Cofinitely homogeneous multi- and hypergraphs

Ove Ahlman, Uppsala University

Table of Contents

Homogeneous and Cofinitely Homogeneous Graphs

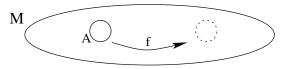
Cofinitely Homogeneous Hypergraphs

Cofinitely Homogeneous Multigraphs

We only consider finite relational languages.

Definition

For a structure \mathcal{M} and a substructure $\mathcal{A} \subseteq \mathcal{M}$, \mathcal{M} is called \mathcal{A} -homogeneous if for each embedding $f_0 : \mathcal{A} \to \mathcal{M}$, there is an automorphism $f : \mathcal{M} \to \mathcal{M}$ such that f extends f_0 i.e. $\forall a \in \mathcal{A}, f_0(a) = f(a)$.



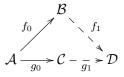
 \mathcal{M} is **homogeneous** if it is \mathcal{A} -homogeneous for each finite $\mathcal{A} \subseteq \mathcal{M}$.

Let ${\bf K}$ be a class of structures.

▶ **K** has the **hereditary property** (HP) if for each $\mathcal{A} \in \mathbf{K}$ and $\mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \in \mathbf{K}$.

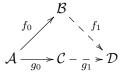
Let ${\bf K}$ be a class of structures.

- ▶ **K** has the **hereditary property** (HP) if for each $\mathcal{A} \in \mathbf{K}$ and $\mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \in \mathbf{K}$.
- ▶ $\mathcal{A} \in \mathbf{K}$ is an **amalgamation base** for \mathbf{K} if for each $\mathcal{B}, \mathcal{C} \in \mathbf{K}$ and $f_0 : \mathcal{A} \to \mathcal{B}, g_0 : \mathcal{A} \to \mathcal{C}$ there is $\mathcal{D} \in \mathbf{K}$ and $f_1 : \mathcal{B} \to \mathcal{D}, g_1 : \mathcal{C} \to \mathcal{D}$ such that for each $a \in \mathcal{A}, f_1(f_0(a)) = g_1(g_0(a)).$



Let \mathbf{K} be a class of structures.

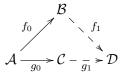
- ▶ **K** has the **hereditary property** (HP) if for each $\mathcal{A} \in \mathbf{K}$ and $\mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \in \mathbf{K}$.
- $\mathcal{A} \in \mathbf{K}$ is an **amalgamation base** for \mathbf{K} if for each $\mathcal{B}, \mathcal{C} \in \mathbf{K}$ and $f_0 : \mathcal{A} \to \mathcal{B}, g_0 : \mathcal{A} \to \mathcal{C}$ there is $\mathcal{D} \in \mathbf{K}$ and $f_1 : \mathcal{B} \to \mathcal{D}, g_1 : \mathcal{C} \to \mathcal{D}$ such that for each $a \in \mathcal{A}, f_1(f_0(a)) = g_1(g_0(a)).$



• **K** satisfies the **amalgamation property** (AP) if each $\mathcal{A} \in \mathbf{K}$ is an amalgamation base.

Let \mathbf{K} be a class of structures.

- ▶ **K** has the **hereditary property** (HP) if for each $\mathcal{A} \in \mathbf{K}$ and $\mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \in \mathbf{K}$.
- ▶ $\mathcal{A} \in \mathbf{K}$ is an **amalgamation base** for \mathbf{K} if for each $\mathcal{B}, \mathcal{C} \in \mathbf{K}$ and $f_0 : \mathcal{A} \to \mathcal{B}, g_0 : \mathcal{A} \to \mathcal{C}$ there is $\mathcal{D} \in \mathbf{K}$ and $f_1 : \mathcal{B} \to \mathcal{D}, g_1 : \mathcal{C} \to \mathcal{D}$ such that for each $a \in \mathcal{A}, f_1(f_0(a)) = g_1(g_0(a)).$



- K satisfies the amalgamation property (AP) if each
 A ∈ K is an amalgamation base.
- ▶ **K** satisfies the joint embedding property (JEP) if for each $\mathcal{A}, \mathcal{B} \in \mathbf{K}$ there is $\mathbf{C} \in \mathbf{K}$ such that both \mathcal{A} and \mathcal{B} embeds into \mathcal{C}

$$Age(\mathcal{M}) = \{\mathcal{A} : \mathcal{A} \hookrightarrow \mathcal{M}, \mathcal{A} \text{ is finite}\}$$

Theorem (Fraïssé 1953)

Let \mathbf{K} be a class of finite structures closed under isomorphism satisfying HP, JEP and AP. Then there is a unique countable homogeneous structure \mathcal{M} such that $Age(\mathcal{M}) = \mathbf{K}$.

