider
categories C(i, j), we will denote the morphism space between X and Y in such a category by
HomC (i,j)(X,Y ) to avoid the awkward looking C(i, j)(X,Y ).

2.2 Finitary 2-categories and 2-representations

In what follows, by a 2-category we always mean a strict 2-category and use the name bicate-
gory for the corresponding non-strict structure. Note that any bicategory is biequivalent to a
2-category (see, for example, [Le, 2.3]).

We define a 2-category C to be k-finitary provided that

(I) C has finitely many objects;

(II) for every i, j ∈ C the category C(i, j) is a fully additive (i.e. karoubian) k-linear category
with finitely many isomorphism classes of indecomposable objects and finite dimensional
morphism spaces, moreover, horizontal composition of 1-morphisms is biadditive;

(III) for every i ∈ C the object 1i ∈ C(i, i) is indecomposable.

From now on C will always be a k-finitary 2-category.

Denote by Rk the 2-category whose objects are categories equivalent to module categories
of finite-dimensional k-algebras, 1-morphisms are functors between objects, and 2-morphisms
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are natural transformations of functors. We will understand a 2-representation of C to be a
strict 2-functor from C to Rk. By [Le, 2.0], 2-representations of C , together with strict 2-natural
transformations (i.e. morphisms between 2-representation, given by a collection of functors) and
modifications (i.e. morphisms between strict 2-natural transformations, given by natural trans-
formations between the defining functors), form a strict 2-category, which we denote by C-mod.
For simplicity we will identify objects in C(i, j) with their images under a 2-representation (i.e.
we will use module notation).

Example 2. Consider the algebra D := C[x]/(x2) of dual numbers. It is easy to check that the
endofunctor F := D ⊗C − of D-mod satisfies F ◦ F ∼= F ⊕ F. Therefore one can consider the
2-category S2 defined as follows: S2 has one object i := D-mod; 1-morphisms of S2 are all
endofunctors of i which are isomorphic to a direct sum of copies of F and the identity functor;
2-morphisms of S2 are all natural transformations of functors. The category S2 is a C-finitary
2-category. It comes together with the natural representation (the embedding of S2 into RC).

2.3 Path categories associated to C(i, j)

For i, j ∈ C let F1,F2, . . . ,Fr be a complete list of pairwise non-isomorphic indecomposable
objects in C(i, j). Denote by Ci,j the full subcategory of C(i, j) with objects F1,F2, . . . ,Fr. As
C is k-finitary, the path algebra of Ci,j is a finite dimensional k-algebra. There is a canonical
equivalence between the category Cop

i,j-mod and the category of modules over the path algebra of
Ci,j.

Example 3. For the category S2 from Example 2 the category S2(i, i) has two indecomposable
objects, namely 1i and F. Realizing exact functors on D-mod as D-bimodules, the functor 1i
corresponds to the bimodule D and the functor F corresponds to the bimodule D ⊗C D. Let
α : D ⊗C D → D be the unique morphism such that 1⊗ 1 7→ 1; β : D → D ⊗C D be the unique
morphism such that 1 7→ 1 ⊗ x + x ⊗ 1; and γ : D ⊗C D → D ⊗C D be the unique morphism
such that 1⊗ 1 7→ 1⊗ x− x⊗ 1. Then it is easy to check that the category Ci,i is given by the
following quiver and relations:

•
α

**γ
%% •

β

jj ,
γ2 = −(βα)2, (αβ)2 = 0,

αγ = γβ = 0.

2.4 2-categories with involution

If C is a k-finitary 2-category, then an involution on C is a lax involutive object-preserving
anti-automorphism ∗ of C . A finitary 2-category C with involution ∗ is said to have adjunctions
provided that for any i, j ∈ C and any 1-morphism F ∈ C(i, j) there exist 2-morphisms α :
F◦F∗ → 1j and β : 1i → F∗ ◦F such that αF ◦1F(β) = idF and F∗(α)◦1 βF∗ = idF∗ . A k-finitary
2-category with an involution and adjunctions will be called a fiat category.

Example 4. The category S2 from Example 2 is easily seen to be a fiat category.

3. Principal 2-representations

3.1 2-representations Pi

Let C be a finitary 2-category. For i, j ∈ C denote by C(i, j) the category defined as follows:

Objects of C(i, j) are diagrams of the form F
α // G , where F,G ∈ C(i, j) are 1-morphisms

and α is a 2-morphism. Morphisms of C(i, j) are equivalence classes of diagrams as given by the
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solid part of the following picture:

F
α //

β
��

G

β′

��

ξ

xx
F′ α′

// G′

, F,F′,G,G′ ∈ C(i, j),

modulo the ideal generated by all morphisms for which there exists ξ as shown by the dotted
arrow above such that α′ξ = β′. As C is a finitary category, the category C(i, j) is abelian and
equivalent to Cop

i,j-mod, see [Fr].

For i ∈ C define the 2-functor Pi : C → Rk as follows: for j ∈ C set Pi(j) = C(i, j). Further,
for k ∈ C and F ∈ C(j, k) left horizontal composition with (the identity on) F defines a functor
from C(i, j) to C(i, k). We define this functor to be Pi(F). Given a 2-morphism α : F → G,
left horizontal composition with α gives a natural transformation from Pi(F) to Pi(G). We
define this natural transformation to be Pi(α). From the definition it follows that Pi is a strict
2-functor from C to Rk. The 2-representation Pi is called the i-th principal 2-representation of
C .

For i, j ∈ C and a 1-morphism F ∈ C(i, j) we denote by PF the projective object 0 → F of
C(i, j).

3.2 The universal property of Pi

Proposition 5. Let M be a 2-representation of C and M ∈ M(i).

(a) For j ∈ C define the functor ΦM
j : C(i, j) → M(j) as follows: ΦM

j sends a diagram F
α // G

in C(i, j) to the cokernel of M(α)M . Then ΦM = (ΦM
j )j∈C is the unique morphism from Pi

to M given by right exact functors and sending P1i to M .

(b) The correspondence M 7→ ΦM is functorial.

Proof. Claim (a) follows directly from 2-functoriality of M. To prove claim (b) let f : M → M ′.

Choose now any F,G ∈ C(i, j) and α : F → G. Applying M to F
α−→ G gives M(F)

M(α)−→ M(G).

Applying the latter to M
f−→ M ′ yields the commutative diagram

M(F)M
M(F) f //

M(α)M
��

M(F)M ′

M(α)M′
��

M(G)M
M(G) f // M(G)M ′.

This commutative diagram implies that {M(F) f : F ∈ C(i, j)} extends to a natural transfor-
mation from ΦM

j to ΦM ′
j and claim (b) follows.

3.3 Connections to categories with full projective functors

Denote by Ci the full 2-subcategory of C with object i. Restricting Pi to i defines a (unique)
principal 2-representation of Ci. As C is finitary, the identity 1i is indecomposable and hence so
is the projective object P1i . By definition, for any F,G ∈ Ci(i, i) the evaluation map

HomC i(i,i)(F,G) → HomC (i,i)(F ◦ P1i ,G ◦ P1i)

is surjective (and, in fact, even bijective). Therefore the category C(i, i) with the designated
object P1i and endofunctors Pi(F), F ∈ Ci(i, i), is a category with full projective functors in
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the sense of [Kh]. The notion of functors naturally commuting with projective functors in [Kh]
corresponds to morphisms between 2-representations of Ci in our language. It might be worth
pointing out that [Kh] works in the setup of bicategories (without mentioning them).

Similarly, for every j ∈ C and any F,G ∈ C(i, j) the evaluation map

HomC (i,j)(F,G) → HomC (i,j)(F ◦ P1i ,G ◦ P1i)

is surjective (and, in fact, even bijective).

3.4 The regular bimodule

For i, j, k ∈ C and any 1-morphism F ∈ C(k, i) the right horizontal composition with (the
identity on) F gives a functor from C(i, j) to C(k, j). For any 1-morphisms F,G ∈ C(k, i) and a
2-morphism α : F → G the right horizontal composition with α gives a natural transformation
between the corresponding functors. This turns C(·, ·) into a 2-bimodule over C . This bimodule
is called the regular bimodule.

3.5 The abelian envelope of C

Because of the previous subsection, it is natural to expect that one could turn C into a 2-category
with the same set of objects as C . Unfortunately, we do not know how to do this as it seems
that C contains “too many” objects (and hence only has the natural structure of a bicategory).
Instead, we define a biequivalent 2-category Ĉ as follows: Objects of Ĉ are objects of C . To define
1-morphisms of Ĉ consider the regular 2-bimodule C(·, ·) over C just as a left 2-representation.
Let R be the 2-category with same objects as C and such that for i, j ∈ C the category R(i, j)

is defined as the category of all functors from
⊕
k∈C

C(k, i) to
⊕
k∈C

C(k, j), where morphisms are all

natural transformations of functors. We are going to define Ĉ as a 2-subcategory of R .

