Almost sure theories approximating simple structures

Ove Ahlman, Uppsala University

Workshop on Logic and Random Graphs Lorentz Center, Leiden, Netherlands

1 September 2015

Table of Contents

Probabilities on graphs

Classification theory

Simple almost sure theories

Consider binary relational structures $\mathcal{G} = (V, E_1, ..., E_k)$ over a fixed vocabulary. Thus if k = 1 and E_1 is symmetric and non-reflexive $\mathcal{G} = (V, E_1)$ is a graph.

Consider binary relational structures $\mathcal{G} = (V, E_1, ..., E_k)$ over a fixed vocabulary. Thus if k = 1 and E_1 is symmetric and non-reflexive $\mathcal{G} = (V, E_1)$ is a graph.

For each $n \in \mathbb{N}$ let \mathbf{K}_n be a set of finite structures and let μ_n be a probability measure on \mathbf{K}_n . Let $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$. A property **P** is **almost sure** for **K** if

$$\lim_{n\to\infty}\mu_n(\{\mathcal{N}\in\mathsf{K}_n:\mathcal{N}\text{ satisfies }\mathsf{P}\})=1$$

Consider binary relational structures $\mathcal{G} = (V, E_1, ..., E_k)$ over a fixed vocabulary. Thus if k = 1 and E_1 is symmetric and non-reflexive $\mathcal{G} = (V, E_1)$ is a graph.

For each $n \in \mathbb{N}$ let \mathbf{K}_n be a set of finite structures and let μ_n be a probability measure on \mathbf{K}_n . Let $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$. A property **P** is **almost sure** for **K** if

$$\lim_{n\to\infty}\mu_n(\{\mathcal{N}\in\mathsf{K}_n:\mathcal{N}\text{ satisfies }\mathsf{P}\})=1$$

The almost sure theory for K, $T_{\mathbf{K}}$ is the set of all sentences (in the language) which are almost sure. K has a 0-1 law if for each sentence φ , either φ or $\neg \varphi$ is almost sure and thus $T_{\mathbf{K}}$ is complete.

Consider only the uniform measure over each respective set.

► K_n consist of all graphs with node set [n]. Then K has a 0 − 1 law. Call the countable model for T_K the random graph.

Consider only the uniform measure over each respective set.

- ► K_n consist of all graphs with node set [n]. Then K has a 0 − 1 law. Call the countable model for T_K the random graph.
- ▶ For $t \in \mathbb{N}$, K_n consist of all t-partite graphs with node set [*n*]. Then K has a 0 − 1 law. Call the countable model for T_K the random t-partite graph.

For K_n consist of all partial orders with universe [n]. Then K has a 0 − 1 law. Call the countable model for T_K the random partial order.

- For K_n consist of all partial orders with universe [n]. Then K has a 0 − 1 law. Call the countable model for T_K the random partial order.
- ▶ Let \mathcal{A} be a graph, H a group and let \mathbf{K}_n be all graphs \mathcal{G} with universe [n] where $H \leq Aut(\mathcal{G})$ and $\mathcal{A} \hookrightarrow spt(Aut(\mathcal{G}))$. Then \mathbf{K} has a 0-1 law. Call the countable model for $T_{\mathbf{K}}$ the random nonrigid graph.

To prove these 0 - 1 laws extension properties are crucial.

These examples all satisfy extension properties which depend on the partitioning.

Furthermore, these examples of simple structures are ω -categorical, with SU - rank 1 and with trivial pregeometry.

Theorem (A. 2015)

If T is a simple, ω -categorical theory with SU - rank 1 and trivial pregeometry over a binary vocabulary then there are sets of finite structures \mathbf{K}_n with probability measures μ_n such that if $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$ then $T_{\mathbf{K}} = T$.

Theorem (A. 2015)

If T is a simple, ω -categorical theory with SU - rank 1 and trivial pregeometry over a binary vocabulary then there are sets of finite structures \mathbf{K}_n with probability measures μ_n such that if $\mathbf{K} = (\mathbf{K}_n, \mu_n)_{n \in \mathbb{N}}$ then $T_{\mathbf{K}} = T$.

Theorem (A. 2015)

 $T_{\mathbf{K}}$ is simple, ω -categorical with SU-rank 1 and trivial pregeometry over a binary vocabulary if and only if \mathbf{K} almost surely satisfy ξ -extension properties.

For $0 \le t < l$, let \mathbf{K}_n consist of all graphs with l parts where t are of size 1:

For $0 \le t < l$, let \mathbf{K}_n consist of all graphs with l parts where t are of size 1:

Between nodes in part i and j of size n we may choose among only edges, only non-edges or both.

Between part *i* and a 1 node part we have a unique choice.

Each simple ω -categorical theory with $SU - rank \ 1$ with trivial pregeometry over a binary vocabulary is the almost sure theory of such sets.

Each simple ω -categorical theory with $SU - rank \ 1$ with trivial pregeometry over a binary vocabulary is the almost sure theory of such sets.

Let

$$\mathbf{K}_n = \{ \mathcal{A} : \mathcal{A} = [n], \mathcal{A} \hookrightarrow \mathcal{M} \}$$

(i.e. "all substructures") with the uniform measure μ_n . If $Th(\mathcal{M}) = T_{\mathbf{K}}$ then we call \mathcal{M} a random structure.

Each simple ω -categorical theory with $SU - rank \ 1$ with trivial pregeometry over a binary vocabulary is the almost sure theory of such sets.

Let

$$\mathbf{K}_n = \{ \mathcal{A} : \mathcal{A} = [n], \mathcal{A} \hookrightarrow \mathcal{M} \}$$

(i.e. "all substructures") with the uniform measure μ_n . If $Th(\mathcal{M}) = T_{\mathbf{K}}$ then we call \mathcal{M} a random structure.

Not all structures with the above properties are random structures, for instance choose ${\cal M}$ as the disjoint union of two random graphs.

Theorem (A. 2015)

If \mathcal{M} is simple ω -categorical with SU-rank 1 and trivial pregeometry, $acl(\emptyset) = \emptyset$ over a binary vocabulary then \mathcal{M} is a reduct of a binary random structure.

1. What model theoretic properties are possible to get in almost sure theories of graphs? Are they all Simple?

- 1. What model theoretic properties are possible to get in almost sure theories of graphs? Are they all Simple?
- 2. If we consider ω -categorical simple binary theories but with SU-rank n or with non-trivial pregeometry, then are these still almost sure theories?

Random Graph Carph Carph

- 1. What model theoretic properties are possible to get in almost sure theories of graphs? Are they all Simple?
- 2. If we consider ω -categorical simple binary theories but with SU-rank n or with non-trivial pregeometry, then are these still almost sure theories?

3. Which simple ω -categorical binary structures with SU-rank 1 and trivial pregeometry over a binary vocabulary are random structures?

- 1. What model theoretic properties are possible to get in almost sure theories of graphs? Are they all Simple?
- 2. If we consider ω -categorical simple binary theories but with SU-rank n or with non-trivial pregeometry, then are these still almost sure theories?

- 3. Which simple ω -categorical binary structures with SU-rank 1 and trivial pregeometry over a binary vocabulary are random structures?
- 4. In the previous construction, when do we get the same almost sure theory?

Ove Ahlman, Uppsala University Almost sure theories approximating simple structures

Thank you!