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We only consider finite relational languages.

Definition

For a structure M and a substructure A ⊆M, M is called
A−homogeneous if for each embedding f0 : A →M, there is
an automorphism f :M→M such that f extends f0
i.e. ∀a ∈ A, f0(a) = f(a).

M

A f

M is homogeneous if it is A−homogeneous for each finite
A ⊆M.
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Let K be a class of structures.
I K has the hereditary property (HP) if for each A ∈ K

and B ⊆ A, B ∈ K.

I A ∈ K is an amalgamation base for K if for each
B, C ∈ K and f0 : A → B, g0 : A → C there is D ∈ K and
f1 : B → D, g1 : C → D such that for each a ∈ A,
f1(f0(a)) = g1(g0(a)).

B
f1

��
A

f0

??

g0

// C g1

// D

I K satisfies the amalgamation property (AP) if each
A ∈ K is an amalgamation base.

I K satisfies the joint embedding property (JEP) if for
each A,B ∈ K there is C ∈ K such that both A and B
embeds into C
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Age(M) = {A : A ↪→M,A is finite}

Theorem (Fräıssé 1953)

Let K be a class of finite structures closed under isomorphism
satisfying HP, JEP and AP . Then there is a unique countable
homogeneous structure M such that Age(M) = K.

In the relational context JEP can be excluded

If C is a set of structures let

Forb(C) = {A : ∀C ∈ C, C 6↪→ A}

If Forb(C) satisfies AP call the unique homogeneous structure
M such that Age(M) = Forb(C) the generic C−free
structure.
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Let Kn be the complete graph on n vertices.

Theorem (Lachlan and Woodrow 1980)

If M is a countably infinite homogeneous graph then for some
n ∈ Z+ ∪ {∞}, M (or Mc) is isomorphic to either the generic
∅−free graph, the generic Kn−free graph or a disjoint union of
Kn.

... ...

Note that the generic ∅−free graphs is the random graph.
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For k ∈ Z+, M is (>k−) k−homogeneous if for each A ⊆M
such that |A| = k (>k), M is A−homogeneous.

M

A f

M is cofinitely homogeneous if M is > k−homogeneous for
some k.
Note: If M is cofinitely homogeneous there are a finite amount
of isomorphism classes of A ⊆M such that M is not
A−homogeneous.

Proposition

Let K be a class of structures closed under isomorphism
satisfying HP and JEP such that for some k ∈ Z+ each A ∈ K
with |A| > k is an amalgamation base.
Then there exists a unique cofinitely homogeneous structure M
such that Age(M) = K.
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For n ∈ Z+ let Gn be the graph with vertex set
V = Z× {1, . . . , n} and edge set E = {{(a, i), (b, j)} : a 6= b}.
Note that Gn � Z× {i} ∼= K∞ and Gn is the homogeneous graph
isomorphic to the infinite disjoint union of Kn.

...

...

...

...

The Graph G
2

(0,1)

(−1,2) (1,2)

(−1,1) (1,1)

(0,2)

Lemma

Let M be a countably infinite graph. M is cofinitely
homogeneous but not 1−homogeneous if and only if for some
n ∈ Z+ and finite homogeneous graph H, M (or Mc) is
isomorphic to Gn∪̇H.

The Graph G
2

.
U 5

C

...

...

...

...
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If t ≥ 2 let Ht,1 be the graph with universe
Ht,1 = Z× {1, ..., t} × {1, 2} such that the inclusion map
ι : Ht,1 → Gt × {1, 2} is an isomorphism. Let Ht,2 have the same
universe as Ht,1 but with edge set

Et,2 = EGt,1 ∪ {{(a, i, z), (b, j, w)} : z 6= w and a = b}.

Lastly define the graph H1,2 as having universe Z× {1, 2} and
edge set E = {{(a, i), (b, j)} : i = j or a = b but i 6= j}.

...

...

...

...
The Graph H

2,1

...

...

...

...

...

...

...

...

The Graph H
2,2

...

......

...
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Lemma

Let M be a countably infinite graph. M is cofinitely
homogeneous, 1−homogeneous but not 2−homogeneous if and
only if M (or Mc) is isomorphic to Ht,1 or Ht,2 for some t.

...

...

...

...

The Graph H
2,1

...

...

...

...

...

...

...

...

The Graph H
2,2

...

......

...
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Lemma

If M is a cofinitely homogeneous infinite graph which is
1−homogeneous and 2−homogeneous, then M is homogeneous.

Theorem (A. 2018)

If M is a cofinitely homogeneous countably infinite graph then
M (or Mc) is isomorphic to one of the following

I A homogeneous graph.

I Gn∪̇H for some n ∈ Z+ and finite homogeneous graph H.

I Ht,1 or Ht,2 for some t.

Note: The non-homogeneous cofinitely homogeneous graphs
are all ω−stable.
They also have relational complexity 1 and 2 respectively.
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Remember that for A ⊆M,

acl(A) = {b ∈M : There is ϕ(x, ȳ) such that for some ā ∈ A

M |= ϕ(b, ā) and ϕ(x, ā) is algebraic}

= {b ∈M : tp(b/A) is algebraic}

Definition

A structure M is pseudotrivial if for each a ∈M,
acl(a) 6= {a}.

