Simple structures axiomatized by almost sure theories

Ove Ahlman, Uppsala University

Logic colloquium 2016 Special session on model theory and limit structures

4 August 2016

Table of Contents

Almost sure theories

An Axiomatization

More questions

Throughout this talk I will consider a vocabulary containing only relational symbols of arity at most 2.

Throughout this talk I will consider a vocabulary containing only relational symbols of arity at most 2.

The first example of simple structure which is not stable is usually the Rado graph G axiomatized by the following extension properties:

For each finite disjoint $A, B \subseteq G$ there exists $c \in G$ such that:

Throughout this talk I will consider a vocabulary containing only relational symbols of arity at most 2.

The first example of simple structure which is not stable is usually the Rado graph G axiomatized by the following extension properties:

For each finite disjoint $A, B \subseteq G$ there exists $c \in G$ such that:

The Rado graph has an other characterization by almost sure theories.

For each $n \in \mathbb{N}$ let \mathbf{K}_n be a finite set of finite structures and let μ_n be the probability measure on \mathbf{K}_n such that $\mu_n(\mathcal{M}) = 1/|\mathbf{K}_n|$. Let $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$. A property **P** is **almost sure** for **K** if

$$\lim_{n\to\infty}\mu_n(\{\mathcal{N}\in\mathsf{K}_n:\mathcal{N}\text{ satisfies }\mathsf{P}\})=1$$

For each $n \in \mathbb{N}$ let \mathbf{K}_n be a finite set of finite structures and let μ_n be the probability measure on \mathbf{K}_n such that $\mu_n(\mathcal{M}) = 1/|\mathbf{K}_n|$. Let $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$. A property **P** is **almost sure** for **K** if

$$\lim_{n\to\infty}\mu_n(\{\mathcal{N}\in\mathsf{K}_n:\mathcal{N}\text{ satisfies }\mathsf{P}\})=1$$

The almost sure theory for K, $T_{\mathbf{K}}$, is the set of all sentences (in the language) which are almost sure. K has a 0-1 law if for each sentence φ , either φ or $\neg \varphi$ is almost sure and thus $T_{\mathbf{K}}$ is complete.

► K_n consist of all graphs with universe {1,...,n}. Then K has a 0 - 1 law ¹. Call the infinite countable model for T_K the random graph. This model is isomorphic to the Rado graph.

¹Fagin (1976) and Glebskii et. al. (1969) independently

²Kolaitis et. al. (1987)

- ► K_n consist of all graphs with universe {1,...,n}. Then K has a 0 - 1 law ¹. Call the infinite countable model for T_K the random graph. This model is isomorphic to the Rado graph.
- For t ∈ N, K_n consist of all t-partite graphs with universe {1,..., n}. Then K has a 0 − 1 law². Call the infinite countable model for T_K the random t-partite graph.

¹Fagin (1976) and Glebskii et. al. (1969) independently

²Kolaitis et. al. (1987)

Ove Ahlman, Uppsala University Simple structures axiomatized by almost sure theories

For K_n consist of all partial orders with universe {1,...,n}. Then K has a 0−1 law³. Call the infinite countable model for T_K the random partial order.

³Compton (1988)

⁴A. and Koponen (2015)

- For K_n consist of all partial orders with universe {1,...,n}. Then K has a 0 − 1 law³. Call the infinite countable model for T_K the random partial order.
- Let A be a graph, H a group and let K_n be all graphs G with universe {1,..., n} where H ≤ Aut(G) and A → spt(Aut(G)). Then K has a 0 − 1 law ⁴. Call the infinite countable model for T_K the random nonrigid graph.

- ³Compton (1988)
- ⁴A. and Koponen (2015)

These almost sure theories are all simple, ω -categorical with SU-rank 1 and trivial algebraic closure. ($acl(X) = acl(\emptyset) \cup X$)

Theorem (A. 2016)

If T is a simple, ω -categorical theory with SU - rank 1 and trivial algebraic closure over a binary vocabulary then there are sets of finite structures \mathbf{K}_n with probability measures μ_n such that if $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$ then $T_{\mathbf{K}} = T$.

Theorem (A. 2016)

If T is a simple, ω -categorical theory with SU - rank 1 and trivial algebraic closure over a binary vocabulary then there are sets of finite structures \mathbf{K}_n with probability measures μ_n such that if $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$ then $T_{\mathbf{K}} = T$.

Theorem (A. 2016)

T is simple, ω -categorical with SU-rank 1 and trivial algebraic closure over a binary vocabulary if and only if T is axiomatized by ξ -extension properties.

For $0 \le t < I$, let \mathbf{K}_n consist of all graphs with I parts where t are of size 1:

For $0 \le t < l$, let \mathbf{K}_n consist of all graphs with l parts where t are of size 1:

Between nodes in part i and j of size n we may choose among only edges, only non-edges or both.