In the relational context JEP can be excluded

$$Age(\mathcal{M}) = \{\mathcal{A} : \mathcal{A} \hookrightarrow \mathcal{M}, \mathcal{A} \text{ is finite}\}$$

Theorem (Fraïssé 1953)

Let \mathbf{K} be a class of finite structures closed under isomorphism satisfying HP, JEP and AP. Then there is a unique countable homogeneous structure \mathcal{M} such that $Age(\mathcal{M}) = \mathbf{K}$.

In the relational context JEP can be excluded

If ${\bf C}$ is a set of structures let

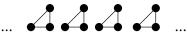
$$\mathit{Forb}(\mathbf{C}) = \{\mathcal{A}: \forall \mathcal{C} \in \mathbf{C}, \mathcal{C} \not\hookrightarrow \mathcal{A}\}$$

If $Forb(\mathbf{C})$ satisfies AP call the unique homogeneous structure \mathcal{M} such that $Age(\mathcal{M}) = Forb(\mathbf{C})$ the generic \mathbf{C} -free structure.

Let K_n be the complete graph on n vertices.

Theorem (Lachlan and Woodrow 1980)

If \mathcal{M} is a countably infinite homogeneous graph then for some $n \in \mathbb{Z}^+ \cup \{\infty\}$, \mathcal{M} (or \mathcal{M}^c) is isomorphic to either the generic \emptyset -free graph, the generic K_n -free graph or a disjoint union of K_n .



Note that the generic \emptyset -free graphs is the random graph.

For $k \in \mathbb{Z}^+$, \mathcal{M} is (>k-) k-homogeneous if for each $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ (>k), \mathcal{M} is \mathcal{A} -homogeneous.

Μ

For $k \in \mathbb{Z}^+$, \mathcal{M} is (>k-) k-homogeneous if for each $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ (>k), \mathcal{M} is \mathcal{A} -homogeneous.

 \mathcal{M} is **cofinitely homogeneous** if \mathcal{M} is > k-homogeneous for some k.

Note: If \mathcal{M} is cofinitely homogeneous there are a finite amount of isomorphism classes of $\mathcal{A} \subseteq \mathcal{M}$ such that \mathcal{M} is *not* \mathcal{A} -homogeneous.

For $k \in \mathbb{Z}^+$, \mathcal{M} is (>k-) k-homogeneous if for each $\mathcal{A} \subseteq \mathcal{M}$ such that $|\mathcal{A}| = k$ (>k), \mathcal{M} is \mathcal{A} -homogeneous.

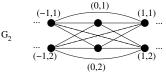
 \mathcal{M} is **cofinitely homogeneous** if \mathcal{M} is > k-homogeneous for some k.

Note: If \mathcal{M} is cofinitely homogeneous there are a finite amount of isomorphism classes of $\mathcal{A} \subseteq \mathcal{M}$ such that \mathcal{M} is *not* \mathcal{A} -homogeneous.

Proposition

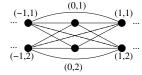
Let \mathbf{K} be a class of structures closed under isomorphism satisfying HP and JEP such that for some $k \in \mathbb{Z}^+$ each $\mathcal{A} \in \mathbf{K}$ with $|\mathcal{A}| > k$ is an amalgamation base. Then there exists a unique cofinitely homogeneous structure \mathcal{M} such that $Age(\mathcal{M}) = \mathbf{K}$.

> For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .



The Graph G₂

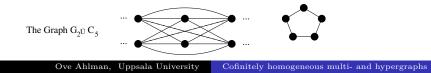
> For $n \in \mathbb{Z}^+$ let \mathcal{G}_n be the graph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set $E = \{\{(a, i), (b, j)\} : a \neq b\}$. Note that $\mathcal{G}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$ and \mathcal{G}_n is the homogeneous graph isomorphic to the infinite disjoint union of K_n .



