Countably categorical almost sure theories

Ove Ahlman, Uppsala University

ove@math.uu.se
A finite graph $G = (G, E)$ is a finite set G with a binary “edge” relation E.

Generalized to finite relational first order structures $\mathcal{M} = (M, R_1, \ldots, R_k)$.

Countably categorical almost sure theories

Ove Ahlman, Uppsala University
A finite graph $G = (G, E)$ is a finite set G with a binary "edge" relation E.

Generalized to finite relational first order structures $\mathcal{M} = (M, R_1, \ldots, R_k)$.

For each $n \in \mathbb{N}$ let K_n be a finite set of finite structures and μ_n a probability measure on K_n. If φ is a formula let

$$\mu_n(\varphi) = \mu_n(\{\mathcal{N} \in K_n : \mathcal{N} \models \varphi\})$$

$K = \bigcup_{n=1}^{\infty} K_n$ has a convergence law if for each first order formula φ, $\lim_{n \to \infty} \mu_n(\varphi)$ converges.
If we let φ be the formula $\exists x \exists y (xEy)$ then

$$\mu_1(\varphi) = 0 \quad \mu_2(\varphi) = 2/3 \quad \mu_3(\varphi) = 5/6$$

$$\lim_{n \to \infty} \mu_n(\varphi)$$ converges if the sequence $0, 2/3, 5/6, \ldots$ converges.
0-1 laws

If for each formula φ

$$\lim_{n \to \infty} \mu_n(\varphi) = 1 \quad \text{or} \quad \lim_{n \to \infty} \mu_n(\varphi) = 0$$

then K has 0–1 law.
0-1 laws

If for each formula φ

$$\lim_{n \to \infty} \mu_n(\varphi) = 1 \quad \text{or} \quad \lim_{n \to \infty} \mu_n(\varphi) = 0$$

then K has $0 - 1$ law.

Let K_n consisting of all structures with universe $\{1, \ldots, n\}$ (over a fixed vocabulary) with $\mu_n(\mathcal{N}) = \frac{1}{|K_n|}$. Fagin (1976) and independently Glebskii et. al.(1969) proved that this K has a $0 - 1$ law.
More 0 − 1 Laws

Let \(K \) consist of all partial orders and let \(\mu_n(M) = \frac{1}{|K_n|} \). Compton (1988): \(K \) has a 0 − 1 law.
More 0 – 1 Laws

Let \mathcal{K} consist of all partial orders and let $\mu_n(\mathcal{M}) = \frac{1}{|\mathcal{K}_n|}$. Compton (1988): \mathcal{K} has a 0 – 1 law.

Let \mathcal{K} consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that \mathcal{K} has a 0 – 1 law.
More 0—1 Laws

Let K consist of all partial orders and let $\mu_n(M) = \frac{1}{|K_n|}$. Compton (1988): K has a $0—1$ law.

Let K consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that K has a $0—1$ law.

Let K consist of all d—regular graphs and μ_n a certain, edge depending, probability measure. Haber and Krivelevich (2010) proved that K_n has a $0—1$ law.
More 0 – 1 Laws

Let K consist of all partial orders and let $\mu_n(\mathcal{M}) = \frac{1}{|K_n|}$. Compton (1988): K has a 0 – 1 law.

Let K consist of all graphs but let μ_n give high probability to sparse (few edges) graphs. Shelah and Spencer (1988) showed that K has a 0 – 1 law.

Let K consist of all d–regular graphs and μ_n a certain, edge depending, probability measure. Haber and Krivelevich (2010) proved that K_n has a 0 – 1 law.

Let K consist of all l–coloured structures with a vectorspace pregeometry. Koponen (2012) proved a 0 – 1 law for K under both uniform (the normal $\frac{1}{|K_n|}$) and dimension conditional measure.
Fagins method of proving 0 – 1 laws

\mathcal{N} satisfies the k-extension property φ_k (for graphs) if:

\[A, B \subseteq \mathcal{N}, A \cap B = \emptyset, |A \cup B| \leq k \Rightarrow \exists z : \]

\[aEz \text{ and } \neg bEz \text{ for each } a \in A, b \in B \]
Fagins method of proving 0 – 1 laws

\mathcal{N} satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \leq k \Rightarrow \exists z :$$

aEz and $\neg bEz$ for each $a \in A, b \in B$

If K consist of all structures, then $\lim_{n \to \infty} \mu_n(\varphi_k) = 1$. We say that φ_k is an almost sure property.
Fagins method of proving $0 - 1$ laws

\mathcal{N} satisfies the k-extension property φ_k (for graphs) if:

$$A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \leq k \Rightarrow \exists z :$$

$$aEz \text{ and } \neg bEz \text{ for each } a \in A, b \in B$$

If \mathcal{K} consist of all structures, then $\lim_{n \to \infty} \mu_n(\varphi_k) = 1$. We say that φ_k is an almost sure property.

$$T_\mathcal{K} = \{ \varphi : \lim_{n \to \infty} \mu_n(\varphi) = 1 \}$$

is called the almost sure theory.
Fagins method of proving 0–1 laws

\(\mathcal{N} \) satisfies the k-extension property \(\varphi_k \) (for graphs) if:

\[A, B \subseteq N, A \cap B = \emptyset, |A \cup B| \leq k \Rightarrow \exists z : \]

\(aEz \) and \(\neg bEz \) for each \(a \in A, b \in B \)

If \(\mathbf{K} \) consist of all structures, then \(\lim_{n \to \infty} \mu_n(\varphi_k) = 1 \). We say that \(\varphi_k \) is an almost sure property.

\[T_\mathbf{K} = \{ \varphi : \lim_{n \to \infty} \mu_n(\varphi) = 1 \} \]

is called the almost sure theory.