The regular bimodule 2-representation of C is a 2-functor from C to R (which is the identity
on objects). As usual, for every i, j ∈ C and any F ∈ C(i, j) we will denote the image of F under
this 2-functor also by F. We define 1-morphisms in Ĉ(i, j) as functors in R(i, j) of the form
Coker(α), where α is a 2-morphism from F to G for some F,G ∈ C(i, j). We define 2-morphisms
in Ĉ(i, j) as natural transformations between the corresponding cokernel functors coming from
commutative diagrams of the following form, where all solid arrows are 2-morphisms in C :

F
α //

ξ′

��

G

ξ

��

proj // // Coker(α)

��
F′ α′

// G′ proj // // Coker(α′)

Lemma 6. (a) 1-morphisms in Ĉ are closed with respect to the usual composition of functors in
R .

(b) 2-morphisms in Ĉ are closed with respect to both horizontal and vertical compositions in R .

Proof. Let i, j, k ∈ C , F,G ∈ C(i, j), F′,G′ ∈ C(j, k) and F
α // G , F′ α′

// G′ be some
2-morphisms. Then the interchange law for the 2-category C yields that the following diagram
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is commutative:

F′ ◦ F
F′(α) //

α′
F

��

F′ ◦G
α′
G

��
G′ ◦ F

G′(α) // G′ ◦G
This means that

Coker(α′) ◦ Coker(α) = Coker((α′
G,G

′(α))),

where (α′
G,G

′(α)) is given by the following diagram:

(F′ ◦G)⊕ (G′ ◦ F)
(α′

G,G′(α))
// G′ ◦G .

This implies claim (a).

That 2-morphisms are closed with respect to vertical composition follows directly from the
definitions. To see that 2-morphisms are closed with respect to horizontal composition, consider
the following two commutative diagrams in C :

F1
α //

ξ1
��

G1

η1
��

F′
1

α′
// G′

1

and F2
β //

ξ2
��

G2

η2
��

F′
2

β′
// G′

2

These diagrams induce 2-morphisms between the corresponding cokernels. The horizontal com-
position of these two morphisms is induced by the following commutative diagram:

F1 ◦G2 ⊕G1 ◦ F2

(αG2
,G1(β)) //

 ξ1 ◦0 η2 0
0 η1 ◦0 ξ2


��

G1 ◦G2

η1◦0η2

��
F′
1 ◦G′

2 ⊕G′
1 ◦ F′

2

(α′
G′
2
,G′

1(β
′))

// G′
1 ◦G′

2.

This proves claim (b) and completes the proof.

From Lemma 6 it follows that Ĉ is a 2-subcategory of R . From the construction it also follows
that for any i, j ∈ C the categories C(i, j) and Ĉ(i, j) are equivalent. Furthermore, directly from
the definitions we have:

Lemma 7. There is a unique full and faithful 2-functor i : C → Ĉ such that for any i, j ∈ C ,

F,G ∈ C(i, j) and α : F → G we have i(F) = Coker( 0
0 // F ) and i(α) is induces by

0
0 //

0
��

F

α

��
0

0 // G

.

As usual, the 2-functor i induces the restriction 2-functor î : Ĉ-mod → C-mod. For the opposite
direction we have:

Theorem 8. Every 2-representation of C extends to a 2-representation of Ĉ .
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Proof. LetM ∈ C-mod. Abusing notation we will denote the extension ofM to a 2-representation
of Ĉ also by M. Let i, j ∈ C , F,G ∈ C(i, j) and α : F → G. Then for Coker(α) ∈ Ĉ(i, j) we
define M(Coker(α)) as Coker(M(α)).

To define M on 2-morphisms in Ĉ , let F′,G′ ∈ C(i, j), α′ : F′ → G′, β : F → F′ and
β′ : G → G′ are such that the diagram

Γ := F
α //

β
��

G

β′

��
F′ α′

// G′

is commutative. Then a typical 2-morphism γ in Ĉ is induced by Γ. Applying M induces the
commutative solid part of the following diagram:

M(F)
M(α) //

M(β)
��

M(G)

M(β′)
��

proj //______ Coker(M(α))

ξ
�����
�
�

M(F′)
M(α′) // M(G′)

proj // //______ Coker(M(α′))

Because of the commutativity of the solid part, the diagram extends uniquely to a commutative
diagram by the dashed arrows as shown above. Directly from the construction it follows that M
becomes a 2-representation of Ĉ .

Because of Theorem 8 it is natural to call Ĉ the abelian envelope of C . In what follows we
will always view 2-representation of C as 2-representation of Ĉ via the construction given by
Theorem 8.

4. Cells and cell 2-representations of fiat categories

From now on we assume that C is a fiat category.

4.1 Orders and cells

Set C = ∪i,jCi,j. Let i, j, k, l ∈ C , F ∈ Ci,j and G ∈ Ck,l. We will write F 6R G provided that
there exists H ∈ C(j, l) such that G occurs as a direct summand of H ◦ F (note that this is
possible only if i = k). Similarly, we will write F 6L G provided that there exists H ∈ C(k, i)
such that G occurs as a direct summand of F◦H (note that this is possible only if j = l). Finally,
we will write F 6LR G provided that there exists H1 ∈ C(k, i) and H2 ∈ C(j, l) such that G
occurs as a direct summand of H2 ◦F ◦H1. The relations 6L, 6R and 6LR are partial preorders
on C. The map F 7→ F∗ preserves 6LR and swaps 6L and 6R.

For F ∈ C the set of all G ∈ C such that F 6R G and G 6R F will be called the right cell
of F and denoted by RF. The left cell LF and the two-sided cell LRF are defined analogously.
We will write F ∼R G provided that G ∈ RF and define ∼L and ∼LR analogously. These are
equivalence relations on C. If F 6L G and F 6∼L G, then we will write F <L G and similarly for
<R and <LR.

Example 9. The 2-category S2 from Example 2 has two right cells {1i} and {F}, which are
also left cells and thus two-sided cells as well.

8



Cell 2-representations of finitary 2-categories

4.2 Annihilators and filtrations

Let M be a 2-representation of C . For any i ∈ C and any M ∈ M(i) consider the annihilator
AnnC(M) := {F ∈ C : FM = 0} of M . The set AnnC(M) is a coideal with respect to 6R in
the sense that F ∈ AnnC(M) and F 6R G implies G ∈ AnnC(M). The annihilator AnnC(M) :=⋂
M

AnnC(M) of M is a coideal with respect to 6LR.

Let I be a coideal in C with respect to 6LR. For every i ∈ C denote by MI(i) the Serre
subcategory of M(i) generated by all simple modules L such that I ⊂ AnnC(L).

Lemma 10. By restriction, MI is a 2-representation of C .

Proof. We need to check that MI is stable under the action of elements from C. If L is a simple
module in MI(i) and F ∈ Ci,j, then for any G ∈ I the 1-morphism G ◦ F is either zero or
decomposes into a direct sum of 1-morphisms in I (as I is a coideal with respect to 6LR). This
implies G ◦ FL = 0. Exactness of G implies that GK = 0 for any simple subquotient K of FL.
The claim follows.

Assume that for any i ∈ C we fix some Serre subcategory N(i) in M(i) such that for any
j ∈ C and any F ∈ C(i, j) we have FN(i) ⊂ N(j). Then N(i) is a 2-representation of C by
restriction. It will be called a Serre 2-subrepresentation of M. For example, the 2-representation
MI constructed in Lemma 10 is a Serre 2-subrepresentation of M.

Proposition 11. (a) For any coideal I in C with respect to 6LR we have

MI = MAnnC(MI).

(b) For any Serre 2-subrepresentation N of M we have

AnnC(N) = AnnC(MAnnC(N)).

Proof. We prove claim (b). Claim (a) is proved similarly. By definition, for every i ∈ C we
have N(i) ⊂ MAnnC(N)(i). This implies AnnC(MAnnC(N)) ⊂ AnnC(N). On the other hand, by
definition AnnC(N) annihilates MAnnC(N), so AnnC(N) ⊂ AnnC(MAnnC(N)). This completes the
proof.

Proposition 11 says that I 7→ MI and N 7→ AnnC(N) is a Galois correspondence between
the partially ordered set of coideals in C with respect to 6LR and the partially ordered set of
Serre 2-subrepresentations of M with respect to inclusions.

4.3 Annihilators in principal 2-representations

Let i ∈ C . By construction, for j ∈ C isomorphism classes of simple modules in Pi(j) are
indexed by Ci,j. For F ∈ Ci,j we denote by LF the unique simple quotient of PF.

Lemma 12. For F,G ∈ C the inequality FLG 6= 0 is equivalent to F∗ 6L G.

Proof. Without loss of generality we may assume G ∈ Ci,j and F ∈ Cj,k. Then FLG 6= 0 if and
only if there is H ∈ Ci,k such that HomC (i,k)(PH,FLG) 6= 0. Using PH = HP1i and adjunction
we obtain

0 6= HomC (i,k)(PH,FLG) = HomC (i,j)(F
∗ ◦HP1i , LG).