The Graph G2

Lemma

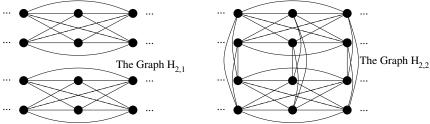
Let \mathcal{M} be a countably infinite graph. \mathcal{M} is cofinitely homogeneous but **not** 1-homogeneous if and only if for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} , \mathcal{M} (or \mathcal{M}^c) is isomorphic to $\mathcal{G}_n \dot{\cup} \mathcal{H}$.



> If $t \geq 2$ let $\mathcal{H}_{t,1}$ be the graph with universe $H_{t,1} = \mathbb{Z} \times \{1, ..., t\} \times \{1, 2\}$ such that the inclusion map $\iota : \mathcal{H}_{t,1} \to \mathcal{G}_t \times \{1, 2\}$ is an isomorphism. Let $\mathcal{H}_{t,2}$ have the same universe as $\mathcal{H}_{t,1}$ but with edge set

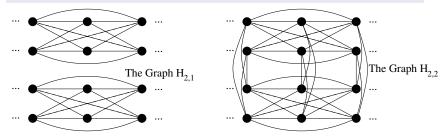
$$E_{t,2} = E_{G_{t,1}} \cup \{\{(a,i,z), (b,j,w)\} : z \neq w \text{ and } a = b\}.$$

Lastly define the graph $\mathcal{H}_{1,2}$ as having universe $\mathbb{Z} \times \{1,2\}$ and edge set $E = \{\{(a,i), (b,j)\} : i = j \text{ or } a = b \text{ but } i \neq j\}.$



Lemma

Let \mathcal{M} be a countably infinite graph. \mathcal{M} is cofinitely homogeneous, 1-homogeneous but **not** 2-homogeneous if and only if \mathcal{M} (or \mathcal{M}^c) is isomorphic to $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.



Lemma

If \mathcal{M} is a cofinitely homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then \mathcal{M} is homogeneous.

Lemma

If \mathcal{M} is a cofinitely homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then \mathcal{M} is homogeneous.

Theorem (A. 2018)

If \mathcal{M} is a cofinitely homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

- ► A homogeneous graph.
- $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .
- $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

Lemma

If \mathcal{M} is a cofinitely homogeneous infinite graph which is 1-homogeneous and 2-homogeneous, then \mathcal{M} is homogeneous.

Theorem (A. 2018)

If \mathcal{M} is a cofinitely homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

- ► A homogeneous graph.
- $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .
- $\mathcal{H}_{t,1}$ or $\mathcal{H}_{t,2}$ for some t.

Note: The non-homogeneous cofinitely homogeneous graphs are all ω -stable.

They also have relational complexity 1 and 2 respectively.

Remember that for $A \subseteq \mathcal{M}$,

 $acl(A) = \{b \in M : \text{There is } \varphi(x, \overline{y}) \text{ such that for some } \overline{a} \in A$

 $\mathcal{M} \models \varphi(b, \bar{a}) \text{ and } \varphi(x, \bar{a}) \text{ is algebraic} \}$

 $= \{b \in M : tp(b/A) \text{ is algebraic}\}\$

Remember that for $A \subseteq \mathcal{M}$,

 $acl(A) = \{b \in M : \text{There is } \varphi(x, \overline{y}) \text{ such that for some } \overline{a} \in A$

 $\mathcal{M} \models \varphi(b, \bar{a}) \text{ and } \varphi(x, \bar{a}) \text{ is algebraic} \}$ $= \{b \in M : tp(b/A) \text{ is algebraic} \}$

Definition

A structure \mathcal{M} is **pseudotrivial** if for each $a \in \mathcal{M}$, $acl(a) \neq \{a\}.$

Does this make sense?

