Functional Analysis I, 5 hp Spring 2010

Homework Assignment II

1. (a) Show that in an inner product space, it holds that $x \perp y$ if and only if $||x + \alpha y|| \ge ||x||$ for all scalars α .

(b) Let H be the Hilbert space $L^2[0,1]$ and Y the closed subspace

$$\left\{ f \in H \left| \int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 0 \right\}.$$

Determine the orthogonal projection P_Y of H onto Y. Compute $P_Y(x^2)$ explicitly.

2. (a) Let *H* be a Hilbert space and let $u, v \in H$. Show that the operator $T : H \longrightarrow H$ given by

$$Tx = \langle x, u \rangle v$$

is bounded and compute its norm. Also compute its Hilbert-adjoint operator T^* .

(b) The operator $T: l^2 \longrightarrow l^2$ is given by

$$T(\xi_1,\xi_2,\xi_3,\cdots) = (0,\xi_1,\xi_2,\xi_3,\cdots).$$

Is T a normal operator?

3. (a) If (x_n) in a Banach space X is such that $(f(x_n))$ is bounded for all $f \in X'$, show that $(||x_n||)$ is bounded.

(b) If X and Y are Banach spaces and $T_n \in B(X, Y)$, $n = 1, 2, \dots$, show that equivalent statements are:

(1) $(||T_n||)$ is bounded,

(2) $(||T_n x||)$ is bounded for all $x \in X$,

(3) $(|g(T_n x)|)$ is bounded for all $x \in X$ and all $g \in Y'$.

(Hint: Use the uniform boundedness theorem.)

4. (a) Let X and Y be normed spaces, $T \in B(X, Y)$ and (x_n) a sequence in X. If $x_n \xrightarrow{w} x_0$, show that $Tx_n \xrightarrow{w} Tx_0$.

(b) Show that weak convergence in footnote 6 on page 266 implies weak^{*} convergence. Show that the converse holds if X is reflexive.

Solutions should be handed in by Monday the 8th of March. You can either give them to me in class or leave them in my mailbox.