>k-homogeneous graphs and homogenizable structures

Ove Ahlman, Uppsala University

Workshop on finite and pseudofinite structures

28 July 2016

Table of Contents

Homogeneous structures

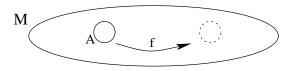
>k-homogeneous graphs

Homogenizable structures

Throughout this talk I will only consider structures with a finite relational signature.

Definition

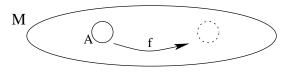
A structure \mathcal{M} is called k-homogeneous if for each $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ and embedding $f : \mathcal{A} \to \mathcal{M}$, f may be extended to an automorphism of \mathcal{M} .



Throughout this talk I will only consider structures with a finite relational signature.

Definition

A structure \mathcal{M} is called k-homogeneous if for each $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ and embedding $f : \mathcal{A} \to \mathcal{M}$, f may be extended to an automorphism of \mathcal{M} .



Definition

If \mathcal{M} is *i*-homogeneous for each i > k ($i \le k$) we say that \mathcal{M} is >k-homogeneous ($\le k$ -homogeneous). If \mathcal{M} is both >k-homogeneous and $\le k$ -homogeneous, \mathcal{M} is just called homogeneous (or ultrahomogeneous).

Homogeneous Graphs

For $n \in \mathbb{Z}^+$ let K_n be the complete graph on n vertices and K_∞ be the countably infinite complete graph.

Theorem (Gardiner 1976 independently of Golfand and Klin 1978)

If \mathcal{G} is a finite homogeneous graph then for some $n \in \mathbb{Z}^+$, \mathcal{G} (or \mathcal{G}^c) is isomorphic to either the pentagon, the 3×3 -Rook graph or a disjoint union of K_n .

Homogeneous Graphs

For $n \in \mathbb{Z}^+$ let K_n be the complete graph on n vertices and K_∞ be the countably infinite complete graph.

Theorem (Gardiner 1976 independently of Golfand and Klin 1978)

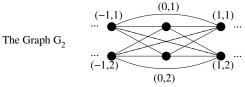
If \mathcal{G} is a finite homogeneous graph then for some $n \in \mathbb{Z}^+$, \mathcal{G} (or \mathcal{G}^c) is isomorphic to either the pentagon, the 3×3 -Rook graph or a disjoint union of K_n .

Theorem (Lachlan and Woodrow 1980)

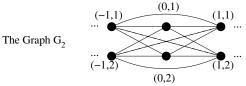
• •

If \mathcal{M} is a countably infinite homogeneous graph then for some $n \in \mathbb{Z}^+ \cup \{\infty\}$, \mathcal{M} (or \mathcal{M}^c) is isomorphic to either the random graph, the generic K_n -free graph or a disjoint union of K_n .

For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .

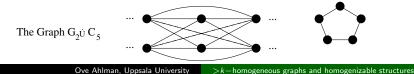


For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .



Lemma

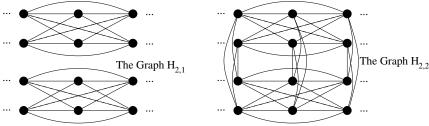
Let \mathcal{M} be a countably infinite graph. \mathcal{M} is >k-homogeneous but not 1-homogeneous if and only if for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} , \mathcal{M} (or \mathcal{M}^c) is isomorphic to $\mathcal{G}_n \dot{\cup} \mathcal{H}$.



If $t \geq 2$ let $\mathcal{H}_{t,1}$ be the graph with universe $\mathcal{H}_{t,1} = \mathbb{Z} \times \{1, ..., t\} \times \{1, 2\}$ such that the inclusion map $\iota : \mathcal{H}_{t,1} \to \mathcal{G}_t \times \{1, 2\}$ is an isomorphism. Let $\mathcal{H}_{t,2}$ have the same universe as $\mathcal{H}_{t,1}$ but with edge set

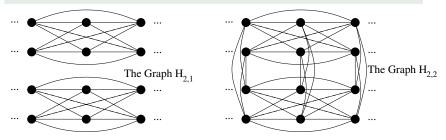
$$E_{t,2} = E_{G_{t,1}} \cup \{\{(a, i, z), (b, j, w)\} : z \neq w \text{ and } a = b\}.$$

Lastly define the graph $\mathcal{H}_{1,2}$ as having universe $\mathbb{Z} \times \{1,2\}$ and edge set $E = \{\{(a,i), (b,j)\} : i = j \text{ or } a = b \text{ but } i \neq j\}.$



Lemma

Let \mathcal{M} be a countably infinite graph. \mathcal{M} is >k-homogeneous, 1-homogeneous but **not** 2-homogeneous if and only if \mathcal{M} (or \mathcal{M}^{c}) is isomorphic to $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.