Remember that for $A \subseteq \mathcal{M}$,

 $acl(A) = \{b \in M : \text{There is } \varphi(x, \overline{y}) \text{ such that for some } \overline{a} \in A$

 $\mathcal{M} \models \varphi(b, \bar{a}) \text{ and } \varphi(x, \bar{a}) \text{ is algebraic} \}$ $= \{b \in M : tp(b/A) \text{ is algebraic} \}$

Definition

A structure \mathcal{M} is **pseudotrivial** if for each $a \in \mathcal{M}$, $acl(a) \neq \{a\}.$

Does this make sense? No, but...

Theorem (Lachlan and Woodrow 1980)

If \mathcal{M} is a countably infinite homogeneous graph then for some $n \in \mathbb{Z}^+ \cup \{\infty\}$, \mathcal{M} (or \mathcal{M}^c) is isomorphic to either the random graph, the generic K_n -free graph or a disjoint union of K_n .

The pseudotrivial homogeneous graphs are all the infinite disjoint unions of K_n for finite n.

Note: K_{∞} and disjoint unions of K_{∞} are not pseudotrivial.

Theorem (A. 2018)

Let $k \in \mathbb{Z}^+$. If \mathcal{M} is a non-homogeneous cofinitely homogeneous countably infinite graph then \mathcal{M} (or \mathcal{M}^c) is isomorphic to one of the following

• $\mathcal{G}_n \dot{\cup} \mathcal{H}$ for some $n \in \mathbb{Z}^+$ and finite homogeneous graph \mathcal{H} .

$$\succ \mathcal{H}_{t,1}$$
 or $\mathcal{H}_{t,2}$ for some t.

Non-homogeneous cofinitely homogeneous graphs are pseudotrivial. (unless n = 1)

Thus *pseudotrivial*, in the context, makes sense.

For $r \in \mathbb{Z}^+$ an r-hypergraph \mathcal{G} is a structure (G, R) where G is the universe and R is an r-ary symmetric anti-reflexive relation.

For $r \in \mathbb{Z}^+$ an r-hypergraph \mathcal{G} is a structure (G, R) where G is the universe and R is an r-ary symmetric anti-reflexive relation.

Can we classify the cofinitely homogeneous r-hypergraphs?

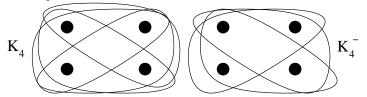
For $r \in \mathbb{Z}^+$ an r-hypergraph \mathcal{G} is a structure (G, R) where G is the universe and R is an r-ary symmetric anti-reflexive relation.

Can we classify the cofinitely homogeneous r-hypergraphs?

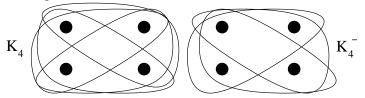
Warning!

The homogeneous r-hypergraphs are not (even close to being) classified and there are uncountably many isomorphism classes.

Let K_4 be the complete 3-hypergraph on 4 elements. Let K_4^- be K_4 but with one edge removed.

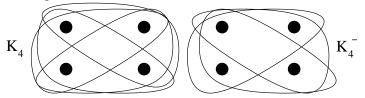


Let K_4 be the complete 3-hypergraph on 4 elements. Let K_4^- be K_4 but with one edge removed.



Important Example: $Forb(K_4, K_4^-)$ satisfy HP and AP. Thus the generic (K_4, K_4^-) -free hypergraph \mathcal{M} exists and is homogeneous. Note that \mathcal{M} is not simple.

Let K_4 be the complete 3-hypergraph on 4 elements. Let K_4^- be K_4 but with one edge removed.



Important Example: $Forb(K_4, K_4^-)$ satisfy HP and AP. Thus the generic (K_4, K_4^-) -free hypergraph \mathcal{M} exists and is homogeneous. Note that \mathcal{M} is not simple.

 $\mathcal{M}^c \dot{\cup} \mathcal{M}^c$ is a cofinitely homogeneous hypergraph which is not simple.

Remember that all cofinitely homogeneous graphs are ω -stable.

For any homogeneous 3-hypergraph \mathcal{M} such that $Age(\mathcal{M}) \subseteq Forb(K_4, K_4^-), \ \mathcal{M}^c \dot{\cup} \mathcal{M}^c$ is 1 cofinitely homogeneous.

Question

The generic (K_4, K_4^-) -free hypergraph and the empty hypergraph both satisfy the above condition. Are there more? Are there uncountably many?