This inequality is equivalent to the claim that PG = GP1i is a direct summand of F∗ ◦ HP1i ,
that is G is a direct summand of F∗ ◦H. The claim follows.
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Lemma 13. (a) For F,G,H ∈ C the inequality [FLG : LH] 6= 0 implies H 6R G.

(b) For G,H ∈ C such that H 6R G there exists F ∈ C such that [FLG : LH] 6= 0.

Proof. Without loss of generality we may assume

G ∈ Ci,j, F ∈ Cj,k and H ∈ Ci,k. (1)

Then [FLG : LH] 6= 0 is equivalent to HomC (i,k)(PH,FLG) 6= 0. Similarly to Lemma 12 we
obtain that G must be a direct summand of F∗ ◦H. This means that H 6R G, proving (a).

To prove (b) we note that H 6R G implies existence of F ∈ C such that G is a direct summand
of F∗ ◦H. We may assume that F,G and H are as in (1). Then, by adjunction, we have

0 6= HomC (i,k)(F
∗ PH, LG) = HomC (i,j)(PH,FLG),

which means that [FLG : LH] 6= 0. This completes the proof.

Corollary 14. Let F,G,H ∈ C. If LF occurs in the top or in the socle of HLG, then F ∈ RG.

Proof. We prove the claim in the case when LF occurs in the top of HLG, the other case being
analogous. As [HLG : LF] 6= 0, we have F 6R G by Lemma 13. On the other hand, by adjunction,
LG occurs in the socle of H∗ LF. Hence [H

∗ LF : LG] 6= 0 and thus we have G 6R F by Lemma 13.
The claim follows.

Lemma 15. For any F ∈ Ci,j there is a unique (up to scalar) nontrivial homomorphism from P1i
to F∗LF. In particular, F∗LF 6= 0.

Proof. Adjunction yields

HomC (i,i)(P1i ,F
∗ LF) = HomC (i,j)(PF, LF) ∼= k

and the claim follows.

4.4 Serre 2-subrepresentations of Pi

Let I be an ideal in C with respect to6R, i.e. F ∈ I and F >R G implies G ∈ I. For i, j ∈ C define
PI

i (j) as the Serre subcategory of Pi(j) generated by LF for F ∈ Ci,j ∩I. Then from Lemma 13
it follows that PI

i is a Serre 2-subrepresentation of Pi and that every Serre 2-subrepresentation
of Pi arises in this way. For F ∈ I ∩ Ci,j we denote by P I

F the maximal quotient of PF in PI
i (j).

The module P I
F is a projective cover of LF in PI

i (j). Since PI
i is a 2-subrepresentation of Pi,

for F ∈ C we have

FP I
1i

=

{
P I
F , F ∈ I;

0, otherwise.

From the definition we have that 2-morphisms in C surject onto homomorphisms between the
various P I

F . The natural inclusion iI : PI
i → Pi is a morphism of 2-representations, given by the

collection of exact inclusions iIj : PI
i (j) → Pi(j).

Note that C \ I is a coideal in C with respect to 6R. Hence for any 2-representation M of C

we have the corresponding Serre 2-subrepresentation MC\I of M.

Proposition 16 Universal property of PI
i . Let M a 2-representation of C .

(a) For any morphism Φ : PI
i → M we have Φ(P I

1i
) ∈ MC\I(i).

(b) Let M ∈ MC\I(i). For j ∈ C let ΦM
j : PI

i (j) → M(j) be the unique right exact functor
such that for any F ∈ C(i, j) we have

ΦM
j : P I

F 7→ M(F)M.

10
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Then ΦM = (ΦM
j )j∈C : Pi → M is the unique morphism sending P I

F to M .

(c) The correspondence M 7→ ΦM is functorial.

Proof. Claim (a) follows from the fact that C \ I ⊂ AnnC(P
I
1i
). Mutatis mutandis, the rest is

Proposition 5.

4.5 Right cell 2-representations

Fix i ∈ C . Let R be a right cell in C such that R∩ Ci,j 6= ∅ for some j ∈ C .

Proposition 17. (a) There is a unique submodule K = KR of P1i which has the following
properties:

(i) Every simple subquotient of P1i/K is annihilated by any F ∈ R.
(ii) The module K has simple top LGR for some GR ∈ C and FLGR 6= 0 for any F ∈ R.

(b) For any F ∈ R the module FLGR has simple top LF.

(c) We have GR ∈ R.

(d) For any F ∈ R we have F∗ 6L GR and F 6R G∗
R.

(e) We have G∗
R ∈ R.

Proof. Let F ∈ R. Let further j ∈ C be such that F ∈ R∩Ci,j. Then the module FP1i is a nonzero

indecomposable projective in C(i, j). Hence F does not annihilate P1i and thus there is at least
one simple subquotient of P1i which is not annihilated by F. Let K be the minimal submodule
of P1i such that every simple subquotient of P1i/K is annihilated by F. As AnnC(P1i/K) is a
coideal with respect to 6R, the module P1i/K is annihilated by every G ∈ R. Similarly, we have
that for any simple subquotient L in the top of K and for any G ∈ R we have GL 6= 0. This
implies that K does not depend on the choice of F ∈ R. Then (ai) is satisfied and to complete
the proof of (a) we only have to show that K has simple top.

Applying F to the exact sequence K ↪→ P1i � P1i/K we obtain the exact sequence

FK ↪→ FP1i � FP1i/K.

As FP1i/K = 0, we see that FK ∼= FP1i is an indecomposable projective and hence has simple
top. Applying F to the exact sequence radK ↪→ K � topK we obtain the exact sequence

F radK ↪→ FK � F topK.

As FK has simple top by the above, we obtain that F topK has simple top. By construction,
topK is semi-simple and none of its submodules are annihilated by F. Therefore topK is simple,
which implies (a) and also (b).

For F ∈ R, the projective module PF surjects onto the nontrivial module FLGR by the above.
Hence LF occurs in the top of FLGR and thus (c) follows from Corollary 14. For F ∈ R we have
FLGR 6= 0 and hence (d) follows from Lemma 12.

From (d) we have GR 6R G∗
R. Assume that G∗

R 6∈ R and let R̃ be the right cell containing
G∗

R. By Lemma 15 we have G∗
RLGR 6= 0, which implies that KR ⊂ KR̃. If KR = KR̃, then

LGR = LGR̃
and hence R = R̃, which implies (e). If KR ( KR̃, then from (ai) we have

GR LGR̃
= 0. As AnnC(LGR̃

) is a coideal with respect to 6R, it follows that LGR̃
is annihilated

by G∗
R. This contradicts (aii) and hence (e) follows. The proof is complete.

For simplicity we set L = LGR and for F ∈ R define PF := FLGR . For j ∈ C denote by
DR,j the full subcategory of Pi(j) with objects PG, G ∈ R ∩ Ci,j. As each PG is a quotient of

11
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PG and 2-morphisms in C surject onto homomorphisms between projective modules in Pi(j)
(see Subsection 3.3), it follows that 2-morphisms in C surject onto homomorphisms between the
various PG.

Lemma 18. For every F ∈ C and G ∈ R, the module FPG is isomorphic to a direct sum of
modules of the form PH, H ∈ R.

Proof. Any H occurring as a direct summand of F ◦ G satisfies H >R G. On the other hand,
HL 6= 0 implies H∗ 6L GR by Lemma 12. This is equivalent to H 6R G∗

R. By Proposition 17(e),
we have G∗

R ∈ R. Thus H ∈ R, as claimed.

Lemma 19. For every F,H ∈ R ∩ Ci,j we have

dimHomC (i,j)(PF,PH) = [PH : LF].

Proof. Let k denote the multiplicity of GR as a direct summand of H∗ ◦ F. Then for the right
hand side we have

[PH : LF] = dimHomC (i,j)(FP1i ,HL)

(by adjunction) = dimHomC (i,i)(H
∗ ◦ FP1i , L)

= k.

At the same time, by adjunction, for the left hand side we have

dimHomC (i,j)(FL,HL) = dimHomC (i,i)(H
∗ ◦ FL,L). (2)

From Proposition 17(b) it follows that the right hand side of (2) is at least k. On the other hand,

dimHomC (i,j)(FL,HL) 6 HomC (i,j)(FP1i ,HL) = [HL : LF] = k,

which completes the proof.

For F ∈ R consider the short exact sequence

KerF ↪→ PF � PF, (3)

given by Proposition 17(b). Set

KerR,j =
⊕

F∈R∩Ci,j

KerF, PR,j =
⊕

F∈R∩Ci,j

PF, QR,j =
⊕

F∈R∩Ci,j

PF.

Lemma 20. The module KerR,j is stable under any endomorphism of PR,j.

Proof. Let F,H ∈ R ∩ Ci,j and ϕ : PF → PH be a homomorphism. It is enough to show that
ϕ(KerF) ⊂ KerH. Assume this is false. Composing ϕ with the natural projection onto QH we
obtain a homomorphism from PF toQH which does not factor throughQF. However, the existence
of such homomorphism contradicts Lemma 19. This implies the claim.