Lemma

If M is a >k-homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then M is homogeneous.

Lemma

If M is a >k-homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then M is homogeneous.

Theorem (A. 2016)

Let $k \in \mathbb{Z}^+$. If \mathcal{M} is a >k-homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

- A homogeneous graph.
- $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .
- $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

Lemma

If M is a >k-homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then M is homogeneous.

Theorem (A. 2016)

Let $k \in \mathbb{Z}^+$. If \mathcal{M} is a >k-homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

- A homogeneous graph.
- $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .
- $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

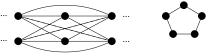
This classification also work for finite graphs when the size of \mathcal{M} is large with respect to k.

Definition

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.

Definition

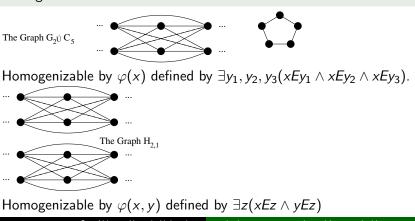
A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.



Homogenizable by $\varphi(x)$ defined by $\exists y_1, y_2, y_3(xEy_1 \land xEy_2 \land xEy_3)$.

Definition

A structure \mathcal{M} is **homogenizable** if for some formulas $\varphi_1(\bar{x}_1), \ldots, \varphi_n(\bar{x}_n)$ and $R_1 = \varphi_1(\mathcal{M}), \ldots, R_n = \varphi_n(\bar{x}_n)$, if R_1, \ldots, R_n are added to the signature of \mathcal{M} then \mathcal{M} becomes homogeneous.



Ove Ahlman, Uppsala University >k-homogeneou

>k-homogeneous graphs and homogenizable structures

If **K** is a set of finite structures, **K** satisfy the Hereditary property (**HP**) if for any $\mathcal{B} \in \mathbf{K}$ and $\mathcal{A} \subseteq \mathcal{B}$ we have $\mathcal{A} \in \mathbf{K}$. $\mathcal{A} \in \mathbf{K}$ is an **amalgamation base** if for each $\mathcal{B}, \mathcal{C} \in \mathbf{K}$ and embeddings $f : \mathcal{A} \to \mathcal{B}, g : \mathcal{A} \to \mathcal{C}$ there is $\mathcal{D} \in \mathbf{K}$ and embeddings $f' : \mathcal{B} \to \mathcal{D}$ and $g' : \mathcal{C} \to \mathcal{D}$ such that for each $a \in \mathcal{A}$, f'(f(a)) = g'(g(a)). $A \xrightarrow{f}_{g} C \xrightarrow{g'}_{g'} D$

If **K** is a set of finite structures, **K** satisfy the Hereditary property (**HP**) if for any $\mathcal{B} \in \mathbf{K}$ and $\mathcal{A} \subseteq \mathcal{B}$ we have $\mathcal{A} \in \mathbf{K}$. $\mathcal{A} \in \mathbf{K}$ is an **amalgamation base** if for each $\mathcal{B}, \mathcal{C} \in \mathbf{K}$ and embeddings $f : \mathcal{A} \to \mathcal{B}, g : \mathcal{A} \to \mathcal{C}$ there is $\mathcal{D} \in \mathbf{K}$ and embeddings $f' : \mathcal{B} \to \mathcal{D}$ and $g' : \mathcal{C} \to \mathcal{D}$ such that for each $a \in A$, f'(f(a)) = g'(g(a)). $A \xrightarrow{f}_{g} C \xrightarrow{g'}_{g} D$

 ${\bf K}$ satisfy the amalgamation property $({\bf AP})$ if each structure in ${\bf K}$ is an amalgamation base.