Does this make sense?
No, but...
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Theorem (Lachlan and Woodrow 1980)

If M is a countably infinite homogeneous graph then for some
n ∈ Z+ ∪ {∞}, M (or Mc) is isomorphic to either the random
graph, the generic Kn−free graph or a disjoint union of Kn.

The pseudotrivial homogeneous graphs are all the infinite
disjoint unions of Kn for finite n.

Note: K∞ and disjoint unions of K∞ are not pseudotrivial.
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Theorem (A. 2018)

Let k ∈ Z+. If M is a non-homogeneous cofinitely homogeneous
countably infinite graph then M (or Mc) is isomorphic to one
of the following

I Gn∪̇H for some n ∈ Z+ and finite homogeneous graph H.

I Ht,1 or Ht,2 for some t.

Non-homogeneous cofinitely homogeneous graphs are
pseudotrivial. (unless n = 1)

Thus pseudotrivial, in the context, makes sense.
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For r ∈ Z+ an r−hypergraph G is a structure (G,R) where G
is the universe and R is an r−ary symmetric anti-reflexive
relation.

Can we classify the cofinitely homogeneous r−hypergraphs?

Warning!

The homogeneous r−hypergraphs are not (even close to being)
classified and there are uncountably many isomorphism classes.
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Let K4 be the complete 3−hypergraph on 4 elements.
Let K−4 be K4 but with one edge removed.

K
4

K
4

−

Important Example: Forb(K4,K
−
4 ) satisfy HP and AP.

Thus the generic (K4,K
−
4 )-free hypergraph M exists and is

homogeneous. Note that M is not simple.

Mc∪̇Mc is a cofinitely homogeneous hypergraph which is not
simple.
Remember that all cofinitely homogeneous graphs are ω−stable.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

Let K4 be the complete 3−hypergraph on 4 elements.
Let K−4 be K4 but with one edge removed.

K
4

K
4

−

Important Example: Forb(K4,K
−
4 ) satisfy HP and AP.

Thus the generic (K4,K
−
4 )-free hypergraph M exists and is

homogeneous. Note that M is not simple.

Mc∪̇Mc is a cofinitely homogeneous hypergraph which is not
simple.
Remember that all cofinitely homogeneous graphs are ω−stable.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

Let K4 be the complete 3−hypergraph on 4 elements.
Let K−4 be K4 but with one edge removed.

K
4

K
4

−

Important Example: Forb(K4,K
−
4 ) satisfy HP and AP.

Thus the generic (K4,K
−
4 )-free hypergraph M exists and is

homogeneous. Note that M is not simple.

Mc∪̇Mc is a cofinitely homogeneous hypergraph which is not
simple.
Remember that all cofinitely homogeneous graphs are ω−stable.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

For any homogeneous 3-hypergraph M such that
Age(M) ⊆ Forb(K4,K

−
4 ), Mc∪̇Mc is1 cofinitely homogeneous.

Question

The generic (K4,K
−
4 )−free hypergraph and the empty

hypergraph both satisfy the above condition. Are there more?
Are there uncountably many?

What about the pseudotrivial cofinitely homogeneous
hypergraphs?

Lemma

For r > 2 there are no pseudotrivial homogeneous
r−hypergraphs.

1
We may have “a few” edges between the two parts.
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For n ∈ Z+ let Hn be the 3−hypergraph with vertex set
V = Z× {1, . . . , n} and edge set

E = {{(a, i), (b, j), (c, k)} : a 6= b, b 6= c, a 6= c}.

Note that Hn � Z× {i} ∼= K∞.

...

...
...

...

2
H

If A is a hypergraph such that |A| = n then Hn(A) is Hn but
with Hn(A) � {i} × {1, . . . , n} ∼= A. i.e. A is on each column.
Hn(A) is not homogeneous unless n = 1, it is however cofinitely
homogeneous.
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Note that Hn∪̇Hn is not cofinitely homogeneous.
a, b in the same row and b, c in the same column are not
distinguishable after choosing only elements in the other part.

...

...
...

...

...

...
...

...

a b

c

a b

c

...

...

...

...

...

...

...

...

Let Hn ⊗Hn be Hn∪̇Hn but R(a, b, c) also hold for each a in
one component and b, c in the other component which are in the
same column.
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Lemma

Let M be a pseudotrivial cofinitely homogeneous 3−hypergraph
which is 1−homogeneous but not 2−homogeneous.
There is a homogeneous finite 3−hypergraph A, n = |A|, such
that M (or Mc) is isomorphic to

Hn(A)⊗Hn(A) or Hn(A)

a b

c

...

...

...

...

...

...

...

...

Note: The homogeneous finite 3−hypergraphs were classified
by Lachlan and Tripp (1995). Still open for r−hypergraphs.
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Let Ht ⊕Hc
v be Ht∪̇Hc

v but with extra R(a, b, c) for
I each a ∈ Hc

t and b, c ∈ Hv such that b, c are in the same
column.