Now we are ready to define the cell 2-representation CR of C corresponding to R. Define
CR(j) to be the full subcategory of Pi(j) which consists of all modules M admitting a two step
resolution X1 → X0 � M , where X1, X0 ∈ add(QR,j).

Lemma 21. The category CR(j) is equivalent to Dop
R,j-mod.

Proof. Consider first the full subcategory X of Pi(j) which consists of all modules M admitting
a two step resolution X1 → X0 � M , where X1, X0 ∈ add(PR). By [Au, Section 5], the cat-
egory X is equivalent to EndCop

i,j
(PR,j)

op-mod. By Lemma 20, the algebra EndCop
i,j
(QR,j) is the

12
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quotient of EndCop
i,j
(PR,j) by a two-sided ideal. It is easy to see that the standard embedding of

EndCop
i,j
(QR,j)

op-mod ∼= Dop
R,j-mod into X coincides with CR(j). The claim follows.

Theorem 22 Construction of right cell 2-representations. Restriction from Pi defines the struc-
ture of a 2-representation of C on CR.

Proof. From Lemma 18 it follows that for any F ∈ Cj,k we have FCR(j) ⊂ CR(k). The claim
follows.

The 2-representation CR constructed in Theorem 22 is called the right cell 2-representation
corresponding to R. Note that the inclusion of CR into Pi is only right exact in general.

Example 23. Consider the category S2 from Example 2. For the cell representation C{1i} we
have G{1i} = 1i, which implies that C{1i}(i) = C-mod; C{1i}(F) = 0 and C{1i}(f) = 0 for
f = α, β, γ. For the cell representation C{F} we have G{F} = F, which implies that C{F}(i) =
D-mod, C{F}(F) = F and C{F}(f) = f for f = α, β, γ.

4.6 Homomorphisms from a cell 2-representation

Consider a right cell R and let i ∈ C be such that GR ∈ Ci,i. Let further F ∈ C(i, i) and
α : F → GR be such that Pi(α) : FP1i → GR P1i gives a projective presentation of LGR .

Theorem 24. Let M be a 2-representation of C . Denote by Θ = ΘM
R the cokernel of M(α).

(a) The functor Θ is a right exact endofunctor of M(i).

(b) For every morphism Ψ from CR to M we have Ψ(LGR) ∈ Θ(M(i)).

(c) For every M ∈ Θ(M(i)) there is a unique morphism ΨM from CR to M given by a collection
of right exact functors such that ΨM sends LGR to M .

(d) The correspondence M 7→ ΨM is functorial in M in the image Θ(M(i)) of Θ.

Proof. Both M(F) and M(GR) are exact functors as C is a fiat category and M is a 2-functor.
The functor Θ is the cokernel of a homomorphism between two exact functors and hence is right
exact by the Snake lemma. This proves claim (a). Claim (b) follows from the definitions.

To prove claims (c) and (d) choose M ∈ Θ(M(i)) such that M = ΘN for some N ∈ M(i).
Consider the morphism ΦN given by Proposition 5. As ΦN is a morphism of 2-representations,
ΦN (LGR) = ΘN = M . The restriction ΨM of ΦN to CR is a morphism from CR to M. Now
the existence parts of (c) and (d) follow from Proposition 5. To prove uniqueness, we note
that, for every j ∈ C , every projective in CR(j) has the form FLGR for some F ∈ C(i, j)
and every morphism between projectives comes from a 2-morphism of C (see Subsection 4.5).
As any morphism from CR to M is a natural transformation of 2-functors, the value of this
transformation on LGR uniquely determines its value on all other modules. This implies the
uniqueness claim and completes the proof.

4.7 A canonical quotient of P1i associated with R
Fix i ∈ C . Let R be a right cell in C such that R∩ Ci,j 6= ∅ for some j ∈ C . Denote by ∆R the
unique minimal quotient of P1i such that the composition KR ↪→ P1i � ∆R is nonzero.

Proposition 25. For every F ∈ R the image of the a unique (up to scalar) nonzero homomor-
phism ϕ : P1i → F∗ LF is isomorphic to ∆R.
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Proof. The existence of ϕ is given by Lemma 15. Let Y denote the image of ϕ. Assume that
F ∈ Ci,j. For X ∈ {P1i ,∆R} we have, by adjunction,

HomC (i,i)(X,F∗ LF) = HomC (i,j)(FX,LF) = k

as FX is a nontrivial quotient of PF (see Proposition 17). By construction, Y has simple top
isomorphic to L1i and, by the above, the latter module occurs in F∗ LF with multiplicity one.
Since ∆R also has simple top isomorphic to L1i , it follows that the image of any nonzero map
from ∆R to Y covers the top of Y and hence is surjective. To complete the proof it is left to
show that the image of any nonzero map from ∆R to Y is injective.

By construction, LGR is the simple socle of ∆R. Let N denote the cokernel of LGR ↪→ ∆R.
Similarly to the previous paragraph, we have

HomC (i,i)(N,F∗ LF) = HomC (i,j)(FN,LF) = 0

since all composition factors of N are annihilated by F (by Proposition 17(ai)). The claim follows.

We complete this section with the following collection of useful facts:

Lemma 26. (a) For any F,G ∈ Ci,j we have [F∗ LG : L1i ] 6= 0 if and only if F = G.

(b) For any F ∈ C we have F ∼LR F∗.

Proof. Using adjunction, we have

HomC (i,i)(P1i ,F
∗ LG) = HomC (i,j)(PF, LG) =

{
k, F = G;

0, otherwise,

which proves (a).

To prove (b) let R be the right cell containing F. Then we have F ∼R GR and hence
F∗ ∼L G∗

R. At the same time GR ∼R G∗
R by Proposition 17(e). Claim (b) follows and the proof

is complete.

4.8 Regular cells

We denote by ? the usual product of binary relations.

Lemma 27. We have 6LR=6R ? 6L=6L ? 6R.

Proof. Obviously the product of 6R and 6L (in any order) is contained in 6LR. On the other
hand, for F,G ∈ C we have F 6LR G if and only if there exist H,K ∈ C such that G occurs
as a direct summand of H ◦ F ◦ K. This means that there is a direct summand L of H ◦ F such
that G occurs as a direct summand of L ◦K. By definition, we have F 6R L and L 6R G. This
implies that 6LR is contained in 6R ? 6L and hence 6LR coincides with 6R ? 6L. Similarly
6LR coincides with 6L ? 6R and the claim of the lemma follows.

A two-sided cell Q is called regular provided that any two different right cells inside Q are
not comparable with respect to the right order. From Lemma 26(b) it follows that Q is regular if
and only if any two different left cells inside Q are not comparable with respect to the left order.
A right (left) cell is called regular if it belongs to a regular two-sided cell. An element F is called
regular if it belongs to a regular two-sided cell.

Proposition 28 Structure of regular two-sided cells. Let Q be a regular two-sided cell.

14



Cell 2-representations of finitary 2-categories

(a) For any right cell R in Q and left cell L in Q we have L ∩R 6= ∅.

(b) Let ∼Q
R and ∼Q

L denote the restrictions of ∼R and ∼L to Q, respectively. Then Q×Q =∼Q
R

? ∼Q
L=∼Q

L ? ∼Q
R .

Proof. If F ∈ R and G ∈ L, then there exist H,K ∈ C such that G occurs as a direct summand
of H ◦ F ◦K. This means that there exists a direct summand N of H ◦ F such that G occurs as a
direct summand of N ◦K. Then N >R F and N 6L G. As F ∼LR G it follows that N ∈ Q. Since
Q is regular, it follows that N ∈ R and N ∈ L proving (a).

To prove (b) consider F,G ∈ Q. By (a), there exist H ∈ Q such that H ∼L F and H ∼R G.
Similarly, there exist K ∈ Q such that K ∼R F and K ∼L G. Then we have (F,G) = (F,H)?(H,G)
and (F,G) = (F,K) ? (K,G) proving (b).

For a regular right cell R the corresponding module ∆R has the following property.

Proposition 29. Let R be a regular right cell and M the cokernel of LGR ↪→ ∆R. Then for
any composition factor LF of M we have F <R GR and F <L GR.

Proof of Proposition 29.. Let F ∈ C be such that LF is a composition factor of M . As ∆R is a
submodule of G∗

R LGR (by Proposition 25), from Lemma 13(a) it follows that F 6R GR.

Consider I := {H ∈ C : H 6R GR}. Then I is an ideal with respect to 6R. Assume that
GR ∈ Ci,i and consider the 2-subrepresentation PI

i of Pi. Then F ∈ Ci,i and ∆R ∈ PI
i (i). Using

adjunction, we have:

0 6= HomC (i,i)(FP I
1i
,∆R) = HomC (i,i)(P

I
1i
,F∗∆R).