Between part i and a 1 node part we have a unique choice.

Ove Ahlman, Uppsala University Simple structures axiomatized by almost sure theories

Each simple ω -categorical theory with SU - rank 1 with trivial algebraic closure over a binary vocabulary is the almost sure theory of such sets.

Each simple ω -categorical theory with SU - rank 1 with trivial algebraic closure over a binary vocabulary is the almost sure theory of such sets.

Similarly we have extension properties (which are a bit tricky to describe).

Let

$$\mathbf{K}_n = \{ \mathcal{A} : \mathcal{A} = \{1, \dots, n\}, \mathcal{A} \hookrightarrow \mathcal{M} \}$$

(i.e. "all substructures") with the uniform measure μ_n . If $Th(\mathcal{M}) = T_{\mathbf{K}}$ then we call \mathcal{M} a random structure.

Let

$$\mathbf{K}_n = \{ \mathcal{A} : \mathcal{A} = \{1, \dots, n\}, \mathcal{A} \hookrightarrow \mathcal{M} \}$$

(i.e. "all substructures") with the uniform measure μ_n . If $Th(\mathcal{M}) = T_{\mathbf{K}}$ then we call \mathcal{M} a random structure.

Not all structures with the above properties are random structures, for instance choose \mathcal{M} as the disjoint union of two random graphs.

Let

$$\mathbf{K}_n = \{ \mathcal{A} : \mathcal{A} = \{1, \ldots, n\}, \mathcal{A} \hookrightarrow \mathcal{M} \}$$

(i.e. "all substructures") with the uniform measure μ_n . If $Th(\mathcal{M}) = T_{\mathbf{K}}$ then we call \mathcal{M} a random structure.

Not all structures with the above properties are random structures, for instance choose \mathcal{M} as the disjoint union of two random graphs.

Theorem (A. 2016)

If \mathcal{M} is simple ω -categorical with SU-rank 1 and trivial algebraic closure, $\operatorname{acl}(\emptyset) = \emptyset$ over a binary vocabulary then \mathcal{M} is a reduct of a binary random structure.

Stable ω -categorical with SU-rank 1 and trivial algebraic closure:

Stable ω -categorical with SU-rank 1 and trivial algebraic closure:

Strongly minimal ω -categorical with trivial algebraic closure:

Can we extend these results?

Binary, ω -categorical, simple, SU-rank 1, trivial algebraic closure.

Binary, ω -categorical, simple, SU-rank 1, trivial algebraic closure.

▶ 3-ary relations? Open for Ultrahomogeneous structures.

Binary, ω -categorical, simple, SU-rank 1, trivial algebraic closure.

- ► 3-ary relations? Open for Ultrahomogeneous structures.
- **SU-rank n?** Open for Ultrahomogeneous structures.

Binary, ω -categorical, simple, SU-rank 1, trivial algebraic closure.

- ► 3-ary relations? Open for Ultrahomogeneous structures.
- **SU-rank n?** Open for Ultrahomogeneous structures.
- Non-trivial but degenerate algebraic closure? Yes, a quite similar classification is possible.

The algebraic closure is degenerate if $acl(X) = \bigcup_{x \in X} acl(x)$.

Binary, ω -categorical, simple, SU-rank 1, trivial algebraic closure.

- ► 3-ary relations? Open for Ultrahomogeneous structures.
- **SU-rank n?** Open for Ultrahomogeneous structures.
- Non-trivial but degenerate algebraic closure? Yes, a quite similar classification is possible.

The algebraic closure is degenerate if $acl(X) = \bigcup_{x \in X} acl(x)$.

 Non-degenerate algebraic closure? Trivially hold for Ultrahomogeneous structures.

Open Question

Does there exist a binary simple ω -categorical structure with SU-rank 1 and without degenerate algebraic closure?

⁵Hrushovski (1997)

Open Question

Does there exist a binary simple ω -categorical structure with SU-rank 1 and without degenerate algebraic closure?

An ω -categorical, simple, SU-rank 1 structure without degenerate algebraic closure (not even 1-based) using a 3-ary relation.⁵

One can easily create a **SU-rank 2** structure without degenerate algebraic closure using binary relations.

Open Question

Does there exist a binary simple ω -categorical structure with SU-rank 1 and without degenerate algebraic closure?

An ω -categorical, simple, SU-rank 1 structure without degenerate algebraic closure (not even 1-based) using a 3-ary relation.⁵

One can easily create a **SU-rank 2** structure without degenerate algebraic closure using binary relations.

Lemma

If \mathcal{M} is binary simple ω -categorical with SU-rank 1 and model-complete then \mathcal{M} has degenerate algebraic closure.

This means that we may not create a counter example using the Hrushovski-construction.

⁵Hrushovski (1997)

Thank you!

A., *Simple structures axiomatized by almost sure theories*, Annals of Pure and Applied Logic 167 (2016) 435-456.