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Introduction

A finite graph G = (G, E) is a finite set G with a binary “edge”
relation E.

e 7 1"

Generalized to finite relational first order structures
M= (MR, ..., Rg).
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Introduction

A finite graph G = (G, E) is a finite set G with a binary “edge”
relation E.

e 7 1"

Generalized to finite relational first order structures
M= (MR, ..., Rg).

For each n € IN let K,, be a finite set of finite structures and u, a
probability measure on K. If ¢ is a formula let

pn(p) = pa({N € Kp - N = })
K = U,2; Kn has a convergence law if for each first order formula
©, limp_o0 in(p) converges.
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If we let ¢ be the formula Ix3y(xEy) then

pi(p) =0 p2(p) =2/3 n3(p) =5/6

limp— o0 1tn() converges if the sequence 0,2/3,5/6, ... converges.
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0-1 laws

If for each formula ¢
lim pn(p) =1 or  lim pun() =0

n

then K has 0 — 1 law.
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0-1 laws

If for each formula ¢

lim pn(p) =1 or lim ps(p) =0

n

then K has 0 — 1 law.

Let K,, consisting of all structures with universe {1,...,n} (over a
fixed vocabulary) with 1n(N) = ;. Fagin (1976) and
independently Glebksii et. al.(1969) proved that this K has a 0 — 1
law.
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More 0 — 1 Laws

1

Let K consist of all partial orders and let p,(M) = e

(1988): K hasa 0 —1 law.

. Compton
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Let K consist of all partial orders and let p,(M) = e
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Let K consist of all graphs but let u, give high probability to
sparse (few edges) graphs. Shelah and Spencer (1988) showed that
Khasa0—1 law
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More 0 — 1 Laws

1

Let K consist of all partial orders and let p,(M) = e

(1988): K hasa 0 —1 law.

. Compton

Let K consist of all graphs but let u, give high probability to
sparse (few edges) graphs. Shelah and Spencer (1988) showed that
Khasa0—1 law

Let K consist of all d—regular graphs and u, a certain, edge
depending, probability measure. Haber and Krivelevich (2010)
proved that K, has a 0 — 1 law.
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More 0 — 1 Laws

1

Let K consist of all partial orders and let p,(M) = e

(1988): K hasa 0 —1 law.

. Compton

Let K consist of all graphs but let u, give high probability to
sparse (few edges) graphs. Shelah and Spencer (1988) showed that
Khasa0—1 law

Let K consist of all d—regular graphs and u, a certain, edge
depending, probability measure. Haber and Krivelevich (2010)
proved that K, has a 0 — 1 law.

Let K consist of all /—coloured structures with a vectorspace
pregeometry. Koponen (2012) proved a 0 — 1 law for K under both
uniform (the normal ﬁ) and dimension conditional measure.
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Fagins method of proving 0 — 1 laws

N satisfies the k-extension property ¢ (for graphs) if:
ABCN,ANB=0,]AUB| < k= 3z:

aEz and —bEz for each a€ A, b€ B

z

A 00 -
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If K consist of all structures, then lim,_ oo pn(x) = 1. We say
that x is an almost sure property.
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If K consist of all structures, then lim,_ oo pn(x) = 1. We say
that x is an almost sure property.

Tk =A{p: lim pn(p) =1}

is called the almost sure theory.
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Fagins method of proving 0 — 1 laws

N satisfies the k-extension property ¢ (for graphs) if:
ABCN,ANB=0,]AUB| < k= 3z:

aEz and —bEz for each a€ A, b€ B

z

A 00 B
If K consist of all structures, then lim,_ oo pn(x) = 1. We say
that x is an almost sure property.

Tk =A{p: lim pn(p) =1}

is called the almost sure theory.
Note: Tk is complete iff K has a 0 — 1 law.
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Let k > Ng. For k-categorical theories completeness is equivalent
with not having any finite models.

Theorem
Tk is Ng—categorical.
Hence this will prove that K has a 0 — 1 law.
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Let k > Ng. For k-categorical theories completeness is equivalent
with not having any finite models.

Theorem
Tk is Ng—categorical.
Hence this will prove that K has a 0 — 1 law.

Proof.
Take N, M = Tk. Build partial isomorphisms back and forth by

using the extension properties to help.
M | N

! /(:,)

v/ ‘I. /.
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The proof method with extension properties has been used in
multiple articles proving 0 — 1 laws. In general we get the following
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The proof method with extension properties has been used in
multiple articles proving 0 — 1 laws. In general we get the following

Theorem
K has a 0 — 1 law and Tk is Ro—categorical
iff
K almost surely satisfies all extension properties

z

A 00

Extension properties may be very complicated.
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M®9 is constructed from a structure M by for each ()—definable
r—ary equivalence relation E:

» Add unique element e € M — M for each E—equivalence
class.

» Add new unary relation symbol Pg such that e represents an
E —equivalence class iff M®¥ = Pg(e)

» Add a r + l-ary relation symbol Rg(y, X) such that 2 € M is
in the equivalence class of e iff M = Re(e, 3).
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M®9 is constructed from a structure M by for each ()—definable
r—ary equivalence relation E:

» Add unique element e € M — M for each E—equivalence
class.

» Add new unary relation symbol Pg such that e represents an
E —equivalence class iff M®¥ = Pg(e)

» Add a r + l-ary relation symbol Rg(y, X) such that 2 € M is
in the equivalence class of e iff M = Re(e, 3).
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Could be thought of as an “Anti-quotient”. A very important
structure in infinite model theory.
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If E = {E,...,E,} is a finite set of )—definable equivalence
relations then let KE be K where we add the M®9 structure for
only the equivalence relations in E to each N/ € K.
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If E = {E,...,E,} is a finite set of )—definable equivalence
relations then let KE be K where we add the M®9 structure for
only the equivalence relations in E to each N/ € K.

Theorem
Let K be a set of finite relational structures with almost sure
theory Tk, then
K has a 0 — 1 law and Tk is w—categorical.
iff
KE hasa0—1 law and Tye Is w—categorical.
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If E = {E,...,E,} is a finite set of )—definable equivalence
relations then let KE be K where we add the M®9 structure for
only the equivalence relations in E to each N/ € K.

Theorem
Let K be a set of finite relational structures with almost sure
theory Tk, then
K has a 0 — 1 law and Tk is w—categorical.
iff
KE hasa0—1 law and Tye Is w—categorical.

Proof: An application of the previous theorem.
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Strongly minimal countably categorical almost sure theories

A theory T is strongly minimal if for each M |= T, formula
©(x,y) and 2 € M.

o(M,3) ={beM: M p(b,3a)} or =p(M,3)

is finite.
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Theorem
Assume K has a 0 — 1 law and N € K,, implies [N| = n. Then

Tk is strongly minimal and w— categorical

=

There exists m € IN such that lim
n—o0

pun({M € K, : there is X C M,|X| < m, Symx(M) < Aut(M)}) =1
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Questions?
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