This yields F∗∆R 6= 0. The module F∗∆R on the one hand belongs to PI
i (i) (by Lemma 13(a)),

on the other hand is a quotient of F∗ P1i (as ∆R is a quotient of P1i and F∗ is exact). The module
F∗ P1i has simple top LF∗ . This implies F∗ 6R GR by Lemma 13(a) and thus F 6L G∗

R ∈ R (see
Proposition 17(e)).

This leaves us with two possibilities: either F 6∼LR GR, in which case we have both F <R GR
and F <L GR, as desired; or F ∼LR GR, in which case we have both F ∼L GR and F ∼R GR since
R is regular. In the latter case we, however, have G∗

R LF 6= 0 by Lemma 12, which contradicts
Proposition 17(ai). This completes the proof.

A two-sided cell Q is called strongly regular if it is regular and for every left cell L and right
cell R in Q we have |L ∩ R| = 1. A left (right) cell is strongly regular if it is contained in a
strongly regular two-sided cell.

Proposition 30 Structure of strongly regular right cells. Let R be a strongly regular right cell.
Then we have:

(a) GR ∼= G∗
R.

(b) If F ∈ R satisfies F ∼= F∗, then F = GR.

(c) If F ∈ R and G ∼L F is such that G ∼= G∗, then GLF 6= 0 and every simple occurring both
in the top and in the socle of GLF is isomorphic to LF.

Proof. Claim (a) follows from the strong regularity of R and Proposition 17(e). Claim (b) follows
directly from the strong regularity of R.

Let us prove claim (c). That GLF 6= 0 follows from Lemma 12. If some LH occurs in the top
of GLF 6= 0 then, using adjunction and G ∼= G∗, we get GLH 6= 0. The latter implies G ∼L H

15



Volodymyr Mazorchuk and Vanessa Miemietz

by Lemma 12. At the same time H ∼R F by Corollary 14. Hence H = F because of the strong
regularity of R. This completes the proof.

5. The 2-category of a two-sided cell

5.1 The quotient associated with a two-sided cell

Let Q be a two-sided cell in C. Denote by IQ the 2-ideal of C generated by F and idF for
all F 66LR Q. In other words, for every i, j ∈ C we have that IQ(i, j) is the ideal of C(i, j)
consisting of all 2-morphisms which factor through a direct sum of 1-morphisms of the form F,
where F 66LR Q. Taking the quotient we obtain the 2-category C/IQ.

Lemma 31. Let R ⊂ Q be a right cell. Then IQ annihilates the cell 2-representation CR. In
particular, CR carries the natural structure of a 2-representation of C/IQ.

Proof. This follows from the construction and Lemma 12.

The construction of C/IQ is analogous to constructions from [Be, Os].

5.2 The 2-category associated with Q
Denote by CQ the full 2-subcategory of C/IQ, closed under isomorphisms, generated by the
identity morphisms 1i, i ∈ C , and F ∈ Q. We will call CQ the 2-category associated to Q. This
category is especially good in the case of a strongly regular Q, as follows from the following
statement:

Proposition 32. Assume Q is a strongly regular two-sided cell in C. Then Q remains a two-sided
cell for CQ.

Proof. Let F ∈ Q. Denote by G the unique self-adjoint element in the right cell R of F. The
action of G on the cell 2-representation CR is nonzero and hence G 6= 0, when restricted to CR.

Further, by Proposition 17(b), GLG has simple top LG. Using Proposition 17(b) again, we
thus get F ◦GLG 6= 0, implying F ◦G 6= 0, when restricted to CR. But the restriction of F ◦G
decomposes into a direct sum of some H ∈ Q, which are in the same right cell as G and in the
same left cell as F. Since Q is strongly regular, the only element satisfying both conditions is F.
This implies that, when restricted to CR, F occurs as a direct summand of F ◦G, which yields
F >R G in CQ.

Now consider the functor F∗ ◦F. Since F 6= 0, when restricted to CR, by adjunction we have
F∗ ◦ F 6= 0, when restricted to CR, as well. The functor F∗ ◦ F decomposes into a direct sum of
functors from R∩R∗ = {G}. This implies G >R F in CQ and hence R remains a right cell in CQ.
Using ∗ we get that all left cells in Q remain left cells in CQ. Now the claim of the proposition
follows from Proposition 28(b).

The important property of CQ is that for strongly regular right cells the corresponding cell
2-representations can be studied over CQ:

Corollary 33. Let Q be a strongly regular two-sided cell of C and R be a right cell of Q.
Then the restriction of the cell 2-representation CR from C to CQ gives the corresponding cell
2-representation for CQ.

Proof. Let i ∈ C be such that R ∩ Ci,i 6= ∅. Denote by CQ
R the cell 2-representation of CQ

associated to R. We will use the upper index Q for elements of this 2-representation. Consider
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CR as a 2-representation of CQ by restriction. By Theorem 24, we have the morphism of 2-
representations Ψ := ΨLGR : CQ

R → CR sending LQ
GR

to LGR .

Let j ∈ C and F ∈ R∩Ci,j. By Proposition 17(b), the morphism Ψ sends the indecomposable
projective module PQ

F of CQ
R(j) to the indecomposable projective module PF in CR(j). As men-

tioned after Proposition 17, we have that 2-morphisms in CQ surject onto the homomorphisms
between indecomposable projective modules both in CQ

R(j) and CR(j).

To prove the claim it is left to show that Ψ is injective, when restricted to indecomposable
projective modules in CQ

R(j). For this it is enough to show that the Cartan matrices of CQ
R(j)

and CR(j) coincide. For indecomposable F and H in R∩ Ci,j, using adjunction, we have

HomC (i,j)(FLGR ,HLGR) = HomC (i,i)(H
∗ ◦ FLGR , LGR). (4)

and similarly for CQ
R. The dimension of the right hand side of (4) equals the multiplicity of GR

as a direct summand of H∗ ◦ F. Since this multiplicity is the same for CQ
R and CR, the claim

follows.

5.3 Cell 2-representations for strongly regular cells

In this section we fix a strongly regular two-sided cell Q in C. We would like to understand
combinatorics of the cell 2-representation CR for a right cell R ⊂ Q. By the previous subsection,
for this it is enough to assume that C = CQ. We work under this assumption in the rest of
this subsection and consider the direct sum C of all CR, where R runs through the set of all
right cells in Q. To simplify our notation, by HomC we denote the homomorphism space in an
appropriate module category C(i).

Proposition 34. Let Q be as above and F,H ∈ Q.

(a) For some mF,H ∈ {0, 1, 2, . . . } we have H∗ ◦ F ∼= mF,HG, where {G} = LH∗ ∩RF; moreover,
mF,F 6= 0.

(b) If F ∼R H, then mF,H = mH,F.

(c) If H = H∗ and F ∼R H, then mF,F = dimEndC(FLH).

(d) If H = H∗ and F ∼R H, then F ◦H ∼= mH,HF and H ◦ F∗ ∼= mH,HF
∗

(e) If H = H∗ and H ∼L F, then mH,H = dimHomC(PF,HLF).

(f) Assume G ∈ Q and H = H∗, G = G∗, H ∼L F and G ∼R F. Then

mF,FmG,G = mF∗,F∗mH,H.

Proof. By our assumptions, every indecomposable direct summand of H∗ ◦ F belongs to the
right cell of F and the left cell of H∗, hence is isomorphic to G. Note that F∗ ◦ F is nonzero by
adjunction since FLGRF

6= 0. This implies claim (a) and claim (c) follows from Proposition 17(b)
using adjunction.

If F ∼R H, then H∗ ◦ F ∼= mF,HGRF
by (a). By Proposition 30(a), the functor GRF

is self-
adjoint. Hence H∗ ◦ F is self-adjoint, which implies claim (b).

Set m = mH,H. Similarly to the proof of claim (a), we have F◦H ∼= kF for some k ∈ {1, 2, . . . }.
Using associativity, we obtain

k2F = k(F ◦H) = (kF) ◦H = (F ◦H) ◦H =

= F ◦ (H ◦H) = F ◦ (mH) = m(F ◦H) = mkF.

This implies claim (d) and claim (e) follows by adjunction.
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Claim (f) follows from the following computation:

mF,FmG,GF
(d)
= mF,F(F ◦G) = F ◦ (mF,FG)

(a)
= F ◦ (F∗ ◦ F) =

= (F ◦ F∗) ◦ F (a)
= (mF∗,F∗H) ◦ F = mF∗,F∗(H ◦ F) (d)

= mF∗,F∗mH,HF.

This completes the proof.

As a corollary we obtain that the Cartan matrix of the cell 2-representation CR is symmetric.

Corollary 35. Assume that R is a strongly regular right cell. Then for any F,H ∈ R we have
[PF : LH] = [PH : LF].

Proof. We have [PF : LH] = dimHomCR(PH,PF). Using adjunction and Proposition 34(a), the
latter equals mH,F. Now the claim follows from Proposition 34(b).

Corollary 36. Let F,H ∈ Q be such that H = H∗ and F ∼L H. Then the module PF is a direct
summand of HLF and mF,F 6 mH,H.