Let $Age(\mathcal{M})$ be the class of all finite structures embeddable in \mathcal{M}

Theorem (Fraïssé 1953)

If a class **K** is closed under isomorphism and satisfy HP and AP then there is a unique homogeneous structure \mathcal{M} such that $Age(\mathcal{M}) = \mathbf{K}$. Because of the Fraïssé correspondence, generalizations to homogenizable structures often focus on generation from a class **K** with something weaker than AP. Covington (1990), Hartman, Hubicka, Nesetril (2014), Atserias,

Torunczyk (2016) all found *necessary* conditions for a class of structures to generate a homogenizable structure.

Because of the Fraïssé correspondence, generalizations to homogenizable structures often focus on generation from a class **K** with something weaker than AP. Covington (1990), Hartman, Hubicka, Nesetril (2014), Atserias, Torunczyk (2016) all found *necessary* conditions for a class of

structures to generate a homogenizable structure.

Theorem (A. 2016)

Let \mathcal{M} be a countably infinite structure which is model-complete and ω -categorical. Age(\mathcal{M}) satisfies SEAP if and only of \mathcal{M} is homogenizable.

Where SEAP is a *weaker* version of AP.

Definition

Let \mathcal{M} be a homogenizable structure. \mathcal{M} is **boundedly homogenizable** if for each finite $\mathcal{A} \subseteq \mathcal{M}$ there is finite $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{M}$ such that each embedding $f : \mathcal{B} \to \mathcal{M}$ is extendable to an automorphism.

Examples include the "random *I*-partite graph", "the random partial order", "the >k-homogeneous structures", etc.

Definition

Let \mathcal{M} be a homogenizable structure. \mathcal{M} is **boundedly homogenizable** if for each finite $\mathcal{A} \subseteq \mathcal{M}$ there is finite $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{M}$ such that each embedding $f : \mathcal{B} \to \mathcal{M}$ is extendable to an automorphism.

Examples include the "random *I*-partite graph", "the random partial order", "the >k-homogeneous structures", etc.

Lemma

If ${\mathcal M}$ is a homogenizable structure, the following are equivalent

- ▶ *M* is boundedly homogenizable.
- For each ā ∈ M there is a supertuple ā ⊆ b ∈ M such that tp(b) is isolated by a quantifier free formula.
- M is model-complete and for each A ⊆ M there is an amalgamation base B for Age(M) such that A ⊆ B ⊆ M.

Theorem

If \mathcal{M} is ω -stable, model-complete and homogenizable then \mathcal{M} is boundedly homogenizable.

Theorem

If \mathcal{M} is ω -stable, model-complete and homogenizable then \mathcal{M} is boundedly homogenizable.

Question: Are all model-complete homogenizable structures boundedly homogenizable?

Definition

Let \mathcal{M} be a homogenizable structure. \mathcal{M} is **uniformly homogenizable** if there is a finite $\mathcal{N} \subseteq \mathcal{M}$ such that for each finite $\mathcal{A} \subseteq \mathcal{M}$, if $\mathcal{N} \subseteq \mathcal{A}$ then each embedding $f : \mathcal{A} \to \mathcal{M}$ is extendable to an automorphism.

Definition

Let \mathcal{M} be a homogenizable structure. \mathcal{M} is **uniformly homogenizable** if there is a finite $\mathcal{N} \subseteq \mathcal{M}$ such that for each finite $\mathcal{A} \subseteq \mathcal{M}$, if $\mathcal{N} \subseteq \mathcal{A}$ then each embedding $f : \mathcal{A} \to \mathcal{M}$ is extendable to an automorphism.

Lemma

If \mathcal{M} is a homogenizable structure, the following are equivalent

- *M* is uniformly homogenizable.
- There is a tuple c̄ ∈ M such that if ā ∈ M and c̄ ⊆ ā then tp(ā) is isolated by a quantifier free formula.
- M is model-complete and there is a finite N ⊆ M such that if N ⊆ A ⊆ M then A is an amalgamation base for Age(M).

Examples include all algebraic homogenizable structures, > k-homogeneous structures, l-partite graphs with part-witness.

Theorem

If \mathcal{M} is boundedly homogenizable using only new unary relations and have trivial algebraic closure then \mathcal{M} is an infinite union of uniformly homogenizable structures of only a finite amount of isomorphism types.

Thank you!

- ► A., >k-homogeneous infinite graphs, arXiv 1601.07307 (2016).
- ► A., Homogenizable strucures and model completeness, Accepted for publication in AFML, arXiv 1601.07304 (2016).