Note: \(T_\mathbf{K} \) is complete iff \(\mathbf{K} \) has a 0–1 law.
Let $\kappa \geq \aleph_0$. For κ-categorical theories completeness is equivalent with not having any finite models.

Theorem

T_K is \aleph_0–categorical.

Hence this will prove that K has a 0 – 1 law.
Let $\kappa \geq \aleph_0$. For κ-categorical theories completeness is equivalent with not having any finite models.

Theorem

T_K is \aleph_0–categorical.

Hence this will prove that K has a $0 – 1$ law.

Proof.

Take $N, M \models T_K$. Build partial isomorphisms back and forth by using the extension properties to help.
The proof method with extension properties has been used in multiple articles proving $0 - 1$ laws. In general we get the following
The proof method with extension properties has been used in multiple articles proving 0–1 laws. In general we get the following

Theorem

\(K \) has a 0–1 law and \(T_K \) is \(\aleph_0 \)-categorical

iff

\(K \) almost surely satisfies all extension properties

Extension properties may be very complicated.
\mathcal{M}^{eq} is constructed from a structure \mathcal{M} by for each \emptyset–definable r–ary equivalence relation E:

- Add unique element $e \in M^{eq} - M$ for each E–equivalence class.
- Add new unary relation symbol P_E such that e represents an E–equivalence class iff $\mathcal{M}^{eq} \models P_E(e)$
- Add a $r + 1$-ary relation symbol $R_E(y, \bar{x})$ such that $\bar{a} \in M$ is in the equivalence class of e iff $\mathcal{M}^{eq} \models R_E(e, \bar{a})$.

Could be thought of as an “Anti-quotient”. A very important structure in infinite model theory.

Ove Ahlman, Uppsala University
\(\mathcal{M}^{eq} \) is constructed from a structure \(\mathcal{M} \) by for each \(\emptyset \)-definable \(r \)-ary equivalence relation \(E \):

- Add unique element \(e \in M^{eq} - M \) for each \(E \)-equivalence class.
- Add new unary relation symbol \(P_E \) such that \(e \) represents an \(E \)-equivalence class iff \(\mathcal{M}^{eq} \models P_E(e) \).
- Add a \(r + 1 \)-ary relation symbol \(R_E(y, \bar{x}) \) such that \(\bar{a} \in M \) is in the equivalence class of \(e \) iff \(\mathcal{M}^{eq} \models R_E(e, \bar{a}) \).

Could be thought of as an “Anti-quotient”. A very important structure in infinite model theory.
If $E = \{E_1, \ldots, E_n\}$ is a finite set of $\emptyset -$definable equivalence relations then let K^E be K where we add the M^{eq} structure for only the equivalence relations in E to each $\mathcal{N} \in K$.

Theorem

Let K be a set of finite relational structures with almost sure theory T_K, then K has a 0-1 law and T_K is ω-categorical.

iff K^E has a 0-1 law and T_{K^E} is ω-categorical.

Proof:

An application of the previous theorem.
If $E = \{E_1, \ldots, E_n\}$ is a finite set of \emptyset–definable equivalence relations then let K^E be K where we add the M^{eq} structure for only the equivalence relations in E to each $\mathcal{N} \in K$.

Theorem

Let K be a set of finite relational structures with almost sure theory T_K, then

K has a 0–1 law and T_K is ω–categorical.

iff

K^E has a 0–1 law and T_{K^E} is ω–categorical.
If \(E = \{ E_1, ..., E_n \} \) is a finite set of \(\emptyset \)-definable equivalence relations then let \(K^E \) be \(K \) where we add the \(M^{eq} \) structure for only the equivalence relations in \(E \) to each \(N \in K \).

Theorem

Let \(K \) be a set of finite relational structures with almost sure theory \(T_K \), then

\(K \) *has a 0–1 law and \(T_K \) is \(\omega \)-categorical.*

iff

\(K^E \) *has a 0–1 law and \(T_{K^E} \) is \(\omega \)-categorical.*

Proof: An application of the previous theorem.
A theory T is strongly minimal if for each $M \models T$, formula $\varphi(x, \bar{y})$ and $\bar{a} \in M$.

$$\varphi(M, \bar{a}) = \{ b \in M : M \models \varphi(b, \bar{a}) \} \text{ or } \neg \varphi(M, \bar{a})$$

is finite.
Theorem

Assume \mathcal{K} has a $0-1$ law and $\mathcal{N} \in \mathcal{K}_n$ implies $|\mathcal{N}| = n$. Then

$T_\mathcal{K}$ is strongly minimal and ω–categorical

\iff

There exists $m \in \mathbb{N}$ such that $\lim_{n \to \infty} \mu_n(\{\mathcal{M} \in \mathcal{K}_n : \text{there is } X \subseteq M, |X| \leq m, \text{Sym}_X(M) \leq \text{Aut}(\mathcal{M})\}) = 1$
Questions?

ove@math.uu.se www.math.uu.se/~ove
O. Ahlman, Countably categorical almost sure theories, Preprint (2014)