Proof. From Proposition 34 we have:

mF,F = dimEndC(PF), mH,H = dimHomC(PF,HLF).

Hence to prove the corollary we just need to show that PF is a direct summand of HLF.

By Proposition 34, the module F ◦ F∗ LF decomposes into a direct sum of mF∗,F∗ copies of
the module HLF. Hence it is enough to show that PF is a direct summand of F ◦ F∗ LF.

Let R be the right cell of F. We know that F∗ LF 6= 0. Using adjunction and Lemma 12,
we obtain that every simple quotient of F∗ LF 6= 0 is isomorphic to LGR . Hence F∗ LF surjects
onto LGR and, applying F, we have that F ◦F∗ LF surjects onto PF. Now the claim follows from
projectivity of PF.

Corollary 37. For every F ∈ Q the projective module PF is injective.

Proof. Let R be the right cell of F. Since the functorial actions of F and F∗ on CR are biadjoint,
they preserve both the additive category of projective modules and the additive category of
injective modules. Now take any injective module I and let LH be some simple occurring in its
top. Applying H∗ we get an injective module such that LGR occurs in its top. Applying now F
we get an injective module in which the projective module PF

∼= FLGR is a quotient. Hence PF

splits off as a direct summand in this module and thus is injective. This completes the proof.

Corollary 38. Let F,H ∈ Q and R be the right cell of F.

(a) We have F∗ LF
∼= PGR .

(b) The module HLF is either zero or both projective and injective.

Proof. Similarly to the proof of Corollary 36 one shows that the module PGR is a direct summand
of F∗ LF, so to prove claim (a) we have to show that F∗ LF is indecomposable. We will show that
F∗ LF has simple socle. Since F annihilates all simple modules in CR but LGR , using adjunction
it follows that every simple submodule in the socle of F∗ LF is isomorphic to LGR . On the other
hand, using adjunction and Proposition 17(b) we obtain that the homomorphism space from
LGR to F∗ LF is one-dimensional. This means that F∗ LF has simple socle and proves claim (a).

Assume that HLF 6= 0. Then, by Lemma 12, we have F∗ ∼R H (since Q is strongly regular).
Let G ∈ R be such that G ∼L H. Then, by Proposition 34(a), we have G ◦ F∗ ∼= mF∗,G∗H. So,
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to prove claim (b) it is enough to show that mF∗,G∗ 6= 0 and that G ◦ F∗ LF is both projective
and injective. By claim (a), we have F∗ LF

∼= PGR . Since GLGR 6= 0 by Proposition 17(b) and
G is exact, it follows that G ◦ F∗ LF 6= 0 and hence mF∗,G∗ 6= 0. Further, GPGR is projective as
PGR is projective and G is biadjoint to G∗. Finally, GPGR is injective by Corollary 37. Claim
(b) follows and the proof is complete.

Corollary 39. Let F,H ∈ Q be such that H = H∗ and F ∼L H. Then mF,F|mH,H.

Proof. Let R be the right cell of F. By Lemma 12, H annihilates all simples of CR but LF.
This and Corollary 38(b) imply that HLF = kPF for some k ∈ N. On the one hand, using
Propositions 17 and 34 we have

(F∗ ◦H)LF = kF∗PF = k(F∗ ◦ F)LGR = kmF,FGR LGR = kmF,F PGR . (5)

On the other hand, we have F∗ ∼R H and thus, using Proposition 34(d) and Corollary 38(a), we
have:

(F∗ ◦H)LF = mH,HF
∗ LF = mH,HPGR . (6)

The claim follows comparing (5) and (6).

6. Cyclic and simple 2-representations of fiat categories

6.1 Cyclic 2-representations

Let C be a fiat category, M a 2-representation of C , i ∈ C and M ∈ M(i). We will say that M
generates M if for any j ∈ C and X,Y ∈ M(j) there are F,G ∈ Ĉ(i, j) such that FM ∼= X,
GM ∼= Y and the evaluation map HomĈ (i,j)(F,G) → HomM(j)(FM,GM) is surjective. The
2-representation M is called cyclic provided that there exists i ∈ C and M ∈ M(i) such that M
generates M. Examples of cyclic 2-representations of C are given by the following:

Proposition 40. (a) For any i ∈ C the 2-representation Pi is cyclic and generated by P1i .

(b) For any right cell R of C the cell 2-representation CR is cyclic and generated by LGR .

Proof. Let j ∈ C , X,Y ∈ Pi(j) and f : X → Y . Taking some projective presentations of X and
Y yields the following commutative diagram with exact rows:

X1
h //

f ′′

��

X0
// //

f ′

��

X

f

��
Y1

g // Y0 // // Y

(7)

Now X1, X0, Y1, Y0 are projective in Pi(j) and we may assume that X1 = F1 P1i , X0 = F0 P1i ,
Y1 = G1 P1i and Y0 = G0 P1i for some F1,F0,G1,G0 ∈ C(i, j). From the definition of Pi we then
obtain that g, h, f ′ and f ′′ are given by 2-morphisms between the corresponding 1-morphisms
(which we denote by the same symbols).

It follows that X equals to the image of P1i under H1 := Coker(F1
h→ F0) ∈ Ĉ(i, j). Similarly,

Y equals to the image of P1i under H2 := Coker(G1
g→ G0) ∈ Ĉ(i, j). Finally, f is induced by

the diagram

F1
h //

f ′′

��

F0

f ′

��
G1

g // G0.
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Claim (a) follows.

To prove claim (b) we view every CR(j) as the corresponding full subcategory of Pi(j). Let
X,Y ∈ CR(j) and f : X → Y . From the proof of claim (a) we have the commutative diagram (7)
as described above. Our proof of claim (b) will proceed by certain manipulations of this diagram.
Denote by I the ideal of C with respect to 6R generated by R and set I ′ := I \ R.

To start with, we modify the left column of (7). Let X ′
1 and Y ′

1 denote the trace of all
projective modules of the form PG, G 6∈ I ′, in X1 and Y1, respectively. Consider some minimal
projective covers X̂1 � X ′

1 and Ŷ1 � X ′
1 of X ′

1 and Y ′
1 , respectively. Let can : X̂1 � X ′

1 ↪→ X1

and can′ : Ŷ1 � Y ′
1 ↪→ Y1 denote the corresponding canonical maps and set ĥ = h ◦ can and

ĝ = g ◦ can′. Then the cokernel of both can and can′ has only composition factors of the form
LF, F ∈ I ′. By construction, the image of f ′′ ◦can is contained in the image of can′. Hence, using
projectivity of X̂1, the map f ′′ lifts to a map f̂ ′′ : X̂1 → Ŷ1 such that the following diagram
commutes:

X̂1

ĥ
&&

f̂ ′′

��

can
// X1

f ′′

��

h
// X0

// //

f ′

��

X

f

��
Ŷ1

ĝ

88
can′ // Y1

g // Y0 // // Y

(8)

The difference between (7) and (8) is that the rows of the solid part of (8) are no longer exact but
might have homology in the middle. By construction, all simple subquotients of these homologies
have the form LF, F ∈ I ′. Further, all projective direct summands appearing in (8) have the
form PF for F 6∈ I ′.

Denote by X̃1, X̃0, Ỹ1 and Ỹ0 the submodules of X̂1, X0, Ŷ1 and Y0, respectively, which are
uniquely defined by the following construction: The corresponding submodules contain all direct
summands of the form PF for F 6∈ R; and for each direct summand of the form PF, F ∈ R, the
corresponding submodules contain the submodule KerF of PF as defined in (3). By construction
and Lemma 20, we have ĥ : X̃1 → X̃0, ĝ : Ỹ1 → Ỹ0, f

′ : X̃0 → Ỹ0 and f̂ ′′ : X̃1 → Ỹ1. Since
X,Y ∈ CR, the images (on diagram (8)) of X̃0 and Ỹ0 in X and Y , respectively, are zero. Hence,
taking quotients gives the following commutative diagram:

X̂1/X̃1
h̃ //

f̃ ′′

��

X0/X̃0
// //

f̃ ′

��

X

f

��
Ŷ1/Ỹ1

g̃ // Y0/Ỹ0 // // Y,

(9)

where h̃, g̃, f̃ ′′ and f̃ ′ denote the corresponding induced maps.

By our construction of (9) and definition of CR, all indecomposable modules appearing in
the left square of (9) are projective in CR(j) (and hence, by definition of CR, have the form
FLGR for some F ∈ R). Moreover, all simples of the form LF, F ∈ I ′, become zero in CR(j)
(since CR(j) is defined as a Serre subquotient and simples LF, F ∈ I ′, belong to the kernel).
This implies that both rows of (9) are exact in CR(j). As mentioned in the proof of claim (a),
the maps g, h, f ′ and f ′′ on diagram (7) are given by 2-morphisms in C . Similarly, the maps ĝ,
ĥ and f̂ ′′ on diagram (8) are given by 2-morphisms in C as well. By construction of (9), the
maps h̃, g̃, f̃ ′′ and f̃ ′ are induced by ĥ, ĝ, f̂ ′′ and f ′, respectively. Now the proof of claim (b) is
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completed similarly to the proof of claim (a).