¹We may have "a few" edges between the two parts.

For any homogeneous 3-hypergraph \mathcal{M} such that $Age(\mathcal{M}) \subseteq Forb(K_4, K_4^-), \ \mathcal{M}^c \dot{\cup} \mathcal{M}^c$ is 1 cofinitely homogeneous.

Question

The generic (K_4, K_4^-) -free hypergraph and the empty hypergraph both satisfy the above condition. Are there more? Are there uncountably many?

What about the *pseudotrivial* cofinitely homogeneous hypergraphs?

Lemma

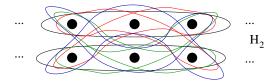
For r > 2 there are no pseudotrivial homogeneous r-hypergraphs.

¹We may have "a few" edges between the two parts.

For $n \in \mathbb{Z}^+$ let \mathcal{H}_n be the 3-hypergraph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set

 $E = \{\{(a,i), (b,j), (c,k)\} : a \neq b, b \neq c, a \neq c\}.$

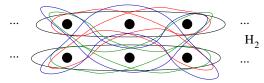
Note that $\mathcal{H}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$.



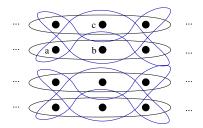
For $n \in \mathbb{Z}^+$ let \mathcal{H}_n be the 3-hypergraph with vertex set $V = \mathbb{Z} \times \{1, \ldots, n\}$ and edge set

 $E = \{\{(a,i), (b,j), (c,k)\} : a \neq b, b \neq c, a \neq c\}.$

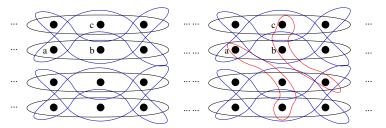
Note that $\mathcal{H}_n \upharpoonright \mathbb{Z} \times \{i\} \cong K_\infty$.



If \mathcal{A} is a hypergraph such that $|\mathcal{A}| = n$ then $\mathcal{H}_n(\mathcal{A})$ is \mathcal{H}_n but with $\mathcal{H}_n(\mathcal{A}) \upharpoonright \{i\} \times \{1, \ldots, n\} \cong \mathcal{A}$. i.e. \mathcal{A} is on each column. $\mathcal{H}_n(\mathcal{A})$ is **not** homogeneous unless n = 1, it is however cofinitely homogeneous. Note that $\mathcal{H}_n \dot{\cup} \mathcal{H}_n$ is **not** cofinitely homogeneous. *a*, *b* in the same row and *b*, *c* in the same column are not distinguishable after choosing only elements in the other part.



Note that $\mathcal{H}_n \dot{\cup} \mathcal{H}_n$ is **not** cofinitely homogeneous. *a*, *b* in the same row and *b*, *c* in the same column are not distinguishable after choosing only elements in the other part.

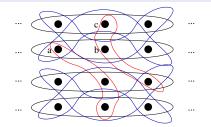


Let $\mathcal{H}_n \otimes \mathcal{H}_n$ be $\mathcal{H}_n \dot{\cup} \mathcal{H}_n$ but R(a, b, c) also hold for each a in one component and b, c in the other component which are in the same column.

Lemma

Let \mathcal{M} be a pseudotrivial cofinitely homogeneous 3-hypergraph which is 1-homogeneous but not 2-homogeneous. There is a homogeneous finite 3-hypergraph \mathcal{A} , $n = |\mathcal{A}|$, such that \mathcal{M} (or \mathcal{M}^c) is isomorphic to

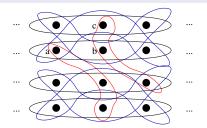
 $\mathcal{H}_n(\mathcal{A})\otimes\mathcal{H}_n(\mathcal{A})$ or $\mathcal{H}_n(\mathcal{A})$



Lemma

Let \mathcal{M} be a pseudotrivial cofinitely homogeneous 3-hypergraph which is 1-homogeneous but not 2-homogeneous. There is a homogeneous finite 3-hypergraph \mathcal{A} , $n = |\mathcal{A}|$, such that \mathcal{M} (or \mathcal{M}^c) is isomorphic to

