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Abstract

Vector spaces are one of the most important structures in
mathematics. These may be generalized into combinatorial
pregeometries by looking at how independence work. In model
theory the combinatorial pregeometries arise in a suprising way
where it is very important what constants you have in the
language. This will in turn make it possible to talk about
independence and other vector space properties inside some
logical structures and make it possible to prove theorems in
both areas.
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Vectorspaces

C3 over C
ω⊕

i=1

R over R

with addition of vectors and scalar multiplication.

Generalized to modules, by replacing the field requirement with
ring.
Ex: Z3 over Z
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Independence:

Described through the span:

v ∈ Span(v1, ..., vn) then v is dependent of v1, ..., vn

v /∈ Span(v1, ..., vn) then v is independent of v1, ..., vn

Generalized to a pregeometry.
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Pregeometries

A pregeometry (or matroid) G = (V , cl) consists of a set V and a
setfunction cl : P(V )→ P(V ) satsifying the following for each
X ,Y ⊆ V .

Reflexivity X ⊆ cl(X ).

Monotonicity Y ⊆ cl(X )⇒ cl(Y ) ⊆ cl(X )

Finite character cl(X ) =
⋃
{cl(X0) : X0 ⊆ X and |X0| <∞}

Exchange For each a, b ∈ V ,
a ∈ cl(X ∪ {b})− cl(X )⇒ b ∈ cl(X ∪ {a})

Additionally if a pregeometry satisfies

Geometry cl(∅) = ∅ and for each a ∈ V , cl({a}) = {a}
then it is called a geometry.

Theorem
If (V,cl) is a pregeometry then for each X ⊆ V , cl(X ) = cl(cl(X ))
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Examples

1. Trivial example 1. V is any set, X ⊆ V then cl(X ) = X .

2. Trivial example 2. V is any set, X ⊆ V then cl(X ) = V .

3. V vectors in a vector space. ∅ 6= X ⊆ V then
cl(X ) = span(X ) and cl(∅) = {0}.

The examples 2 and 3 are pregeometries, but not geometries.
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I V vectors in a vector space and cl(∅) = ∅. If X ⊆ V , choose
Y to be the least closed subspace of V such that there is
v0 ∈ V such that X ⊆ v0 + Y . Then let cl(X ) = v0 + Y .
(The affine geometry)
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I V vectors in a vector space. Let ∼ be the equivalence relation
on V − {0} such that for x , y ∈ V − {0}

x ∼ y ⇔ span(x) = span(y)

Define ((V − {0})/ ∼, cl) such that cl(∅) = ∅ and
X ⊆ (V − {0})/ ∼ then

cl(X ) = {x / ∼: x ∈ span
(⋃

X
)
}

(Projective geometry)

I F is an algebaically closed field. For X ⊆ F let cl(X ) be the
smallest algebraically closed subfield of F which contain X.
(so for C, cl({15}) would be the algebraic numbers)
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Languages

Vocabularies consists of constants, function symbols and relation
symbols:
Ex:
Rings: < 0, 1,+,−, · > Groups: < 1, ( )−1, · >
Graphs: < E > Linear orders: < ≤ >

Use these to build formulas:
Ex:
∀x(0 + x = 1 · x) ∀y(y−1 = y → y = 1)
∃y∃z(E (z , x) ∧ E (x , y)) ∀x(¬x ≤ x ∨ ∃y(y ≤ x))
The following are not formulas (in the Ring vocabulary):
∃x(x + 2 = y) x − π = x · x 5 6= x → x = 4
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Structures

Add a universe and interpret the vocabulary.
Ex: Linear orders: <≤>
M =< N,≤> where ≤ is as we think on N.
N =< Z,≤> where ≤ is as we think on Z.
A =< C,≤> where ≤ order numbers lexicographic i.e.
a + bi ≤ c + di iff a < c or (a = c and b ≤ d).

M |= ∃y∀x(y ≤ x) i.e. the formula is true M
N 6|= ∃y∀x(y ≤ x) i.e the formula is not true (false) in N
Notice:
A |= ∃x(π + i ≤ x), but this is not a formula in the laguage.
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Structures

Ex: Rings: < 0, 1,+,−, · >.
M =< Z, 0, 1,+,−, · > as we think.
N =< Q, 0, 1,+,−, · > as we think.
Let ϕ(x) be the formula ∃y(x · y = 1).