6.2 Simple 2-representations

A (nontrivial) 2-representation M of C is called quasi-simple provided that it is cyclic and
generated by a simple module. From Proposition 40(b) it follows that every cell 2-representation
is quasi-simple. A (nontrivial) 2-representation M of C is called strongly simple provided that it
is cyclic and generated by any simple module. It turns out that for strongly regular right cells
strong simplicity of cell 2-representations behaves well with respect to restrictions.

Proposition 41. Let Q be a strongly regular two-sided cell and R a right cell in Q. Then the
cell 2-representation CR of C is strongly simple if and only if its restriction to CQ is strongly
simple.

To prove this we will need the following general lemma:

Lemma 42. Let Q be two-sided cell and M a 2-representations of C . Let H ∈ Ĉ be such that for
any F ∈ C the inequality HomĈ (F,H) 6= 0 implies F <LR Q. Then for any G ∈ Q the functor
M(G) annihilates the image of M(H).

Proof. Let H = Coker(α), where α : H′ → H′′ is a 2-morphism in C . From Lemma 12, applied to
an appropriate Pi, it follows that G(α) is surjective. This implies that G ◦H = 0 and yields the
claim.

Proof of Proposition 41.. Let H ∈ C be such that H <LR Q. Then there exists a 1-morphism
F in C and a 2-morphism α : F → H in C such that every indecomposable direct summand of
CR(F) has the form CR(G) for some G ∈ Q and the cokernel of CR(α) satisfies the condition
that for any K ∈ C the existence of a nonzero homomorphism from CR(K) to Coker(CR(α))
implies K <LR Q. By Lemma 42, every 1-morphism in Q annihilates the image of Coker(CR(α)).
Since every simple in CR is not annihilated by some 1-morphism in Q, we have that the image
of Coker(CR(α)) is zero and hence Coker(CR(α)) is the zero functor. This means that CR(H)
is a quotient of CR(F), which implies the claim.

The following theorem is our main result (and a proper formulation of Theorem 1 from
Section 1).

Theorem 43 Strong simplicity of cell 2-representations. Let Q be a strongly regular two-sided
cell. Assume that

the function
Q −→ N0

F 7→ mF,F
is constant on left cells of Q. (10)

Then we have:

(a) For any right cell R in Q the cell 2-representation CR is strongly simple.

(b) If R and R′ are two right cells in Q, then the cell 2-representations CR and CR′ are equiv-
alent.

Proof. Let F,G ∈ R and H ∈ Q be such that H ∈ RF∗ ∩ LG. The module HLF is nonzero by
Lemma 12 and projective by Corollary 38(b). From Proposition 34 and Corollary 38(b) it follows
that HLF

∼= kPG for some k ∈ N. Hence, by adjunction,

mH,H = dimEndCR(HLF) = dimEndCR(kPG) = k2 dimEndCR(PG) = k2mG,G.
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On the other hand, H ∼L G and thus mH,H = mG,G by our assumption (10), which implies
k = 1. This means that every H ∈ RF∗ maps LF to an indecomposable projective module.

To prove (a) it is left to show that 2-morphisms in C surject onto homomorphisms between
indecomposable projective modules. By adjunction, it is enough to show that for any H, J ∈ RF∗

the space of 2-morphisms from H∗ ◦ J to the identity surjects onto homomorphisms from the
projective module H∗ ◦ JLF to LF. For the latter homomorphism space to be nonzero, the
functor H∗ ◦ J should decompose into a direct sum of copies of K ∈ RF∗ such that K ∼= K∗ (see
Proposition 34(a)). By additivity, it is enough to show that there is a 2-morphism from K to the
identity such that its evaluation at LF is nonzero. We have KLF 6= 0 by Lemma 12, which implies
that the evaluation at LF of the adjunction morphism from K ◦K to the identity is nonzero. We
have K ◦K ∼= mK,KK 6= 0 by Proposition 34(a). By additivity, the nonzero adjunction morphism
restricts to a morphism from one of the summands such that the evaluation at LF remains
nonzero. Claim (a) follows.

To prove (b), consider the cell 2-representations CR and CR′ . Without loss of generality we
may assume that Q is the unique maximal two-sided cell with respect to 6LR. Let G := GR and
denote by F the unique element in R′ ∩ LG. Then GLF 6= 0 by Lemma 12. Moreover, from the
proof of (a) we know that GLF is an indecomposable projective module and hence has simple
top.

Assume that i ∈ C is such that G ∈ C(i, i). Let K be a 1-morphism in C and α : K → G be
a 2-morphism such that Pi(α) is a projective presentation of LG. Denote by Ĝ ∈ Ĉ the cokernel
of α.

Lemma 44. The module ĜLF surjects onto LF.

Proof. It is enough to prove that ĜLF 6= 0. Since GLF has simple top, it is enough to show
that for any indecomposable 1-morphism M and any 2-morphism β : M → G which is not an
isomorphism, the morphism βLF

is not surjective.

The statement is obvious if MLF = 0. If MLF 6= 0, we have M 6R F∗ by Lemma 12. Hence
either M ∼R G or M <R G. If M = G, then β is a radical endomorphism of G, hence nilpotent (as
C is a fiat category). This means that βLF

is nilpotent and thus is not surjective. If M ∈ R \G,
then M∗ 6∈ R and hence M∗LF = 0 by Lemma 12. By adjunction this implies that LF does not
occur in the top of MLF, which means that βLF

cannot be surjective. This implies the claim for
all M ∈ Q.

Consider now the remaining case M <R G and assume that βLF
is surjective. Let M′′ be a 1-

morphism and γ : M′′ → M be a 2-morphism such that γ gives the trace in M of all 1-morphisms
J satisfying J 6<R R. Denote by M′ and G′ the cokernels of γ and β ◦1 γ, respectively. Then both
M′ and G′ are in Ĉ . Let β′ : M′ → G′ be the 2-morphism induced by β. Any direct summand of
M′′ which does not annihilate LF has the form M̂ for some M̂ ∈ Q because of our construction
and maximality of Q. Hence from the previous paragraph it follows that the map β′

LF
is still

surjective. On the other hand, because of our construction of M′′, an application of Lemma 42
gives G ◦M′ = 0 in Ĉ . At the same time, the nonzero module G′ LF is a quotient of GLF and
hence has simple top LF. This implies G ◦G′ LF 6= 0. Therefore, applying G to the epimorphism

β′
LF

: M′ LF � G′ LF

annihilates the left hand side and does not annihilate the right hand side. This contradicts the
right exactness of G and the claim follows.
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By (a), any extension of LF by any other simple in CR′ comes from some 2-morphism in C .
Hence this extension cannot appear in ĜLF by construction of Ĝ. This and Lemma 44 imply
ĜLF

∼= LF.

Therefore, by Theorem 24, there is a unique homomorphism Ψ : CR → CR′ of 2-
representations, which maps LG to LF. From claim (a) it follows that Ψ maps indecomposable
projectives to indecomposable projectives. Restrict Ψ to CQ. Then from the proof of (a) we have
that for any H1,H2 ∈ R we have

dimHomCR(PH1 ,PH2) = dimHomCR′ (ΨPH1 ,ΨPH2).

Moreover, both spaces are isomorphic to CQ(H1,H2). From (a) and construction of Ψ it follows
that Ψ induces an isomorphism between HomCR(PH1 ,PH2) and HomCR′ (ΨPH1 ,ΨPH2). This
means that Ψ induces an equivalence between the additive categories of projective modules in
CR and CR′ . Since Ψ is right exact, this implies that Ψ is an equivalence of categories and
completes the proof.

7. Examples

7.1 Projective functors on the regular block of the category O
Let g denote a semi-simple complex finite dimensional Lie algebra with a fixed triangular de-
composition g = n−⊕h⊕n+ and O0 the principal block of the BGG-category O for g (see [Hu]).
If W denotes the Weyl group of g, then simple objects in O0 are simple highest weight modules
L(w), w ∈ W , of highest weight w · 0 ∈ h∗. Denote by P (w) the indecomposable projective cover
of L(w) and by ∆(w) the corresponding Verma module.

Let S = Sg denote the (strict) 2-category defined as follows: it has one object i (which we
identify with O0); its 1-morphisms are projective functors on O0, that is functors isomorphic to
direct summands of tensoring with finite dimensional g-modules (see [BG]); and its 2-morphisms
are natural transformations of functors. For w ∈ W denote by θw the unique (up to isomor-
phism) indecomposable projective functor on O0 sending P (e) to P (w). Then {θw : w ∈ W}
is a complete and irredundant list of representatives of isomorphism classes of indecomposable
projective functors. Since O0 is equivalent to the category of modules over a finite-dimensional
associative algebra, all spaces of 2-morphisms in S are finite dimensional. From [BG] we also
have that S is stable under taking adjoint functors. It follows that S is a fiat category. The split
Grothendieck ring [S ]⊕ of S is isomorphic to the integral group ring ZW such that the basis
{[θw] : w ∈ W} of [S ]⊕ corresponds to the Kazhdan-Lusztig basis of ZW . We refer the reader
to [Ma] for an overview and more details on this category.