I each a ∈ Hv and b, c ∈ Hc
t such that b, c are not in the

same column.

H
c

v

...

...

...

...

...
...

...

H t

...

Lemma

Let M be a cofinitely homogeneous pseudotrivial 3−hypergraph
which is not 1-homogeneous, and have at least 2 infinite
1−types.
Then, for some homogeneous A, |A| = t and B, |B| = v, we have
that M∼= Ht(A)⊕Hc

v(B).

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

Let Ht ⊕Hc
v be Ht∪̇Hc

v but with extra R(a, b, c) for
I each a ∈ Hc

t and b, c ∈ Hv such that b, c are in the same
column.

I each a ∈ Hv and b, c ∈ Hc
t such that b, c are not in the

same column.
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A cat
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A 2, 3−hypergraph is a 3−hypergraph with an extra binary
relation E which is symmetric and anti-reflexive.

If R is a 2, 3−hypergraph then R � is the reduct of R to a
3−hypergraph.

RR

If A = R �, then define Ht ⊗R A as Ht∪̇A, but also with
R(a, b, c) if a ∈ Ht and R |= E(b, c).

...

...

......

Further more let Ht⊗̂RA be Ht ⊗R A but with R(a, b, c) for
each a, b ∈ Ht in the same column and c ∈ A.
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...

...

......

Lemma

Let M be a cofinitely homogeneous pseudotrivial 3−hypergraph
which is not 1−homogeneous with at least one finite 1−type.
Then there is a homogeneous 2, 3−hypergraph R with A = R �
and a homogeneous 3−hypergraph B with |B| = t such that M
(or Mc) is isomorphic to

Ht(B)⊗R A or Ht(B)⊗̂RA

There is no classification of homogeneous 2, 3−hypergraphs.
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Trivial Lemma

No ω−categorical pseudotrivial 2−homogeneous r−hypergraph,
with r > 2, exists.

...

...

......

a b

c

...

...

...

...

...

...

...

...

H
c

v

...

...

...

...

...
...

...

H t

...

Theorem (A. 2018)

Let M be a pseudotrivial cofinitely homogeneous 3−hypergraph.
Then M (or Mc) is isomorphic to

I Ht(B)⊗R A or Ht(B)⊗̂RA.

I Ht(A)⊕Hc
v(B).

I Ht(A)⊗Ht(A) or Ht(A)

Very similar for pseudotrivial r−hypergraphs.
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Theorem (A. 2018)

Let M be a pseudotrivial cofinitely homogeneous 3−hypergraph.
Then M (or Mc) is isomorphic to

I Ht(B)⊗R A or Ht(B)⊗̂RA.

I Ht(A)⊕Hc
v(B).

I Ht(A)⊗Ht(A) or Ht(A)

Note: All pseudotrivial cofinitely homogeneous r−hypergraphs
are ω−stable.
They also have relational complexity at most r − 1.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

For r ∈ Z+ an r−multigraph G is a structure (G,E1, . . . , Er−1)
where G is the universe and each Ei is a binary relation which
is symmetric anti-reflexive. Also, if i 6= j then Ei ∩ Ej = ∅.

Can we classify the cofinitely homogeneous multigraphs?

Warning!

The homogeneous r−multigraphs are not (for r > 2) classified
and there are uncountably many isomorphism classes.
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Discouraging example:
Let M be a homogeneous r−multigraph using only the edges
E1, . . . , Er.
Let N be a homogeneous r−multigraph using only the edges
F1, . . . , Fr.
Then M∪̇N is a cofinitely homogeneous (2r + 1)−multigraph.
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...

...

...

...

...

...

...

...

H

Lemma

Let M cofinitely homogeneous 3−multigraph with 2 infinite
1−types and 1 finite 1−type, then M∼= Gt(A)⊗Gv(B)⊗H, for
finite homogeneous graphs A,B and 3−multigraphs H.

Ove Ahlman, Uppsala University Cofinitely homogeneous multi- and hypergraphs



Homogeneous and Cofinitely Homogeneous Graphs
Cofinitely Homogeneous Hypergraphs
Cofinitely Homogeneous Multigraphs

...

...

...

...

H

Lemma

Let M cofinitely homogeneous 3−multigraph with 1 infinite
1−type and 1 finite 1−type, then M∼= Gt(A)∪̇H or G(A)∪̇H for
finite homogeneous graph A and 3−multigraph H and cofinitely
homogeneous, 1− homogeneous graph G.

Lemma

A classification of the cofinitely homogeneous 3−multigraphs
which are not 1−homogeneous.
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Summary

I Cofinitely homogeneous graphs. Classified

I Cofinitely homogeneous r−hypergraphs
I Pseudotrivial. (semi2)Classified
I Non-pseudo trivial. Many open questions remain

I Cofinitely homogeneous r−multigraphs
I 1−homogeneous 3−multigraphs. (semi)Classified
I Any 3−multigraphs. Soon?
I For r > 3. Open

I Cofinitely homogeneous digraphs, tournaments and other
structures. Very open

2
Classified up to some finite homogeneous structures
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Thank you!
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