Easy and hard homogenizable structures

Ove Ahlman, Uppsala University

Logic Colloquium 2017

14 August 2017

Table of Contents

Homogenizable structures

> k-homogeneous graphs

Throughout this talk I will only consider structures with a finite relational signature.

Definition

A structure \mathcal{M} is called **homogeneous** if for each finite $\mathcal{A} \subseteq \mathcal{M}$ and embedding $f : \mathcal{A} \to \mathcal{M}$, f may be extended to an automorphism of \mathcal{M} .

Throughout this talk I will only consider structures with a finite relational signature.

Definition

A structure \mathcal{M} is called **homogeneous** if for each finite $\mathcal{A} \subseteq \mathcal{M}$ and embedding $f : \mathcal{A} \to \mathcal{M}$, f may be extended to an automorphism of \mathcal{M} .

Theorem (Lachlan and Woodrow 1980)

If \mathcal{M} is a countably infinite homogeneous graph then for some $n \in \mathbb{Z}^+ \cup \{\infty\}$, \mathcal{M} (or \mathcal{M}^c) is isomorphic to either the random graph, the generic K_n -free graph or a disjoint union of K_n .

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.

The infinite graph with 1 edge, add $\varphi(x)$: $\exists y(xEy)$

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.

The infinite graph with 1 edge, add $\varphi(x)$: $\exists y(xEy)$

The random bipartite graph, add $\varphi(x, y)$: $\exists z(xEz \land yEz)$

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.

The infinite graph with 1 edge, add $\varphi(x)$: $\exists y(xEy)$

The random bipartite graph, add $\varphi(x, y)$: $\exists z(xEz \land yEz)$

The infinite complete graph with a disjoint K_2 , $\varphi(x)$: $\exists y_1, y_2(xEy_1 \land xEy_2)$

 $\begin{array}{ll} \varphi_2(x) & \neg\varphi_1(x) \land \exists y(xEy) \\ \psi(x,y) & \exists z(xEz \land yEz) \end{array}$

 $\begin{array}{ll} \varphi_1(x) & \exists y_1, y_2(xEy_1 \land xEy_2) \\ \varphi_2(x) & \neg \varphi_1(x) \land \exists y(xEy) \\ \psi(x, y) & \exists z(xEz \land yEz) \\ \end{array}$ The non-negative rational numbers, add $\varphi(x)$: $\forall y(x \leq y) \\ \frac{0}{2} + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{5}{5} + \frac{6}{2} \end{array}$

$$\begin{array}{ll} \varphi_1(x) & \exists y_1, y_2(xEy_1 \land xEy_2) \\ \varphi_2(x) & \neg \varphi_1(x) \land \exists y(xEy) \\ \psi(x,y) & \exists z(xEz \land yEz) \end{array}$$

The non-negative rational numbers, add

The non-negative rational numbers, add $\varphi(x)$: $\forall y(x \leq y)$

The non-negative rational numbers in disjoint union with the non-positive rational numbers, add:

$$\varphi_{1}(x) \quad \exists y(x < y)$$

$$\varphi_{2}(x) \quad \exists y(y < x)$$

$$\varphi_{3}(x) \quad \forall w(\varphi_{1}(w) \rightarrow w < x)$$

$$\varphi_{3}(x) \quad \forall w(\varphi_{1}(w) \rightarrow w < x)$$

$$\forall y (x \leq y)$$

$$\forall y(x \le y) \\ \underbrace{ \begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Question: How complicated can the homogenization get?