Left and right cells of S are given by the Kazhdan-Lusztig combinatorics for W (see [KaLu])
and correspond to Kazhdan-Lusztig left and right cells in W , respectively. Namely, for x, y ∈ W
the functors θx and θy belong to the same left (right or two-sided) cell as defined in Subsec-
tion 4.1 if and only if x and y belong to the same Kazhdan-Lusztig left (right or two-sided)
cell, respectively. This is an immediate consequence of the multiplication formula for elements
of the Kazhdan-Lusztig basis (see [KaLu]). In particular, from [Lu] it follows that all cells for S

are regular. If g ∼= sln, then W is isomorphic to the symmetric group Sn. Robinson-Schensted
correspondence associates to every w ∈ Sn a pair (α(w), β(w)) of standard Young tableaux of
the same shape (see [Sa, Section 3.1]). Elements x, y ∈ Sn belong to the same Kazhdan-Lusztig
right or left cell if and only if α(x) = α(y) and β(x) = β(y), respectively (see [KaLu]). It follows
that in the case g ∼= sln all cells for S are strongly regular.
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The 2-category S comes along with the defining 2-representation, that is the natural action
of S on O0. Various 2-representations of S were constructed, as subquotients of the defining
representation, in [KMS] and [MS] (see also [Ma] for a more detailed overview). In particular,
in [MS] for every Kazhdan-Lusztig right cell R there is a construction of the corresponding cell
module. The later is obtained by restricting the action of S to the full subcategory ofO0 consisting
of all modules M admitting a presentation X1 → X0 � M , where every indecomposable direct
summand of both X0 and X1 is isomorphic to θwL(d), where w ∈ R and d is the Duflo involution
in R. Similarly to the proof of Theorem 43 one shows that this cell module is equivalent to the
cell 2-representation CR of S .

Let Q be a strongly regular two-sided cell for S . In this case from [Ne, Theorem 5.3] it
follows that the condition (10) is satisfied for Q. Hence from Theorem 43 we obtain that cell
2-representations of S for right cells inside a given two-sided cell are equivalent. This reproves,
strengthens and extends the similar result [MS, Theorem 18], originally proved in the case g ∼= sln.

7.2 Projective functors between singular blocks of O
The 2-category Sg from the previous subsection admits the following natural generalization. For
every parabolic subalgebra p of g containing the Borel subalgebra b = h ⊕ n+ let Wp ⊂ W be
the corresponding parabolic subgroup. Fix some dominant and integral weight λp such that Wp

coincides with the stabilizer of λp with respect to the dot action (to show the connection with
the previous subsection we take λb = 0). Let Oλp denote the corresponding block of the category
O.

Consider the 2-category Ssing = S
sing
g defined as follows: its objects are the categories Oλp ,

where p runs through the (finite!) set of parabolic subalgebras of g containing b, its 1-morphisms
are all projective functors between these blocks, its 2-morphisms are all natural transformations
of functors. Similarly to the previous subsection, the 2-category Ssing is a fiat-category. The
category S from the previous subsection is just the full subcategory of Ssing with the object O0.
A deformed version of Ssing (which has infinite-dimensional spaces of 2-morphisms and hence is
not fiat) was considered in [Wi].

Let us describe in more detail the structure of Ssing in the smallest nontrivial case of g = sl2.
In this case we have two parabolic subalgebras, namely b and g. Using the usual identification
of h with C we set λb = 0 and λg = −1. The objects of S sing are thus i = O0 and j = O−1.

The category Ssing(j, j) contains a unique (up to isomorphism) indecomposable object,
namely 1j, the identity functor on j. The category Ssing(i, j) contains a unique (up to iso-
morphism) indecomposable object, namely the functor θon of translation onto the wall. The
category Ssing(j, i) contains a unique (up to isomorphism) indecomposable object, namely the
functor θout of translation out of the wall. The category Ssing(i, i) contains exactly two (up to
isomorphism) non-isomorphic indecomposable objects, namely the identity functor 1i and the
functor θ := θout ◦ θon of translation through the wall.

It is easy to see that there are exactly two two-sided cells: one containing only the functor
1i, and the other one containing all other functors. The right cells of the latter two-sided cell
are {1j, θout} and {θ, θon}. The left cells of the latter two-sided cell are {1j, θon} and {θ, θout}.
All cells are strongly regular. The values of the function mF,F from (10) are given by:

F 1i 1j θon θout θ

mF,F 1 1 1 2 2

In particular, the condition (10) is satisfied.
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The cell 2-representation corresponding to the right cell {1i} is given by the following picture
(with the obvious action of the identity 1-morphisms):

C-mod

θ=0

��
θon=0

**
0.

θout=0

kk

By Theorem 43, the cell 2-representations for the right cells {1j, θout} and {θ, θon} are equiv-
alent and strongly simple. Consider the algebra D := C[x]/(x2) of dual numbers with the fixed
subalgebra C consisting of scalars. The cell 2-representation for the right cell {1j, θout} is given
(up to isomorphism of functors) by the following picture:

D-mod

θ=D⊗−

��
θon=ResDC

++
C-mod.

θout=IndDC

kk

7.3 Projective functors for finite-dimensional algebras

The last example admits a straightforward abstract generalization outside category O. Let
A = A1 ⊕ A2 ⊕ · · · ⊕ Ak be a weakly symmetric self-injective finite-dimensional algebra over
an algebraically closed field k with a fixed decomposition into a direct sum of connected compo-
nents (here weakly symmetric means that the top and the socle of every projective module are
isomorphic). Let CA denote the 2-category with objects 1, 2, . . . , k, which we identify with the
corresponding Ai-mod. For i, j ∈ {1, 2, . . . , k} define CA(i, j) as the full fully additive subcate-
gory of the category of all functors from Ai-mod to Aj-mod, generated by all functors isomorphic
to tensoring with Ai (in the case i = j) and tensoring with all projective Aj-Ai bimodules (i.e.
bimodules of the form Aje ⊗k fAi for some idempotents e ∈ Aj and f ∈ Ai) for all i and j.
Functors, isomorphic to tensoring with projective bimodules will be called projective functors.

Lemma 45. The category CA is a fiat category.

Proof. The only nontrivial condition to check is that the left and the right adjoints of a projective
functor are again projective and isomorphic. For any A-module M and idempotents e, f ∈ A,
using adjunction and projectivity of fA we have

HomA(Ae⊗k fA,M) = Homk(fA,HomA(Ae,M))
= Homk(fA, eM)
= Homk(fA, eA⊗A M)
= Homk(fA,k)⊗k eA⊗A M
= (fA)∗ ⊗k eA⊗A M

Since A is self-injective, (fA)∗ is projective. Since A is weakly symmetric, (fA)∗ ∼= Af . This
implies that tensoring with Af ⊗k eA is right adjoint to tensoring with Ae ⊗k fA. The claim
follows.

The category CA has a unique maximal two-sided cell Q consisting of all projective functors.
This cell is regular. Right and left cells inside Q are given by fixing primitive idempotents
occurring on the left and on the right in projective functors, respectively. In particular, they are
in bijection with simple A-A-bimodules and hence Q is strongly regular. The value of the function
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mF,F on Ae⊗k fA is given by the dimension of eA⊗AAe ∼= eAe, in particular, the function mF,F

is constant on left cells. From Theorem 43 we thus again obtain that all cell 2-representations of
C corresponding to right cells in Q are strongly simple and isomorphic.

The category S
sing
sl2

from the previous subsection is obtained by taking k = 2, A1 = C and
A2 = D. In the general case we have the following:

Proposition 46. Let C be a fiat category, Q a strongly regular two-sided cell of Q and R a
right cell in Q. For i ∈ C let Ai be such that CR(i) ∼= Ai-mod and A = ⊕i∈CAi. Assume that
the condition (10) is satisfied. Then CR gives rise to a 2-functor from CQ to CA.

Proof. We identify CR(i) with Ai-mod. That A is self-injective follows from Corollary 38. That
A is weakly symmetric follows by adjunction from Lemma 12 and strong regularity of Q. Hence,
to prove the claim we only need to show that for any F ∈ Q the functor CR(F) is a projective
endofunctor of A-mod.

As CR(F) is exact, it is given by tensoring with some bimodule, say B. Since CR(F) kills all
simples but one, say L, and sends L to an indecomposable projective, say P (by Theorem 43), the
bimodule B has simple top (as a bimodule) and hence is a quotient of some projective bimodule.

By exactness ofCR(F), the dimension of B equals the dimension of P times the multiplicity of
L in A. This is exactly the dimension of the corresponding indecomposable projective bimodule.
The claim follows.
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