 $\mathcal{H}_n(\mathcal{A})\otimes\mathcal{H}_n(\mathcal{A})$ or $\mathcal{H}_n(\mathcal{A})$

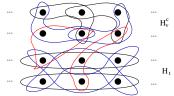


Note: The homogeneous finite 3-hypergraphs were classified by Lachlan and Tripp (1995). Still open for r-hypergraphs.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs

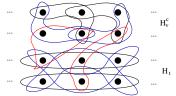
Let $\mathcal{H}_t \oplus \mathcal{H}_v^c$ be $\mathcal{H}_t \dot{\cup} \mathcal{H}_v^c$ but with extra R(a, b, c) for

- ▶ each $a \in \mathcal{H}_t^c$ and $b, c \in \mathcal{H}_v$ such that b, c are in the same column.
- ▶ each $a \in \mathcal{H}_v$ and $b, c \in \mathcal{H}_t^c$ such that b, c are **not** in the same column.



Let $\mathcal{H}_t \oplus \mathcal{H}_v^c$ be $\mathcal{H}_t \dot{\cup} \mathcal{H}_v^c$ but with extra R(a, b, c) for

- ▶ each $a \in \mathcal{H}_t^c$ and $b, c \in \mathcal{H}_v$ such that b, c are in the same column.
- ▶ each $a \in \mathcal{H}_v$ and $b, c \in \mathcal{H}_t^c$ such that b, c are **not** in the same column.



Lemma

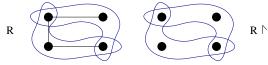
Let \mathcal{M} be a cofinitely homogeneous pseudotrivial 3-hypergraph which is **not** 1-homogeneous, and have at least 2 infinite 1-types. Then, for some homogeneous \mathcal{A} , $|\mathcal{A}| = t$ and \mathcal{B} , $|\mathcal{B}| = v$, we have that $\mathcal{M} \cong \mathcal{H}_t(\mathcal{A}) \oplus \mathcal{H}_v^c(\mathcal{B})$.

A cat

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs

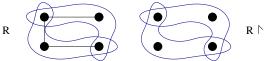
A 2, 3-hypergraph is a 3-hypergraph with an extra binary relation E which is symmetric and anti-reflexive.

If \mathcal{R} is a 2,3-hypergraph then $\mathcal{R} \upharpoonright$ is the reduct of \mathcal{R} to a 3-hypergraph.

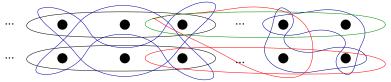


A 2,3-hypergraph is a 3-hypergraph with an extra binary relation E which is symmetric and anti-reflexive.

If \mathcal{R} is a 2,3-hypergraph then $\mathcal{R} \upharpoonright$ is the reduct of \mathcal{R} to a 3-hypergraph.

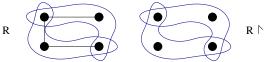


If $\mathcal{A} = \mathcal{R} \upharpoonright$, then define $\mathcal{H}_t \otimes_{\mathcal{R}} \mathcal{A}$ as $\mathcal{H}_t \dot{\cup} \mathcal{A}$, but also with R(a, b, c) if $a \in \mathcal{H}_t$ and $\mathcal{R} \models E(b, c)$.

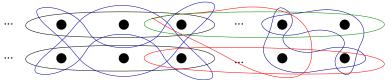


A 2,3-hypergraph is a 3-hypergraph with an extra binary relation E which is symmetric and anti-reflexive.

If \mathcal{R} is a 2,3-hypergraph then $\mathcal{R} \upharpoonright$ is the reduct of \mathcal{R} to a 3-hypergraph.

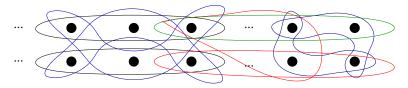


If $\mathcal{A} = \mathcal{R} \upharpoonright$, then define $\mathcal{H}_t \otimes_{\mathcal{R}} \mathcal{A}$ as $\mathcal{H}_t \dot{\cup} \mathcal{A}$, but also with R(a, b, c) if $a \in \mathcal{H}_t$ and $\mathcal{R} \models E(b, c)$.