Number of formulas?

$$\forall y(x \leq y) \\ \stackrel{0}{\bullet} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{4}{\to} \stackrel{5}{\to} \stackrel{6}{\bullet} \\ \varphi_1(x) \quad \exists y(x < y) \\ \varphi_2(x) \quad \exists y(y < x) \\ \varphi_3(x) \quad \forall w(\varphi_1(w) \to w < 0) \\ \stackrel{0}{\bullet} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{4}{\to} \stackrel{5}{\to} \stackrel{6}{\bullet} \\ \stackrel{0}{\bullet} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{4}{\to} \stackrel{5}{\to} \stackrel{6}{\to} \\ \stackrel{0}{\bullet} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{4}{\to} \stackrel{5}{\to} \stackrel{6}{\to} \\ \stackrel{0}{\bullet} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{4}{\to} \stackrel{5}{\to} \stackrel{6}{\to} \\ \stackrel{0}{\to} \stackrel{1}{\to} \stackrel{2}{\to} \stackrel{3}{\to} \stackrel{1}{\to} \stackrel{1$$

Question: How complicated can the homogenization get?

x)

- Number of formulas?
- Number of free variables?

$$\forall y(x \leq y)$$

$$\stackrel{0}{\longrightarrow} 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad \dots$$

$$\varphi_1(x) \quad \exists y(x < y)$$

$$\varphi_2(x) \quad \exists y(y < x)$$

$$\varphi_3(x) \quad \forall w(\varphi_1(w) \rightarrow w < 0 \quad \frac{1}{2} \quad \frac{2}{3} \quad \frac{3}{4} \quad \frac{5}{5} \quad \frac{6}{5} \quad \dots$$

Question: How complicated can the homogenization get?

x)

- Number of formulas?
- Number of free variables?
- At least \exists , \forall , $\forall \exists$, $\exists \forall$ etc. ?

Definition

 \mathcal{M} is (>k) k-homogeneous if for each finite $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ $(|\mathcal{A}| > k)$ and embedding $f : \mathcal{A} \to \mathcal{M}$, may be extended to an automorphism.

Fact

A > k-homogeneous structure is homogenizable.

For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .

The Graph G₂

For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .

The Graph G₂

Lemma

Let \mathcal{M} be a countably infinite graph. \mathcal{M} is >k-homogeneous but **not** 1-homogeneous if and only if for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} , \mathcal{M} (or \mathcal{M}^c) is isomorphic to $\mathcal{G}_n \dot{\cup} \mathcal{H}$.

If $t \geq 2$ let $\mathcal{H}_{t,1}$ be the graph with universe $\mathcal{H}_{t,1} = \mathbb{Z} \times \{1, ..., t\} \times \{1, 2\}$ such that the inclusion map $\iota : \mathcal{H}_{t,1} \to \mathcal{G}_t \times \{1, 2\}$ is an isomorphism. Let $\mathcal{H}_{t,2}$ have the same universe as $\mathcal{H}_{t,1}$ but with edge set

$$E_{t,2} = E_{G_{t,1}} \cup \{\{(a, i, z), (b, j, w)\} : z \neq w \text{ and } a = b\}.$$

Lastly define the graph $\mathcal{H}_{1,2}$ as having universe $\mathbb{Z} \times \{1,2\}$ and edge set $E = \{\{(a,i), (b,j)\} : i = j \text{ or } a = b \text{ but } i \neq j\}.$

Lemma

Let \mathcal{M} be a countably infinite graph. \mathcal{M} is >k-homogeneous, 1-homogeneous but **not** 2-homogeneous if and only if \mathcal{M} (or \mathcal{M}^{c}) is isomorphic to $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

Lemma

If M is a >k-homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then M is homogeneous.

Lemma

If \mathcal{M} is a >k-homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then \mathcal{M} is homogeneous.

Theorem (A. 2016)

Let $k \in \mathbb{Z}^+$. If \mathcal{M} is a >k-homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

- A homogeneous graph.
- $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .
- $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

Corollary

 $\mathcal{G}_n \dot{\cup} \mathcal{H}$ is homogenizable using a unary formula. $\mathcal{H}_{t,1}$ and $\mathcal{H}_{t,2}$ are homogenizable using a single binary formula.

Questions:

- How does this work for more complicated vocabularies?
- Especially, can we find a nice classification without classifying the homogeneous ones?

Thank you!