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Consider binary relational structures G = (V ,E1, ...,Ek) over a
fixed vocabulary. Thus if k = 1 and E1 is symmetric and
non-reflexive G = (V ,E1) is a graph.

For each n ∈ N let Kn be a set of finite structures and let µn be a
probability measure on Kn. Let K = (Kn, µn)n∈N. A property P is
almost sure for K if

lim
n→∞

µn({N ∈ Kn : N satisfies P}) = 1

The almost sure theory for K, TK is the set of all sentences (in
the language) which are almost sure. K has a 0− 1 law if for each
sentence ϕ, either ϕ or ¬ϕ is almost sure and thus TK is complete.
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Consider only the uniform measure over each respective set.

I Kn consist of all graphs with node set [n]. Then K has a 0− 1
law. Call the countable model for TK the random graph.

I For t ∈ N, Kn consist of all t−partite graphs with node set
[n]. Then K has a 0− 1 law. Call the countable model for TK

the random t−partite graph.
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I For Kn consist of all partial orders with universe [n]. Then K
has a 0− 1 law. Call the countable model for TK the random
partial order.

I Let A be a graph, H a group and let Kn be all graphs G with
universe [n] where H ≤ Aut(G) and A ↪→ spt(Aut(G)). Then
K has a 0− 1 law. Call the countable model for TK the
random nonrigid graph.
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To prove these 0− 1 laws extension properties are crucial.

A B

c

The random graph

The random 3−partite graph

A

B

c

The random partial order

c

A
B

c

The random non−rigid graph

A

B

These examples all satisfy extension properties which depend on
the partitioning.
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Strongly Minimal

Stable
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K8

+UK8 K8

ZFC
(Q,<)

ACF
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Strongly Minimal

Stable
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K8

+UK8 K8

ZFC
(Q,<)

ACF

Simple

Strongly Minimal

The random graph

The random non−rigid graph

Stable

The random partial order

The random t−partite graph

Furthermore, these examples of simple structures are
ω−categorical, with SU − rank 1 and with trivial pregeometry.
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Theorem (A. 2015)

If T is a simple, ω−categorical theory with SU − rank 1 and trivial
pregeometry over a binary vocabulary then there are sets of finite
structures Kn with probability measures µn such that if
K = (Kn, µn)n∈N then TK = T .

Theorem (A. 2015)

TK is simple, ω−categorical with SU-rank 1 and trivial
pregeometry over a binary vocabulary if and only if K almost surely
satisfy ξ−extension properties.
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For 0 ≤ t < l , let Kn consist of all graphs with l parts where t are
of size 1:

part 1

part 2
part 3

part 4
n nodes

n nodes n nodes

n nodes

1 node

part 6

1 node
part 5
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For 0 ≤ t < l , let Kn consist of all graphs with l parts where t are
of size 1:

part 1

part 2
part 3

part 4
n nodes

n nodes n nodes

n nodes

1 node

part 6

1 node
part 5

Between nodes in part i and j of size n we may choose among only
edges, only non-edges or both.
Between part i and a 1 node part we have a unique choice.
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Each simple ω−categorical theory with SU − rank 1 with trivial
pregeometry over a binary vocabulary is the almost sure theory of
such sets.

part 1

part 2
part 3

part 4
n nodes

n nodes n nodes

n nodes

1 node

part 6

1 node
part 5

Let
Kn = {A : A = [n],A ↪→M}

(i.e. “all substructures”) with the uniform measure µn. If
Th(M) = TK then we call M a random structure.

Not all structures with the above properties are random structures,
for instance choose M as the disjoint union of two random graphs.
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Theorem (A. 2015)

If M is simple ω−categorical with SU−rank 1 and trivial
pregeometry, acl(∅) = ∅ over a binary vocabulary then M is a
reduct of a binary random structure.
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Open Questions
1. What model theoretic properties are possible to get in almost

sure theories of graphs? Are they all Simple?

2. If we consider ω−categorical simple binary theories but with
SU−rank n or with non-trivial pregeometry, then are these
still almost sure theories?

Random
Graph

Random
Graph

Random
Graph

Random
Graph

.......

3. Which simple ω−categorical binary structures with SU−rank
1 and trivial pregeometry over a binary vocabulary are random
structures?

4. In the previous construction, when do we get the same almost
sure theory?

Bipartite Random graph No change
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Thank you!
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