Notice that M |= ϕ(1) but M 6|= ϕ(3).
While N |= ϕ(1) and N |= ϕ(3).
In fact for each c ∈ Q− {0},N |= ϕ(c).

So ϕ(x) describes a unique element in M, while an infinite
amount in N .
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Ex: Graphs: < E >.
Let M =< Z,E > where E points out the next and previous
number.
... ... 

So M |= E (4, 5) , M |= E (−5,−6) but M 6|= E (0, 2).

The formula E (x , y) is true for an infinite amount of pairs.

Theorem
For each formula ϕ(x , y) from the language it is either so that
M |= ϕ(a, b) for an infinite amount of pairs a, b ∈ Z or
M 6|= ϕ(a, b) for each pair a, b ∈ Z

Add a constant for 0.

... ... 0

Then E (x , 0) is only true for −1 and 1.
∃y(E (0, y) ∧ E (y , x)) is only true for 0, 2 and −2.
We can, for each n ∈ Z, create ϕ(x) s.t. ϕ(x) is only true for n
and −n.
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Adding constants may give us more precise formulas.

Ex: Vectorspaces over R: < 0, {fr}r∈R,+ >.
fr is a unary function representing multiplying a vector with r .

M =< R4, 0, {fr}r∈R,+ > i.e. R4 as a vectorspace.

Theorem
Any formula ϕ(x) from L is either satisfied by an infinite amount
of elements, the element 0 or no elements.

Add constansts for two vectors
v1 = (1, 0, 0, 0), v2 = (0, 3, 1, 0) to the vocabulary.

Then for each vector v ∈ Span(v1, v2) there is a formula ϕv (x)
such that only v makes ϕv true. ϕv (x) is

fα(v1) + fβ(v2) = x

For appropriate α, β ∈ R.
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fr is a unary function representing multiplying a vector with r .

M =< R4, 0, {fr}r∈R,+ > i.e. R4 as a vectorspace.
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Any formula ϕ(x) from L is either satisfied by an infinite amount
of elements, the element 0 or no elements.
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Study the finitely describeable elements. Define for a structure M
and X ⊆M:

acl(X ) = {a ∈M : there is ϕ(x) formula possibly with constants

from X such that M |= ϕ(a) and only finitely many elements

in M make ϕ(x) true}

Ex: M =< Z,≤> then acl(∅) = ∅, but acl(X ) = Z for each
∅ 6= X ⊆ Z.
... ... 

... ... 0
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Ex: M =< Q,≤> then acl(X ) = X for each X ⊆ Q.

Ex: M =< Z, 0, 1,+,−, · > then for each X ⊆ Z, acl(X ) = Z,
since 1 + 1 + ...+ 1 = x or 0− 1− 1− ...− 1 = x .

Ex: M =< Q, 0, 1,+,−, · > then for each X ⊆,Q acl(X ) = Q,
since x + x + x = 1 + 1 describes 2

3 etc.

Ex: M =< C, 0, 1,+,−, · > then acl(∅) = A and for each
X ,acl(X ) = “The least algebraically closed subfield of C
containing X ”.

Ex: M =< R4, 0, {fr}r∈R,+ > as a vectorspace. Then
acl(X ) = Span(X ) for each X ⊆ R4.
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Remember from before (V,cl) is a pregeometry if for each
X ,Y ⊆ V :

Reflexivity X ⊆ cl(X ).

Monotonicity Y ⊆ cl(X )⇒ cl(Y ) ⊆ cl(X )

Finite character cl(X ) =
⋃
{cl(X0) : X0 ⊆ X and |X0| <∞}

Exchange For each a, b ∈ V ,
a ∈ cl(X ∪ {b})− cl(X )⇒ b ∈ cl(X ∪ {a})

Theorem
For any structure M with universe M,(M, acl) satisfies the
Reflexivity, Monotonicity and finite character property.
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A theory T is called strongly minimal if for each M |= T and
formula ϕ(x) (possibly using extra constants from M) we have:

ϕ(x) is satisfied by a finite amount of elements

or ¬ϕ(x) is satisfied by a finite amount of elements

Theorem
If T is strongly minimal then for each M |= T , (M, acl) forms a
pregeometry.

Theorem (Zilber)

An infinite, locally finite, homogeneous geometry is one of the
following

I Trivial

I Affine

I Projective
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Thank you for coming!
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