Further more let $\mathcal{H}_t \widehat{\otimes}_{\mathcal{R}} \mathcal{A}$ be $\mathcal{H}_t \otimes_{\mathcal{R}} \mathcal{A}$ but with R(a, b, c) for each $a, b \in \mathcal{H}_t$ in the same column and $c \in \mathcal{A}$.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Lemma

Let \mathcal{M} be a cofinitely homogeneous pseudotrivial 3-hypergraph which is not 1-homogeneous with at least one finite 1-type. Then there is a homogeneous 2, 3-hypergraph \mathcal{R} with $\mathcal{A} = \mathcal{R} \upharpoonright$ and a homogeneous 3-hypergraph \mathcal{B} with $|\mathcal{B}| = t$ such that \mathcal{M} (or \mathcal{M}^c) is isomorphic to

$$\mathcal{H}_t(\mathcal{B})\otimes_{\mathcal{R}}\mathcal{A} \ or \ \mathcal{H}_t(\mathcal{B})\widehat{\otimes}_{\mathcal{R}}\mathcal{A}$$

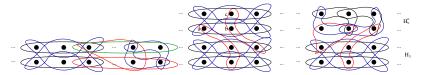
There is no classification of homogeneous 2, 3-hypergraphs.

Trivial Lemma

No ω -categorical pseudotrivial 2-homogeneous r-hypergraph, with r > 2, exists.

Trivial Lemma

No ω -categorical pseudotrivial 2-homogeneous r-hypergraph, with r > 2, exists.

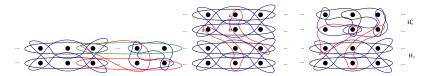


Theorem (A. 2018)

Let \mathcal{M} be a pseudotrivial cofinitely homogeneous 3-hypergraph. Then \mathcal{M} (or \mathcal{M}^c) is isomorphic to

- $\blacktriangleright \mathcal{H}_t(\mathcal{B}) \otimes_{\mathcal{R}} \mathcal{A} \text{ or } \mathcal{H}_t(\mathcal{B}) \widehat{\otimes}_{\mathcal{R}} \mathcal{A}.$
- $\blacktriangleright \mathcal{H}_t(\mathcal{A}) \oplus \mathcal{H}_v^c(\mathcal{B}).$
- $\mathcal{H}_t(\mathcal{A}) \otimes \mathcal{H}_t(\mathcal{A})$ or $\mathcal{H}_t(\mathcal{A})$

Very similar for pseudotrivial r-hypergraphs.



Theorem (A. 2018)

Let \mathcal{M} be a pseudotrivial cofinitely homogeneous 3-hypergraph. Then \mathcal{M} (or \mathcal{M}^c) is isomorphic to

- $\blacktriangleright \mathcal{H}_t(\mathcal{B}) \otimes_{\mathcal{R}} \mathcal{A} \text{ or } \mathcal{H}_t(\mathcal{B}) \widehat{\otimes}_{\mathcal{R}} \mathcal{A}.$
- $\blacktriangleright \mathcal{H}_t(\mathcal{A}) \oplus \mathcal{H}_v^c(\mathcal{B}).$
- $\mathcal{H}_t(\mathcal{A}) \otimes \mathcal{H}_t(\mathcal{A})$ or $\mathcal{H}_t(\mathcal{A})$

Note: All pseudotrivial cofinitely homogeneous r-hypergraphs are ω -stable. They also have relational complexity at most r - 1. For $r \in \mathbb{Z}^+$ an r-multigraph \mathcal{G} is a structure $(G, E_1, \ldots, E_{r-1})$ where G is the universe and each E_i is a binary relation which is symmetric anti-reflexive. Also, if $i \neq j$ then $E_i \cap E_j = \emptyset$. For $r \in \mathbb{Z}^+$ an r-multigraph \mathcal{G} is a structure $(G, E_1, \ldots, E_{r-1})$ where G is the universe and each E_i is a binary relation which is symmetric anti-reflexive. Also, if $i \neq j$ then $E_i \cap E_j = \emptyset$.

Can we classify the cofinitely homogeneous multigraphs?

For $r \in \mathbb{Z}^+$ an r-multigraph \mathcal{G} is a structure $(G, E_1, \ldots, E_{r-1})$ where G is the universe and each E_i is a binary relation which is symmetric anti-reflexive. Also, if $i \neq j$ then $E_i \cap E_j = \emptyset$.

Can we classify the cofinitely homogeneous multigraphs?

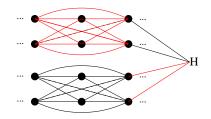
Warning!

The homogeneous r-multigraphs are not (for r > 2) classified and there are uncountably many isomorphism classes.

Discouraging example:

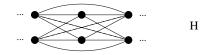
Let \mathcal{M} be a homogeneous r-multigraph using only the edges E_1, \ldots, E_r . Let \mathcal{N} be a homogeneous r-multigraph using only the edges F_1, \ldots, F_r .

Then $\mathcal{M} \cup \mathcal{N}$ is a cofinitely homogeneous (2r+1)-multigraph.



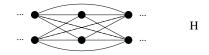
Lemma

Let \mathcal{M} cofinitely homogeneous 3-multigraph with 2 infinite 1-types and 1 finite 1-type, then $\mathcal{M} \cong G_t(\mathcal{A}) \otimes G_v(\mathcal{B}) \otimes \mathcal{H}$, for finite homogeneous graphs \mathcal{A}, \mathcal{B} and 3-multigraphs \mathcal{H} .



Lemma

Let \mathcal{M} cofinitely homogeneous 3-multigraph with 1 infinite 1-type and 1 finite 1-type, then $\mathcal{M} \cong \mathcal{G}_t(\mathcal{A}) \dot{\cup} \mathcal{H}$ or $\mathcal{G}(\mathcal{A}) \dot{\cup} \mathcal{H}$ for finite homogeneous graph \mathcal{A} and 3-multigraph \mathcal{H} and cofinitely homogeneous, 1 - homogeneous graph \mathcal{G} .



Lemma

Let \mathcal{M} cofinitely homogeneous 3-multigraph with 1 infinite 1-type and 1 finite 1-type, then $\mathcal{M} \cong \mathcal{G}_t(\mathcal{A}) \dot{\cup} \mathcal{H}$ or $\mathcal{G}(\mathcal{A}) \dot{\cup} \mathcal{H}$ for finite homogeneous graph \mathcal{A} and 3-multigraph \mathcal{H} and cofinitely homogeneous, 1-homogeneous graph \mathcal{G} .

Lemma

A classification of the cofinitely homogeneous 3-multigraphs which are not 1-homogeneous.

► Cofinitely homogeneous graphs. Classified

 $^{^2\}mathrm{Classified}$ up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified

 $^{^2\}mathrm{Classified}$ up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified
 - ▶ Non-pseudo trivial. Many open questions remain

 $^{^{2}}$ Classified up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified
 - ▶ Non-pseudo trivial. Many open questions remain
- \blacktriangleright Cofinitely homogeneous r-multigraphs
 - ▶ 1-homogeneous 3-multigraphs. (semi)Classified

 $^{^{2}}$ Classified up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified
 - ▶ Non-pseudo trivial. Many open questions remain
- \blacktriangleright Cofinitely homogeneous r-multigraphs
 - ▶ 1-homogeneous 3-multigraphs. (semi)Classified
 - ► Any 3-multigraphs. Soon?

 $^{^{2}}$ Classified up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified
 - ▶ Non-pseudo trivial. Many open questions remain
- \blacktriangleright Cofinitely homogeneous r-multigraphs
 - ▶ 1-homogeneous 3-multigraphs. (semi)Classified
 - ► Any 3-multigraphs. Soon?
 - For r > 3. Open

 $^{^{2}}$ Classified up to some finite homogeneous structures

- ► Cofinitely homogeneous graphs. Classified
- Cofinitely homogeneous r-hypergraphs
 - ▶ Pseudotrivial. (semi²)Classified
 - ▶ Non-pseudo trivial. Many open questions remain
- \blacktriangleright Cofinitely homogeneous r-multigraphs
 - ▶ 1-homogeneous 3-multigraphs. (semi)Classified
 - ► Any 3-multigraphs. Soon?
 - For r > 3. Open
- Cofinitely homogeneous digraphs, tournaments and other structures. Very open

 $^{^{2}}$ Classified up to some finite homogeneous structures

Thank you!

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs