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Abstract. In this article we give a classi�cation of the binary, sim-
ple, ω−categorical structures with SU−rank 1 and trivial pregeometry.
This is done both by showing that they satisfy certain extension prop-
erties, but also by noting that they may be approximated by the almost
sure theory of some sets of �nite structures equipped with a probability
measure. This study give results about general almost sure theories,
but also considers certain attributes which, if they are almost surely
true, generate almost sure theories with very speci�c properties such as
ω−stability or strong minimality.

1. Introduction

For each n ∈ N, let Kn be a non-empty �nite set of �nite structures equipped
with a probability measure µn and let K = (Kn, µn)n∈N. For any property P
(often a sentence in the language) we may extend the measure µn to associate
a probability to P by de�ning

µn(P) = µn{M ∈ K :M satis�es P}.
A property P such that limn→∞ µn(P) = 1 is said to be an almost sure

property of (also called 'almost surely true in') K. The set K is said to have
a 0− 1 law if, for each sentence ϕ in the language, either ϕ or ¬ϕ is almost
sure in K i.e. each formula has asymptotic probability 0 or 1. The almost
sure theory of K, denoted TK, is the set of all almost sure sentences. Notice
that K has a 0 − 1 law if and only if TK is complete. A theory is called
ω−categorical if it has a unique countable model up to isomorphism. The
following fact leads us to see that one method to show that a set K has a
0− 1 law is to prove that TK is ω−categorical.

Fact 1.1. Let T be a theory which is categorical in some in�nite cardinality.
Then T has no �nite models if and only if T is complete.

Many 0 − 1 laws [2, 6, 9, 13, 14] are proved in this way and additionally
the corresponding almost sure theories are supersimple with SU−rank 1
and have trivial algebraic closure. In this article we ask ourselves what the
reason is for this pattern and whether the supersimple ω−categorical theories
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with SU-rank 1 tend to be almost sure theories. In [3] the author together
with Koponen studied sets of SU−rank 1 in homogeneous simple structures
with a binary vocabulary. In this case, a strong connection was found to
both trivial algebraic closure but also to random structures and almost sure
theories. The present article will explore these implications further and prove
the following theorem.

Theorem 1.2. If T is ω−categorical, simple with SU-rank 1 and trivial
algebraic closure over a binary relational vocabulary then there exists a set
of �nite structures K = (Kn, µn)n∈N with a probability measure µn such that
TK = T .

The key to ω−categorical almost sure theories is the notion of extension
properties. These are �rst order sentences which state that if we have a tuple
of a certain atomic diagram, possibly satisfying certain extra properties, then
we may extend this into a larger tuple which also satis�es certain speci�c
�rst order formulas. The connection to ω−categorical theories is very clear
as these properties describe how we stepwise should build an isomorphism,
and the method has been used before to prove many previous 0 − 1 laws,
[6, 7, 9, 14, 15] among others. It is possible to make the extension properties
very speci�c and in this way we will get a characterization of the simple
ω−categorical structures with SU−rank 1 with trivial algebraic closure by
stating how their extension properties should look like. Furthermore the
way the extension properties are created implies that these structures are
not only ω−categorical but also homogenizable i.e. we may add a relational
symbol to an ∅−de�nable relation to make it a homogeneous structure.

Studies of general almost sure theories have been done before, the most
common is the extension of the Erd®s-Rényi random graph which have been
studied by Baldwin [5] among others. Their analysis is though quite di�erent
from what we apply in this article, especially because the almost sure theories
they work with need not to be ω−categorical, though stable, as Baldwin
points out.

A de�nable pregeometry is an especially interesting part in almost sure
theories and simple theories. The 0 − 1 laws mentioned before all have
trivial algebraic closure in their almost sure theories. However the author
together with Koponen constructed in [4] a 0 − 1 law for structures which
almost surely de�ne a vector space pregeometry such that the structures
also are restricted by certain colouring axioms. The question arises, why
so few non-trivial pregeometries (or algebraic closures) are found in almost
sure theories, and we will in this article partially answer it by two di�erent
results. One answer is that if we have simple enough extension properties
(the common method to show 0− 1 laws) then we will almost surely have a
trivial algebraic closure in the almost sure theory. The other answer is that
if the sets of structures Kn are such that |N | = n for all N ∈ Kn then vector
space pregeometries (or a�ne or projective geometries) do almost surely not
exist. The pregeometries of simple structures are often vector space like (or
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a�ne/projective), and thus if we want to create simple ω−categorical almost
sure theories with nontrivial algebraic closure, we may conclude from results
in this article that we will need classes of structures which grow non-linearly
together with more interesting extension properties.

There are many di�erent ways to construct in�nite structures from �nite
structures or by probabilistic methods. Fraïssé [10] showed that having a set
of �nite structures satisfying certain properties, among them amalgamation,
generates a unique in�nite homogeneous structure. This in�nite structure
contain the initial set of �nite structures as substructures, and thus inher-
its many properties from these. In [1] Ackerman, Freer and Patel discusses
which countable structures are approximable by a probability measure on
all possible in�nite structures with a �xed countably in�nite universe. They
discover that this is equivalent with having a trivial de�nable closure, which
is an interesting contrast to the results in this article where we notice that
in order to approximate in�nite structures by using �nite structures and
a probability measure is closely related to how the algebraic closure work,
and is easiest if the algebraic closure is trivial. A classical result by Erd®s,
Kleitman and Rothschild [8] shows that if Kn is the set of all triangle free
graphs of size n then (Kn, µn)n∈N is almost surely bipartite under the uni-
form measure µn. However the Fraïssé construction from the set

⋃∞
n=1 Kn

creates a homogeneous structure which is not bipartite. Even more gener-
ally, Koponen [14] shows that for certain structures H if Kn(H) is the set
of all structures with universe [n] where H is not a weak substructure, then
the Fraïssé limit and the almost sure theory of these sets are not the same.
In this article we study the question which structures are possible to ap-
proximate probabilistically by taking the set of embeddable �nite structures
with a certain universe under the uniform measure. We call structures which
are approximable this way random structures (De�nition 6.3 for details) and
prove that the following theorem hold.

Theorem 1.3. If M is countable ω−categorical, simple with SU−rank 1
and trivial algebraic closure such that acl(∅) = ∅ then M is a reduct of a
random structure which is also ω−categorical, simple, with SU−rank 1 and
has trivial algebraic closure.

In Section 3 we discuss general sets of �nite structures Kn with an associ-
ated probability measure µn such that K = (Kn, µn)n∈N has a 0−1 law and
what consequences this has on the almost sure theory TK. We gather im-
portant results for the later sections which imply that equivalence relations,
and especially pregeometries, which are almost surely de�nable give a direct
restriction on which sizes of structures may exist in

⋃
n∈N Kn.

Section 4 is giving a di�erent approach to ω−categorical theories than
what is usually practiced. We introduce the concept of extension properties,
commonly used to prove 0−1 laws, and show that their existence is equivalent
with ω−categoricity, which will be useful in later sections. Furthermore we
extend the concept of Meq to �nite structures, and use this in order to
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provide examples of that, for any 0 < n < ω, there exist almost sure theories
which are unstable but simple and ω−categorical with SU−rank n.

In Section 5 we study binary, ω−categorical theories with SU−rank 1 and
trivial algebraic closure which are either simple, ω−stable or strongly mini-
mal. It turns out that for these theories the concept of extension properties
from Section 4 becomes very explicit. Namely there is an equivalence relation
ξ such that how a tuple may be extended only depends on which equivalence
classes its parts are in. When the theory is ω−stable this extension is unique
(to each equivalence class) and when the theory is strongly minimal the ex-
tensions are unique and we have only one in�nite equivalence class. Added
together the extension properties give us an explicit axiomatization for these
theories.

In Section 6 we combine the results from previous sections in order to study
how to approximate an in�nite structure with �nite ones using probabilistic
methods. Speci�cally we see that structures with certain properties have the
same theory as the almost sure theory of a set of �nite structures. The main
result is Theorem 1.2, which gives a new 0 − 1 law for a set of structures
partitioned into a �nite amount of equivalence classes, which all have random
relations between and inside the classes. We also make an exposition of the
so called random structures and prove Theorem 1.3. Moreover we show
through examples that the random structures are in general quite hard to
pin down, and their existence is more of a combinatorial property than model
theoretic.

2. Preliminaries

Following is a brief introduction to the basic concepts used in this article,
for a more detailed exposition the reader could study [7, 11]. A �nite re-

lational vocabulary is a �nite set consisting of relation symbols of certain
�nite arities. This will be the only kind of vocabulary considered in this ar-
ticle. The vocabulary is binary if it only contain relational symbols of arity
at most 2. A theory (or V−theory if V denotes the vocabulary) T is a set
of sentences created from the vocabulary. If M is a structure over the vo-
cabulary V then the theory ofM, denoted Th(M), consists of all sentences,
from the vocabulary, which are true inM. The V−structures will be written
in calligraphic letters A,B,M,N , . . . with universes denoted by the corre-
sponding roman letters A,B,M,N, . . . while ordered tuples of elements (or
variables) will be denoted with small letters with bars ā, b̄, c̄, x̄, ȳ, . . . and we
will at times identify the tuples with the set of their elements in which case
this is made obvious by using set theoretic operations on the tuple. When we
write ā ∈M we mean that ā is an ordered tuple consisting only of elements
in M . The atomic diagram of a tuple ā inM (denoted by atDiagM(ā))
is the formula consisting of a conjunction of all atomic and negated atomic
formulas which ā satis�es inM. We will at times, for a positive integer n,
use the abbreviation [n] = {1, . . . , n}. The cardinality of a set X is denoted
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|X|. For any structureM, formula ϕ(x̄, ȳ) and tuple ā ∈M let

ϕ(M, ā) = {b̄ ∈M :M |= ϕ(b̄, ā)}.

For any sets X,Y ⊆ M , Y is called X−de�nable if there exists a formula
ϕ(x̄, ȳ) and tuple ā ∈ X such that Y = ϕ(M, ā).

A pregeometry (A, cl) is a set A together with a set function cl : P(A)→
P(A) which satis�es the following, for each X,Y ⊆ A :

Re�exivity: X ⊆ cl(X).
Monotonicity: Y ⊆ cl(X)⇒ cl(Y ) ⊆ cl(X).
Finite character: cl(X) =

⋃
{cl(X0) : X0 ⊆ X and |X0| < ω}.

Exchange: For each a, b ∈ A, a ∈ cl(X ∪ {b}) − cl(X) ⇒ b ∈ cl(X ∪
{a}).

We will make notation easier and instead of writing cl({a1, . . . , an}) we
may exclude the set brackets and write cl(a1, . . . , an). A set {a1, . . . , an}
of elements in a pregeometry (A, cl) is called independent if for each
i ∈ [n] ai /∈ cl({a1, . . . , an} − {ai}). A pregeometry is called trivial if
for each X ⊆ A, cl(X) = X ∪ cl(∅). In a structure M with X ⊆ M
we say that a pregeometry (M, cl) is X-de�nable if there are formulas
θ0(x0), . . . , θn(x0, x1, . . . , xn), . . ., possibly using parameters from X, such
that for each i ∈ N and a0, . . . , ai ∈ M , M |= θi(a0, a1, . . . , ai) if and
only if a0 ∈ cl(a1, . . . , ai). We have the following well known fact about
ω−categorical theories, which will be used throughout the paper without
special mentioning.

Fact 2.1. (Ryll-Nardzewski theorem) Let T be a theory, then the following
are equivalent.

• T is ω−categorical.
• For each n < ω there are only �nitely many n−types in T .
• For each n < ω all n−types are isolated.

For each structureM and X ⊆M let acl(X) denote the algebraic closure
of X i.e. all elements whose type over X is algebraic. A theory T is called
strongly minimal if for each M |= T , formula ϕ(x, ȳ) and tuple ā ∈ M
either ϕ(M, ā) is �nite or ¬ϕ(M, ā) is �nite. We say that T is ω−stable
if for each M |= T and A ⊆ M with |A| = ℵ0, the number of di�erent
types over A is ℵ0. A structure is called strongly minimal or ω−stable if
its theory Th(M) is. The de�nitions of SU-rank and of a theory being
simple/supersimple are extensive and we refer the reader to [17].

Fact 2.2. For any simple structure M with SU−rank 1, the pair (M,acl)
forms a pregeometry.

A quick corollary to this, using the Ryll-Nardzewski theorem, is that a
pregeometry (M,acl) is ∅−de�nable in all such structures M which are
ω−categorical. Further notice that all strongly minimal or ω−stable the-
ories are simple and hence we may apply the previous fact to these theories.
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We say that M has trivial algebraic closure if (M,acl) form a trivial
pregeometry as de�ned above.

De�nition 2.3. Let M be a V−structure with T = Th(M). For each
V− formula ϕ(x̄, ȳ) with arity 2eϕ such that T implies that ϕ de�nes an
equivalence relation let Rϕ and Pϕ be new relational symbols of arity eϕ + 1
and 1 respectively. Put

V eq = V ∪ {Rϕ, Pϕ : T implies that ϕ(x̄, ȳ) ∈ L is an equivalence relation}.
Create the V eq structureMeq by takingM and adding, for each ∅−de�nable
equivalence relation ϕ(x̄, ȳ), extra elements representing the equivalence classes
of ϕ. LetMeq |= Pϕ(b) i� b represents a ϕ−equivalence class, and ā ∈M is
in the ϕ equivalence class b i�Meq |= Rϕ(ā, b). Let P= be a special case such
that P=(Meq) = M and call these elements the home sort. The elements
in the home sort hence have the same relations as inM when restricting to
V and we will assume that no other relations fromM are true inMeq. The
elements in the home sorts are called real and the ones outside are called
imaginary.

When a structureM is ω−categorical we especially get isolated types over
∅ by the Ryll-Nardzewski theorem. These properties also hold, partially, in
Meq giving us the following fact, which follows from the regular theorems
about formulas transferring betweenM andMeq.

Fact 2.4. If M is an ω−categorical structure then the equivalence relation
tpMeq(x/aclMeq(∅)) = tpMeq(x/aclMeq(∅)) restricted to the home sort is ∅−
de�nable inM.

In ω−categorical simple theories the concept of `Lascar strong types' is
equivalent with the concept of strong types ([17], Corollary 6.1.11). Using
this fact we may formulate the very useful �independence theorem� for simple
theories in the following way, adapted for our purposes.

Fact 2.5. LetM be simple and ω−categorical with b1, . . . , bn ∈M . Assume
a1, . . . , an ∈M and for each i, ai |̂ bi, bi |̂ {b1, . . . , bi−1, bi+1, . . . , bn} and

tpMeq(ai/aclMeq(∅)) = tpMeq(aj/aclMeq(∅)).
Then there exists c ∈M such that for each i ∈ [n]

tpMeq(c/{bi} ∪ aclMeq(∅)) = tpMeq(ai/{bi} ∪ aclMeq(∅)).

In this article we will only need to use Fact 2.5 when assuming trivial alge-
braic closure and SU-rank 1, which means that bi |̂ {b1, . . . , bi−1, bi+1, . . . , bn}
is equivalent with bi /∈ acl(bj) for each i 6= j. More information aboutMeq

and other model theoretic properties may be found in [11].

3. Sets of structures with a 0-1 law

In this section we will assume that for each n ∈ N,Kn is a set of �nite
structures, µn is a probability measure on Kn and put K = (Kn, µn)n∈N.
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We assume that almost surely the size of structures in K grow. No further
properties in Kn, such as labeled/unlabeled or size n structures, are assumed.
The reason for assuming structures to grow becomes clear in the following
lemma.

Lemma 3.1. K has a 0 − 1 law and for some m ∈ N, limn→∞ µn({M ∈
Kn : |M| ≥ m}) = 0 if and only if there is a �nite structure A such that
almost surely for B ∈ K, A ∼= B.

Proof. If almost surely all structures in K are isomorphic to A then every-
thing true in A has probability one. Thus we have a 0− 1 law and choosing
m = |A| + 1 implies that limn→∞ µn({M ∈ Kn : |M| ≥ m}) = 0. For the
other direction of the proof let m ∈ N be the smallest number such that
limn→∞ µn({∃≥mx(x = x)}) = 0. Since the vocabulary is �nite there are
only a �nite amount of structures A1, . . . ,Ak of size smaller than m up to
isomorphism. However if we again apply the 0− 1 law, almost surely one of
these structures must be isomorphic to the structures in K. �

Equivalence relations de�nable in models of almost sure theories have a very
special role, since an equivalence relation induces a partition on the universe
of each structure almost surely. A partition of a �nite structure become
especially interesting if the equivalence classes have a �xed size since then
we get information about how large the universe has to be in order to be
partitioned in this way. We formalize these thoughts in the following lemma
which is written in a very general context that will be useful later.

Lemma 3.2. Assume K has a 0 − 1 law, M |= TK and let D = ξ(M)
(possibly empty) be an ∅−de�nable subset ofM t. Assume that for each ā ∈ D
the formula ψ(x, y, ā) de�nes an equivalence relation E on a set A = ϕ(M, ā)
inM such that the equivalence classes {Ei}i∈I are �nite, only attain a �nite
amount of sizes and the amount of equivalence classes and their size are
the same for each ā ∈ D. Then almost surely for N ∈ K we have that
gcd({|Ei| : i ∈ I}) (the greatest common divisor) divides |ϕ(N , b̄)| for each
b̄ such that N |= ξ(b̄).

Proof. Assume that the equivalence classes of E have sizes e1, . . . , en and
D 6= ∅. Since E is de�ned by ψ(x, y, ā) for each ā ∈ D there is a (param-
eter free) sentence ψE which says that for each parameter in D, E is an
equivalence relation on A and its equivalence classes only attain the �xed
�nite sizes. The sentence ψE will look as follows, where ψeq(z̄) states that
ψ(x, y, z̄) is an equivalence relation,

∀z̄
(
ξ(z̄)→ ψeq(z̄) ∧ ∀x

(
ϕ(x, z̄)→

n∨
i=1

∃=eiy(ϕ(y, z̄) ∧ ψ(x, y, z̄))
))
.

Since TK is complete andM |= ψE we see that ψE ∈ TK and so ψE is almost
surely true in K. Hence almost surely N ∈ K de�nes, for each parameter
b̄ ∈ ξ(N ), an equivalence relation relation ψ(x, y, b̄) on the set de�ned by



8 OVE AHLMAN

ϕ(x, b̄), with equivalence classes of size e1, . . . , en. But ψ(x, y, b̄) partitions
ϕ(N , b̄) so we see that if ci > 0 (we know this almost surely since it is true
inM) is the number of equivalence classes of size ei in ϕ(N , b̄) then

|ϕ(N , b̄)| =
n∑
i=1

ciei = gcd(e1, . . . , en)
∑n

i=1 ciei
gcd(e1, . . . , en)

.

Hence gcd(e1, . . . , en) divides |ϕ(N , b̄)| almost surely and the lemma now
follows. Note that if D = ∅ then the whole proof can be done in the same
way except that we do not mention any parameter z̄ in the �rst equation,
and remove each instance of mentioning ξ, thus ψE becomes simpler. �

By using the parameter free formula x = x to de�ne our target set A and
choosing an ∅−de�nable equivalence relation E, we get the following corol-
lary.

Corollary 3.3. Assume K has a 0 − 1 law and there is an ∅−de�nable
equivalence relation E onM |= TK such that the equivalence classes {Ei}i∈I
are �nite, and only attain a �nite amount of sizes. Then almost surely for
N ∈ K we have that gcd({|Ei| : i ∈ I}) divides |N |.

If we have an ∅−de�nable pregeometry, such as in simple ω−categorical
structures with SU-rank 1 (compare Fact 2.2) then there exists an equiva-
lence relation on all objects outside cl(∅) by relating closed sets of a certain
dimension. The next Lemma, which is an application of Lemma 3.2, could
be generalized even more to pregeometries de�nable using some parameter
set which is ∅−de�nable (a formulation like in Lemma 3.2). This is however
not necessary for our later applications and hence we write it in a bit more
readable format. We only discuss independent sets in the in�nite structure
M in the upcoming lemma since the size of these sets is the only information
needed in order to apply Lemma 3.2.

Lemma 3.4. Assume K has a 0−1 law,M |= TK and n ∈ Z+. Further more
assume that a pregeometry is ∅−de�nable on an ∅−de�nable set A = ϕ(M)
such that |cl(a1, . . . , an)| = |cl(b1, . . . , bn)| < ω and |cl(a1, . . . , an−1)| =
|cl(b1, . . . , bn−1)| for each two sets {a1, . . . , an} ⊆ A and {b1, . . . , bn} ⊆ A
of independent elements. Then |cl(a1, . . . , an)| − |cl(a1, . . . , an−1)| almost
surely divides |ϕ(N )| − |cl(a1, . . . , an−1)| for N ∈ K and any independent
set {a1, . . . , an} ⊆ ϕ(M).

Proof. Let D be the ∅−de�nable set of (n− 1)-tuples which consist of inde-
pendent elements in ϕ(M). Then the formula

ψ(x, y, z̄)⇐⇒ cl(y, z̄) = cl(x, z̄)

de�nes an equivalence relation, for each tuple z̄ ∈ D, on the z̄−de�nable
set A0 = {a ∈ ϕ(M) : a /∈ cl(z̄)}. Notice that each equivalence class of
this relation has size |cl(x, z̄)| − |cl(z̄)|, a number which does not depend
on z̄ ∈ D or x ∈ A0 by our assumptions in this lemma. Each equivalence
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class is �nite and every class has size |cl(x, z̄)| − |cl(z̄)|. Lemma 3.2 implies
that |cl(x, z̄)| − |cl(z̄)| almost surely divides |A0| = |ϕ(N )| − |cl(z̄)| for any
independent (n− 1)−tuple z̄ of elements from A. �

In practice, many pregeometries found in structures are vector space prege-
ometries (or a�ne/projective). This gives us even more information to use
and we may thus create the following corollary. Even though the algebraic
closure in a �nite structure will always contain the whole structure, we may
use the algebraic closure in the model of the almost sure theory in order
to get an ∅−de�nable pregeometry which, through Lemma 3.4, induce an
equivalence relation which is ∅−de�nable in the �nite structures.

Corollary 3.5. Assume TK is ω−categorical, M |= TK and (M,acl) is a
pregeometry isomorphic to the pregeometry of a vector space V over a �nite
�eld F equipped with the linear span operator. Then there are p,m ∈ Z+

such that p is prime and for each n ∈ Z+, pmn almost surely divides |N | for
N ∈ K.

Proof. Since TK is ω−categorical, the pregeometry which (M,acl) de�nes
is ∅−de�nable. By a well known characterization, a �nite �eld has size
pm for some prime p and number m. In a vector space V over F we
have that prm = |span(v1, . . . , vr)| = |span(w1, . . . , wr)| for every two in-
dependent sets {v1, . . . , vr}, {w1, . . . , wr} of vectors in V , hence this is also
true for the pregeometry (M,acl). For each n ∈ N, Lemma 3.4 gives us
that |aclM(a1, . . . , an+1)| − |aclM(a1, . . . , an)| almost surely divides |N | −
|aclM(a1, . . . , an)| for N ∈ K and independent elements a1, . . . , an+1 ∈ M .
Thus

|aclM(a1, . . . , an+1)|− |aclM(a1, . . . , an)| = (pm)n+1− (pm)n = pmn(pm−1).

We conclude that some k ∈ N, pmn(pm − 1) · k = |N | − |aclM(a1, . . . , an)| =
|N | − pmn which we can rewrite as pmn((pm − 1) · k + 1) = |N |, hence pmn
divides |N |. �

If we are in the case of Corollary 3.5, then we will have not only growth in
K, but structures will asymptotically grow in larger and larger steps. This
motivates the use of a measure which depends on dimension and not size,
as in [4, 14], is necessary if we want an almost sure theory with interesting
pregeometries. We �nish this section with yet an other corollary regarding
almost sure theories.

Corollary 3.6. Assume TK is ω−categorical,M |= TK and for each n ∈ N
and N ∈ Kn we have that |N | = n. Then each ∅−de�nable equivalence
relation in M with only �nite sized equivalence classes has only a �nite
amount of di�erent sizes and the sizes are relatively prime .

Proof. From the ω−categoricity and Ryll-Nardzewski's theorem it follows
that an equivalence relation with only �nite sized equivalence classes has to
have a �nite amount of di�erent sizes. Let e1, . . . , en be the di�erent sizes of
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equivalence classes. We may apply Corollary 3.3 to see that gcd(e1, . . . , en)
divides |N | almost surely for N ∈ K. But since N ∈ Km implies that
|N | = m for each m ∈ N, we see that gcd(e1, . . . , en) has to divide more than
two prime numbers, which is impossible unless gcd(e1, . . . , en) = 1. �

4. ω−categorical theories

In this section we study the ω−categorical theories from the view of extension
properties, as de�ned bellow. These concepts are inspired by the method
used to prove 0 − 1 laws, originally used by Fagin [9], and we will extend
the concepts in order to give further general results regarding 0−1 laws and
ω−categorical almost sure theories.

De�nition 4.1. Let T be a theory. For each k ∈ Z+ let θk,1(x1, . . . , xk), . . . ,
θk,ik(x1, . . . , xk) be formulas, called base extension formulas, such that
for each i ∈ [ik] there is an atomic diagram R such that
(4.1)

T |= ∀x1, . . . , xk

(
θk,i(x1, . . . , xk)→

(
R(x1, . . . , xk)

∧
1≤α<β≤k

xα 6= xβ
))
.

For each k ∈ Z+ and i ∈ [ik] let the set Ii,k of associated numbers to θk,i
be all numbers j such that

T |= ∀x1, . . . , xk+1

(
θk+1,j(x1, . . . , xk+1)→ θk,i(x1, . . . , xk)

)
Furthermore for each j ∈ Ii,k de�ne the following sentences, called exten-

sion axioms,

σk ≡ ∀x1, . . . , xk

(
(
∧

1≤i<j≤k
xi 6= xj)→

ik∨
n=1

θk,n(x1, . . . , xk)
)

τk,i,j ≡ ∀x1, . . . , xk(θk,i(x1, . . . , xk)→ ∃zθk+1,j(x1, . . . , xk, z)) and

ξk,i ≡ ∀x1, . . . , xk

(
θk,i(x1, . . . , xk)→ ∀y

( k∧
n=1

y 6= xn →

m∨
n=1

θk+1,jn(x1, . . . , xk, y)
))

with the special case

τ0,1,j ≡ ∃zθ1,j(z).
If for each k ∈ Z+, i ∈ [ik] and j ∈ Ii,k, T |= σk ∧ τk,i,j ∧ ξk,i and T |= τ0,1,j
for each j ∈ [i1] then we say that T satis�es extension properties. If
K = (Kn, µn)n∈N are sets of �nite structures with an associated probability
measure we say that K almost surely satis�es extension properties if
its almost sure theory TK satisfy extension properties.
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The notion of general extension properties is not new, they have been seen
before in, for instance, Spencer's book [16]. However when extension prop-
erties are formulated in the speci�c manner of De�nition 4.1 they are closely
connected to ω−categorical theories which we will show in the following fact
using Ryll-Nardzewski's theorem.

Fact 4.2. Let T be a theory. T is ω−categorical if and only if T satis�es
extension properties.

Proof. Assume T is ω−categorical. For each n < ω, there exists a �nite
amount of complete n−types over ∅ of distinct tuples and they are isolated
by formulas θk,1(x̄), . . . , θk,ik(x̄). It is clear that property (4.1) is satis�ed
and that for any k−tuple of distinct elements there exists a number i (i.e.
a complete type) such that the tuple satis�es θk,i, thus σk is satis�ed. For
each type p(x̄) there exists a distinct set of types q1, . . . , qr such that adding
a distinct element to the tuple x̄ implies that the tuple satis�es exactly one
of q1, . . . , qr. It is thus clear that there exist associated numbers j1, . . . jm
such that T |= ξk,i and for j ∈ {j1, . . . , jm}, T |= τk,i,j .

For the other direction assume T satis�es extension properties andM,N |=
T are countable models. Using the extension properties we will build an iso-
morphism f between M and N in a back and forth way with functions
f1, . . . , fn, . . . such that fi is a partial isomorphism and if the domain of fk
is x̄, M |= θk,i(x̄) and N |= θk,i(fk(x̄)). For the base step, f1 if we choose
a ∈ M then M |= σ1 implies that for some i ∈ [i1], M |= θ1,i(a), however
as N |= τ0,1,i there is an element b ∈ N such that N |= θ1,i(b). De�ne
f1 :M � {a} → N � {b}.

Assume fk : M � {a1, . . . , ak} → N � {b1, . . . , bk} respects θk,i as we de-
scribed above and choose any ak+1 ∈M −{a1, . . . , ak} (parallel reasoning if
we chose bk+1 ∈ N −{b1, . . . , bk} �rst instead). As T |= ξk,i there is a j such
thatM |= θk+1,j(a1, . . . , ak+1) and N |= τk,i,j . Thus there exists an element
bk+1 ∈ N such that N |= θk+1,j(b1, . . . , bk+1). It is clear from property (4.1)
that if we extend fk to a map fk+1 which takes ak+1 to bk+1 then this also
is a partial isomorphism. �

The back and forth argument above also suggest that, given a structure
satisfying extension properties and any two tuples satisfying the same ex-
tension axioms, we can create an automorphism of the structure that maps
one tuple into the other. Thus we conclude the following corollary.

Corollary 4.3. If T satis�es extension properties,M |= T and ā, b̄ ∈M are
such that for some extension axiomM |= θk,i(ā)∧ θk,i(b̄) then tp(ā) = tp(b̄).

On the other hand, regarding 0− 1 laws, we get the following corollary.

Corollary 4.4. Let K = (Kn, µn)n∈N. The set K almost surely satis�es
extension properties if and only if K has a 0−1 law and TK is ω−categorical.

This corollary gives a context to many previous results about 0 − 1 laws,
and shows that the method of using extension properties always works when
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proving a 0− 1 law if you have an ω−categorical almost sure theory. There
are though classes with 0 − 1 laws without an ω−categorical almost sure
theory, such as if we let Kn consist of the graph with n nodes in a cycle.

Example 4.5. Let Kn be all relational structures of size n over a �nite rela-
tional vocabulary V equipped with the uniform measure µn, then (Kn, µn)n∈N
has a 0−1 law and the almost sure theory is ω−categorical. Fagin [9] proved
this using extension axioms, in which he has base extension formulas θk,i(x̄)
as the quanti�er free formula which describes the isomorphism type of a
�nite V−structure, letting θk,1, . . . , θk,ik enumerate all V−structures with
universe [k].

Further examples, with more interesting properties, will be provided in
Example 5.5 and 5.6 where we can see that the base extension formulas do
not necessarily have to consist of atomic diagrams.

De�nition 4.6. If A ⊆ M eq and there are only �nitely many ∅−de�nable
equivalence relations E onM such that PE(Meq)∩A 6= ∅ and for each such
equivalence relation PE(Meq) ⊆ A then we say that A is a full �nitely

sorted set.

Finite model theory does not have a counterpart to Meq as Meq always
is an in�nite structure. We will now however construct a way in which �nite
models may approximate parts of Meq if its theory is an ω−categorical
almost sure theory.

De�nition 4.7. Let Kn be a set of �nite V -structures with a probability
measure µn, let K = (Kn, µn)n∈N and let E = {E1, . . . , Er} be a set of
V−formulas with even arities 2e1, . . . , 2er respectively and de�ne the vocab-
ulary V ′ = V ∪ {REi , PEi : 1 ≤ i ≤ r} where PEi is unary and REi has arity
ei+1. Notice that we may consider V ′ ⊆ V eq. Then for each n and N ∈ Kn

associate a structure N ′ in the following way:

• If there is a formula in E, such that N does not interpret it as an
equivalence relation, then expand N to N ′ as a V ′−structure by
interpreting each new relation symbol as ∅.
• If each formula in E is interpreted as an equivalence relation in N
then let A ⊆ N eq be the full �nitely sorted set which contains the
home sort and all equivalence classes of the formulas in E. Let N ′ =
(N eq � A) � V ′. So N ′ |= REi(x̄, y) i� x̄ is in the Ei−equivalence
class y, and N ′ |= PEi(y) i� y is an Ei−equivalence class.

Let for each n ∈ N, KE
n = {N ′ : N ∈ Kn} and equip KE

n with a probability
measure µEn by inducing it from the probability measure of Kn i.e. µ

E
n (N ′) =

µn(N ).

We de�ne KE
n so that it can use a �nite slice ofMeq, adding the equivalence

classes to the structures in Kn. In case (Kn, µn)n∈N has a zero-one law but
at least one formula in E is not almost surely an equivalence relation then
KE will almost surely be K (i.e. if N ′ ∈ KE then almost surely N � V ∈ K).
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Proposition 4.8. Let K = (Kn, µn)n∈N be a set of �nite relational struc-
tures with almost sure theory TK. For a �nite set of ∅−de�nable equivalence
relations E = {E1, . . . , Er} on M |= TK let KE = (KE

n , µ
E
n )n∈N. Then the

following are equivalent :

i) K has a 0− 1 law and TK is ω − categorical.
ii) KE has a 0− 1 law and TKE is ω−categorical.

Proof. The direction ii) implies i) is obvious so we focus on the case when
TK is ω−categorical and K has a 0 − 1 law. By Fact 4.2 we then know
that there are base extension formulas θk,i and extension axioms ξk,i,σk and
τk,i,j which K almost surely satis�es. In order to prove this proposition we
will modify the base extension formulas of K so that we get new extension
axioms which prove that KE also satis�es extension properties. Then we use
Fact 4.2 again to get the 0− 1 law and ω−categoricity.

Notice that from Corollary 4.3 we may assume that for each formula θk,i,
n0 ∈ [r], tuple x̄ and elements in the tuple xα1 , . . . , xαm ,xαm+1 , . . . , xα2m we
have either

(4.2) M |= θk,i(x̄)→ En0(xα1 , . . . , xαm , xαm+1 , . . . , xα2m) or

M |= θk,i(x̄)→ ¬En0(xα1 , . . . , xαm , xαm+1 , . . . , xα2m).

For each formula θk,i create a formula θ′k,i by replacing each ∀xϕ(x) appearing
in θk,i with ∀x(P=(x)→ ϕ(x)) and replacing each ∃xϕ(x) with ∃x(P=(x) ∧
ϕ(x)). The new base extension formulas θ′k,i make KE satisfy extension
properties on the home sort, but we still need something which considers the
newly added imaginary sorts. Let A ⊆ M eq be the full �nitely sorted set
which contains all elements representing the equivalence relations in E and
the home sort. Each tuple c̄ ∈ Meq � A may be written as x̄ = āb̄1 . . . b̄r
up to permutation where all elements in ā are from the home sort, and
each element in b ∈ b̄i satis�es Meq |= PEi(b). From the ω−categoricity
we know that there are only a �nite amount of tuples ā in the home sort,
up to type. For each type of a tuple ā there are only a �nite amount of
ways the elements may stand in a relation to an imaginary element. Hence
the number of ways, which we have elements from the home sort satisfying
θl,j and imaginary elements in relation to the elements in the home sort,
is �nite for k−tuples āb̄1 . . . b̄r ∈ Meq. This gives us the ability to create
a �nite amount of θek,i extension axioms by letting it stand for the formula

which is a conjunction of θ′l,j , PEα and REα for the appropriate parts of a
tuple. Now what we have left to prove in this theorem is that the new base
extension formulas θek,i induce extension axioms τ ek,i,j , ξ

e
k,i and σ

e
k which are

almost surely true in KE . This may be shown through technical and tedious
yet straight forward arguments, where the zero-one law of K and equation
(4.2) are the key elements in order to handle the imaginary elements. The
details are left for the reader. �
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It is clear from the axiomatization in the proof that we get the following
corollary.

Corollary 4.9. Assume K = (Kn, µn)n∈N, TK is ω−categorical withM |=
TK and A ⊆ Meq is a full �nitely sorted set with equivalence relations E =
{E1, . . . , Er} having classes represented in A. Then Th((Meq � A) � V ′) =
TKE .

Remark 4.10. Using the previous proposition we can show the existence of
sets of structures whose almost sure theory has an arbitrarily large �nite SU-
rank. Assume (Km, µm)m∈N has a 0 − 1 law with an ω−categorical simple
almost sure theory with SU-rank 1. Examples of such are, among others (see
Section 5 for more), the random triangle free graph or the random graph.
For some n ∈ N let En be the equivalence relation (x1, .., xn)En(y1, . . . , yn)
if and only if

n∧
i=1

xi = yi

Let A ⊆Meq be the full �nitely sorted set which contain only the home sort
and the equivalence classes for En. It is easy to verify that Meq � A have
SU-rank n, since the elements representing the equivalence classes of En will
have SU-rank n. Corollary 4.9 thus implies that for eachm, there exists a set
of structures Cm with a probability measure τm such that C = (Cm, τm)m∈N
has a 0− 1 law and TC is ω−categorical and simple with SU-rank n.

A second way to construct ω−categorical simple structures with SU-rank
n is the following. Let V = {E1, . . . , Ek} be binary relations and de�neMn

such that Mn = [n]k+1 and for each i < k

(x1, . . . , xk+1)Ei(y1, . . . , yk+1)⇔
∧
j≤i

xi = yj .

If we now put Kn = {Mn} then the almost sure theory will have the above
described properties, which is also ω−stable. The two constructions of SU-
rank n theories are a bit di�erent yet both show that almost sure theories
are also important for higher SU-ranks. An open question, beyond the scope
of this article, is whether all ω−categorical simple SU-rank n theories are
almost sure theories.

Proposition 4.8 may of course also be used in order to prove 0− 1 laws or
get nicer extension axioms for the almost sure theories by, after �nding an
almost sure equivalence relation E, converting from K to KE .

Example 4.11. Let Kn consist of all labeled bipartite graphs with universe
[n] under the uniform measure µn. Then K = (Kn, µn)n∈N has a 0 − 1 law
and its almost sure theory is ω−categorical by Kolaitis, Prömel, Rothschild
[13], but the extension axioms are a bit complicated and describe an almost
surely ∅−de�nable equivalence relation E which de�nes the two parts of a
bipartite graph. If we instead extend K to KE , so each bipartite graph
N ∈ K gets two elements which points at the equivalence classes, then the
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extension axioms suddenly become very simple. We only need to check for
elements x, y ∈ N ′ if N ′ |= ∀z(RE(x, z)→ RE(y, z)) holds or not. If it holds
then no edges can exist between x and y, and if it does not hold then we
may have edges between them.

We may also work in the opposite way. If we have a set of �nite structures
K = (Kn, µn)n∈N and can identify some almost sure equivalence relations
E1, . . . , En, then in order to �nd out if there is a 0 − 1 law or not, we can
transform K in to K{E1,...,En} in order to possibly get an easier class to
discuss and �nd out if there is convergence and ω−categoricity or not.

5. ω−categorical simple theories with SU−rank 1

We assume, unless stated otherwise, that the vocabulary in this section
is binary and relational. The main goal of this section is to explore the
ω−categorical theories which in addition are simple or ω−stable with SU−rank
1 and put these theories in the context of the extension properties of the
previous section. The equivalence relation de�ned by tpMeq(x/aclMeq(∅)) =
tpMeq(y/aclMeq(∅)) is very important for these theories, however we will
consider the abstract properties of it and use it in a more general form.

De�nition 5.1. Let T be a theory. We say that a formula ξ is a restricted
equivalence relation for T if for some l, t ∈ N, T implies that ξ de�nes an
equivalence relation with l equivalence classes such that l − t of the equiv-
alence classes are in�nite and t of the equivalence classes have size 1. The
equivalence classes of ξ, if any, which have size 1 are called base sets.

For restricted equivalence relations we want to be able to �x what atomic
diagrams are possible between and inside the classes. To do this we introduce
the concept of a spanning formula, which is a formula stating the existence
of all possible binary atomic diagrams with respect to equivalence classes.

De�nition 5.2. Let T be a theory and ξ a restricted equivalence relation
for T with l equivalence classes. We say that a sentence γ is spanning ξ
if T |= γ and there are numbers t1, . . . , tl and a formula γ0 such that γ is
equivalent to ∃x1,1, . . . , x1,t1 , . . . , xl,1, . . . , xl,tlγ0 and γ0 implies the following:

(1) If m 6= p or i 6= j then xp,i 6= xm,j .
(2) The ξ−equivalence class of xm,j is the same as xp,i if and only if

m = p.
(3) The atomic diagram of x1,1, . . . , xl,tl is �xed and for any elements y, z

there exists m, p, i, j such that y and z are in the same ξ−equivalence
class as xm,i and xp,j , respectively, and atDiag(xm,i, xp,j) = atDiag(y, z).

The following lemma is a direct consequence of the �niteness and the
de�nitions.

Lemma 5.3. If T is a complete theory over a �nite vocabulary, then for each
restricted equivalence relation ξ, there exists a formula γ which is spanning
ξ.
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We will now de�ne the important concept of ξ−extension properties. This
is essentially saying that between and inside equivalence classes we roll a die
to determine binary atomic diagrams among pairs from a predetermined set.
The trivial case with ξ only having a single equivalence class would just be
a random structure and if we look at only a single symmetric, anti-re�exive
relation we get the random graph.

De�nition 5.4. Let ξ(x, y) be a formula, l ∈ N and ∆ = {δi,j}i,j∈[l] where
each δi,j is a non-empty set of binary atomic diagrams. For each k ∈ N
let ik ∈ N. The formulas {θk,i(y1, . . . , yk) : k ∈ N, i ∈ [ik]} are called
(ξ,∆)−base extension formulas if the following requirements are satis�ed:

(1) There is a formula γ equivalent to

∃x1,1, . . . , x1,t1 , . . . , xl,1, . . . , xl,tlγ0(x1,1, . . . , xl,tl)

such that γ0 implies that for each i, j ∈ [l], {atDiag(xi,α, xj,β) : α ∈
[ti], β ∈ [tj ]} = δi,j and ξ(xi,α, xj,β) holds if and only if i = j.

(2) For each k ∈ N, j1, . . . , jk ∈ [l] and collection {ηα,β}α,β∈{j1,...,jk}
such that ηα,β ∈ δα,β there is j ∈ [ik] and a formula θ′k,j such

that θ′k,j(y1, . . . , yk, x1,1, . . . , xl,tl) implies that for each r, s ∈ [k],
atDiag(yr, ys) = ηjr,js and ξ(yr, xjr,1) hold.

(3) For each k ∈ N and i ∈ [ik], θk,i(y1, . . . , yk) is equivalent to the
formula

∃x1,1, . . . , x1,t1 , . . . , xl,1, . . . , xl,tl
(
γ0(x1,1, . . . , xl,tl)∧

θ′k,i(y1, . . . , yk, x1,1, . . . , xl,tl)
)
.

If we use (ξ,∆)−base extension formulas to create extension axioms, as in
de�nition 4.1, then we call these extension axioms (∆, ξ)−extension ax-

ioms. We say that a theory T satis�es (∆, ξ)−extension properties if T
implies that ξ is a bounded equivalence relation with l equivalence classes, γ
is spanning ξ and T satis�es extension properties using the (∆, ξ)−extension
axioms. We may use the term ξ−extension properties to indicate (∆, ξ)−
extension properties for some set ∆ containing sets of binary atomic dia-
grams.

Although the de�nition may seem overly technical, these kind of extension
properties have been used before. We give a few examples to showcase this
and to display how the three previous de�nitions work in practice.

Example 5.5. In [6] Compton looked at Kn as consisting of all (labeled)
partial orders of size n and showed that K = (Kn, µn)n∈N has a 0 − 1 law
if µn is the uniform measure. This proof was done by �rst using a result
by Kleitman and Rothschild [12], who proved that almost surely all partial
orders have height exactly 3 i.e. we may divide the partial orders in to a top,
a bottom and a middle layer of elements. This property may be described by
an ∅−de�nable equivalence relation ξ for TK, which thus is restricted with
no base sets. Compton then used the following properties:
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• For any �nite disjoint sets X,Y of middle elements, there there are
elements a, b such that a is greater than each element in X, but
unrelated to Y and b is less than each element in X, but unrelated
to Y .
• For each disjoint set X0, Y0 of top elements and X1, Y1 of bottom
elements there is an element c such that c is in the middle layer
between X0 and X1, but unrelated to Y0 and Y1.

Let ∆ = {δi,j}1≤i,j≤3 be the corresponding set of atomic diagrams i.e. δi,i =
{x = y ∧ x ≤ y ∧ y ≤ x, x 6= y ∧ x 6≤ y ∧ y 6≤ x}, δ1,2 = δ2,3 = {x ≤ y ∧ y 6≤
x, x 6≤ y ∧ y 6≤ x} and δ1,3 = {x ≤ y ∧ y 6≤ x}. Furthermore note that

∃x1, . . . , x6

(
x1 ≤ x2 ≤ x3 ∧ x4 ≤ x5 ≤ x6 ∧ x1 6≤ x5 ∧ x2 6≤ x6

)
will be a spanning formula for ξ in T . Put into the terms of this article,
Compton showed that the set of all (labeled) �nite partial orders almost
surely satisfy (∆, ξ)−extension properties. It thus will become clear from
Theorem 5.7 that TK is ω−categorical and simple with SU-rank 1. This is
a sharp contrast to the homogeneous partial order, generated by taking the
Fraïssé limit of K, which is clearly not simple since it satis�es the strict order
property. The same phenomena has been noted in the sets of structures
studied by Koponen [14] and Mubayi and Terry [15], however the general
question when and why the Fraïssé limit and the probabilistic limit are the
same remains open.

Example 5.6. In [2] the author together with Koponen showed that the
set of all �nite non-rigid structures K = (Kn, µn)n∈N (structures with non-
trivial automorphism group) equipped with the uniform measure µn, do
not have a 0 − 1 law but a convergence law. Let S(A, H) ⊆ K be all
structures in which the nonrigid �nite structure A is embeddable into and
which have an automorphism group containing H as a subgroup such that all
the elements in A are moved by some automorphism. S(A, H) is shown to
have a 0−1 law by proving thatA is almost surely de�nable and then creating
ξ−extension axioms. The formula ξ in this case will describe whether what
relation it has to A, hence distinguishing elements in A. In the special case
where we are working with graphs and A is the two node graph with an
edge between the nodes, then ξ have 6 equivalence classes out of which four
are in�nite, the set of sets of atomic diagrams ∆ = {δi,j}1≤i,j≤6 used to
show (∆, ξ)−extension properties may be enumerated such that if i, j ≤ 4
represent the in�nite classes then δi,j = {E(x, y),¬E(x, y)} (including the
diagram x = y ∧ ¬E(x, y) if i = j), if i = j = 5 or i = j = 6 then
δi,j = {x = y} and if i ≤ 4 but j ≥ 5 then δi,j will state whether class i has
an edge to class 5 or class 6, none or both.

Thus a structureM satisfying the almost sure theory of S(A, H) simple,
ω−categorical with SU−rank 1, trivial algebraic closure and acl(∅) = A.
Moreover if X is the union of all in�nite equivalence classes of ξ thenM � X
forms the structure which satis�es the almost sure theory of Cn consisting of
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all structures of size n under the uniform measure. The convergence law of
K is determined by looking at appropriate di�erent A and H and take the
union of these S(A, H). Thus the convergence law is determined by, in the
almost sure theory of S(A, H), what structure there is in acl(∅) and what
atomic diagrams there are between acl(∅) and the rest of the structure.

Theorem 5.7. If V is binary and T is a complete theory then the following
are equivalent.

(i) T is ω−categorical, supersimple with SU-rank 1 and has trivial alge-
braic closure

(ii) There is an ∅−de�nable restricted equivalence relation ξ for T such
that T satis�es ξ−extension properties.

We will prove this theorem through the direct application of Lemma 5.8
and Lemma 5.10.

Lemma 5.8. Assume V is binary, T is ω−categorical, supersimple with
SU-rank 1 and with trivial algebraic closure. Let M |= T . If ξ(x, y) is the
equivalence relation de�ned by tp(x/aclMeq(∅)) = tp(y/aclMeq(∅)) then ξ is
restricted and T satis�es ξ−extension properties.

Proof. Note that, since SU(M) = 1, ξ has only a �nite amount of in�nite
equivalence classes and since T is ω−categorical and has trivial algebraic
closure there are only a �nite amount of �nite equivalence classes each with
size 1. Thus ξ is a restricted equivalence relation in T . For the rest of this
proof assume ξ has l equivalence classes and enumerate them from 1 to l.
For each i, j ∈ [l] let δi,j be the set of all binary atomic diagrams existing
between elements in class i and class j (or between elements inside class
i if i = j) and put ∆ = {δi,j}i,j∈[l]. Using ∆ and ξ we may now create
(∆, ξ)−extension axioms and it thus remains to prove that Th(M) satis�es
(∆, ξ)−extension properties. We will use the terminology from De�nition
4.1 in order to do the proof.

It is clear from the de�nition of θk,i that for each k ∈ N and i ∈ [ik],
M |= σk ∧ ξk,i. Assume that M |= θk,i(a1, . . . , ak) and j is an associated
number to i. If a ∈ acl(∅) and d1, d2 /∈ acl(∅) but M |= ξ(d1, d2) then
d1 and d2 have the same atomic diagram with respect to a, and this fact
is expressed by γ. We may thus assume without loss of generality that
θk+1,j(y1, . . . , yk, yk+1) implies that none of y1, . . . , yk+1 is in the base set
of ξ i.e. in acl(∅). Further assume that p is such that θk+1,j(y1, . . . , yk+1)
implies that ξ(xp,1, yk+1) hold. That M |= θk,i(a1, . . . , ak) holds implies
that for some element dp,1, witnessing xp,1 and each s ∈ [k] there are ele-
ments dm,αs , dp,βs (witnessed by γ) such thatM |= ξ(dp,βs , dp,1)∧ξ(as, dm,αs)
and atDiag(dm,αs , dp,βs) = atDiag(ys, yk+1), as implied by θk+1,j . For
each s ∈ [k], tp(as/aclMeq(∅)) = tp(dm,αs/aclMeq(∅)). Thus there exists
c1, . . . , ck such that for each s ∈ [k], atDiag(as, cs) = atDiag(dm,αs , dp,βs) =
atDiag(ys, yk+1) and M |= ξ(cs, dm,1). We may conclude that for each
s, r ∈ [k], tp(cs/aclMeq(∅)) = tp(cr/aclMeq(∅)) and the distinct elements



SIMPLE STRUCTURES AXIOMATIZED BY ALMOST SURE THEORIES 19

c1, . . . , ck, a1, . . . , ak are all independent since the algebraic closure is triv-
ial. The independence theorem (Fact 2.5) then implies that there exists an
element c such that M |= ξ(c, dm,1) and for each s ∈ [k],atDiag(as, cs) =
atDiag(as, c) = atDiag(ys, yk+1). It follows that M |= θk+1,j(a1, . . . , ak, c)
and hence we have shown thatM |= τk,i,j , thus T satis�es the ξ−extension
properties. �

From the previous proof we may deduce the following corollary which will
be useful later.

Corollary 5.9. Assume V is binary, T is simple, ω−categorical, SU(T)=1
and acl is trivial. Let M |= T , let ξ be the equivalence relation de�ned by
tp(x/aclMeq(∅)) = tp(y/aclMeq(∅)), and ∆ be the set of all sets δi,j of atomic
diagrams between equivalence class i and j. Then the set of (∆, ξ)−extension
axioms axiomatizes T .

To prove the second direction of Theorem 5.7 we create a small lemma. It
is clear from the proof of this lemma that acl(∅) of any structure satisfying
ξ−extension properties coincide with the base sets of ξ. Note that we do not
use that we are working over a binary vocabulary explicitly in the proof and
thus if we had de�ned extension properties for general vocabularies then this
Lemma would still hold.

Lemma 5.10. If there exists an ∅−de�nable restricted equivalence relation
ξ for T such that T satis�es ξ−extension axioms then T is ω−categorical,
supersimple with SU−rank 1 and has trivial algebraic closure.

Proof. It is clear from Fact 4.2 that T is ω−categorical. That T is supersim-
ple with SU−rank 1 follows from a standard argument which we will sketch
here. We claim that if M |= T and ā ∈ M,A ⊆ M with A0 = ā ∩ acl(A)
then ā |̂ A0A which in turn implies what we want to prove.

Assume ā |̂�A0A and hence tp(ā/A) |= ϕ(x̄, b̄) such that ϕ(x̄, b̄) divides
over A0. Assume that {b̄i}i∈I is an in�nite indiscernible sequence such that
tp(b̄/A0) = tp(b̄i/A0) for each i ∈ I and {ϕ(x̄, b̄i) : i ∈ I} is r−inconsistent
for some r ∈ Z+. Let {c̄i}i∈I be tuples such that M |= ϕ(c̄j , b̄j). Since
this is an in�nite sequence there have to exist tuples c̄i1 , . . . , c̄ir with the
same atomic diagram such that each component in one tuple is in the same
ξ−equivalence class as the corresponding component in the other tuples.
But the ξ−extension axioms implies that there exists a tuple c̄ such that
b̄ij c̄ij has the same atomic diagram and ξ−classes as b̄ij c̄. Using Corollary

4.3 it follows that tp(b̄ij c̄ij ) = tp(b̄ij c̄) for each j ∈ [r]. Hence for each

j ∈ [r]M |= ϕ(c̄, b̄ij ), which means that we have a contradiction against the
r−inconsistence.

Lastly we show that the algebraic closure is trivial. If a ∈M is part of the
base set of ξ, then clearly a ∈ acl(∅). Assume distinct b, ā ∈M are both dis-
joint from the base sets and b ∈ acl(ā). The ξ−extension properties however
imply that there exist an arbitrary amount of elements b1, b2, . . . , bn such
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that biā have the same atomic diagram as bā and are in the same respective
equivalence class. But then tp(bā) = tp(biā) and hence b /∈ acl(ā). �

A special case of being simple is to be ω−stable from which we may deduce
the following corollary to Theorem 5.7.

Corollary 5.11. Assume that T is a complete theory over a binary vocabu-
lary. The following are equivalent:

(i) T is ω−stable, ω−categorical with SU-rank 1 and trivial algebraic
closure.

(ii) there is an ∅−de�nable restricted equivalence relation ξ for T and a
set of sets of binary atomic diagrams ∆ = {δi,j} with |δi,j | = 1 for
each i, j such that T satisfy (∆, ξ)−extension properties.

(iii) there is an ∅−de�nable restricted equivalence relation ξ for T such
that ifM |= T then each equivalence class X of ξ is an indiscernible
set over M −X.

Proof. Assume (i) and let M |= T . Lemma 5.8 implies that if ξ(x, y) is
the equivalence relation tp(x/aclMeq(∅)) = tp(y/aclMeq(∅)) then T satis�es
(∆, ξ)−extension axioms for some set ∆. If A ⊆ M and a, b ∈ M − A such
that M |= ξ(a, b) then p(x) = tp(a/aclMeq(∅)) = tp(b/aclMeq(∅)) and by
stability and SU−rank 1, there is thus a unique way to extend p(x) to a
type over A hence tp(a/A) = tp(b/A). This implies that the atomic diagram
of {a}∪A is the same as for {b}∪A for any A ⊆M . We may thus conclude
that |δi,j | = 1 for each δi,j ∈ ∆.

Assume (ii) in order to prove (iii). Let M |= T , assume a1, . . . , ak ∈ M
are in the same ξ−equivalence class and assume b1, . . . , br ∈M are not in the
same class as a1. If c1, . . . , ck are in the same class as a1 then, by the assump-
tions, they satisfy the same extension axioms, i.e. M |= θk,i(a1, . . . , ak) ∧
θk,i(c1, . . . , ck) for some i. However, as |δi,j | = 1, there is unique way
to extend c1, . . . , ck to any element in the same equivalence class as b1.
Thus by induction there is j such that M |= θk,j(a1, . . . , ak, b1, . . . , br) ∧
θk,j(c1, . . . , ck, b1, . . . , br) and hence tp(a1, . . . , ak/b1, . . . , br) = tp(c1, . . . , ck/
b1, . . . , br).

If we assume (iii) and want to prove (i), assumeM |= T . For any A ⊆M
it is clear from the assumption that the algebraic closure is trivial and for
any tuple ā ∈ M such that ā ∩ A = ∅ the type tp(ā/A) only depend on
which ξ−equivalence class the elements of ā are in. Thus we conclude that
the SU-rank is 1 and if |A| = ℵ0 there are only ℵ0 complete types over A,
hence we have ω−stability. T is ω−categorical since the type of a tuple only
depend on which equivalence classes it belongs, and thus there are only a
�nite amount of n−types over ∅ for each n < ω. �

As a special case of the ω−stable theories we have the strongly minimal
ones.

Corollary 5.12. Assume that T is a complete theory over a binary vocabu-
lary. The following are equivalent.
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(i) T is strongly minimal and ω−categorical with trivial algebraic clo-
sure.

(ii) There is an ∅−de�nable restricted equivalence relation ξ for T with
only one in�nite equivalence class in M |= T such that T satis�es
ξ−extension properties and all pairs of elements which are not from
the base sets have the same atomic diagram.

(iii) If M |= T , there exists a co�nite ∅−de�nable set which is indis-
cernible over the rest ofM.

Proof. Assume thatM |= T is strongly minimal and ω−categorical, thusM
is ω−stable. Corollary 5.11 then implies that there is a restricted equivalence
relation ξ for which we satisfy ξ−extension properties. The strong minimality
however implies that there is only one in�nite equivalence class hence (ii)
follows.

Assume (ii). The in�nite equivalence class of ξ is an ∅−de�nable set. By
Corollary 5.11 this set is indiscernible over the rest ofM. If we assume (iii) it
is clear that only a �nite amount of n−types may exist over ∅ for each n < ω,
thus T is ω−categorical. By indiscernability either ϕ(x, ā) is satis�ed by all
elements in the co�nite set (and not in ā) or none, thus ϕ(x, ā) is de�ning a
�nite or co�nite set. Hence T is strongly minimal. �

Remark 5.13. It is quite clear that the de�nition of spanning formulas 5.2
and ξ−extension properties 5.4 may be extended into the context of any �nite
relational vocabulary V . With these more general assumptions Corollaries
5.11 and 5.12 have proofs which are very similar, though more technical, with
the main component being the fact that ω−stable theories have stationary
types over algebraically closed sets. However, it is not possible to generalize
Theorem 5.7 using our method as the independence property of simple the-
ories is not strong enough to handle the higher arity relational symbols such
that we get extension properties.

The pregeometry de�ned by the algebraic closure in a strongly minimal
ω−categorical theory satis�es that if X and Y both are independent sets of
equal size then |cl(X)| = |cl(Y )|. It thus follows, using Lemma 3.4, that if
(Kn, µn)n∈N is a class of structures such that almost surely |N | = n for N ∈
Kn and the almost sure theory TK is strongly minimal and ω−categorical
then the algebraic closure is trivial. This conclusion combined with the
previous remark gives us the following result.

Proposition 5.14. Let V be any �nite relational vocabulary. Assume a set
of V−structures K = (Kn, µn)n∈N are such that |N | = n almost surely for
N ∈ Kn then the following are equivalent:

• TK is strongly minimal and ω−categorical.
• K has a 0− 1 law and there exists a number m ∈ N such that almost
surely for N ∈ K there is X ⊆ N with |X| = m such that N −X is
indiscernible over X.
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The assumption that K must have a 0− 1 law is necessary for the second
direction, as we may almost surely have indiscernible sets even though the
same sentences are not almost surely true. An easy example is letting Kn

consist of a complete graph on n nodes when n is even and the complement
of the complete graph on n nodes when n is odd.

6. Approximating theories using probabilities on finite

structures

In this section we prove Theorems 1.2 and 1.3 which say that the simple
ω−categorical structures with SU-rank 1 and trivial algebraic closure are
possible to approximate using �nite structures and almost sure theories. In
order to do this, we will need to de�ne very strict ways to uniformly create
the �nite structures and in this way satisfy the correct extension properties.
We thus de�ne a set of atomic diagrams such that it could have been gotten
from an in�nite structure with a restricted equivalence relation Q as we saw
in Section 5.

De�nition 6.1. Assume that l, t ∈ N, t < l, Q is a relational symbol in
the vocabulary and ∆ = {δi,j}i,j∈[l] is such that each δi,j is a set of binary
atomic diagrams. We call ∆ an (l, t, Q)−compatible set if the following
properties are satis�ed:

• For any i, j ∈ [l] if ζ(x, y) ∈ δi,j then ζ(y, x) ∈ δj,i.
• For any i, j, k ∈ [l] if ζ(x, y) ∈ δi,j and ζ ′(x′, y′) ∈ δi,k then ζ(x, y)
speci�es x to have the same unary atomic diagram as x′ in ζ ′(x′, y′).
• For any i ∈ [l] if j ∈ {l − t+ 1, . . . , l} then |δi,j | = 1.
• Q(x, y) ∧ Q(x, x) hold in all atomic diagrams in δi,i and ¬Q(x, y) ∧
Q(x, x) hold in all atomic diagrams in δi,j if i 6= j.

Using the (l, t, Q)−compatible sets we will now show a 0 − 1 law which
will be the foundation for the rest of this section. The next proposition may
seem easy to generalize to structures with more complex vocabulary than
binary, however problems may arise with dependence between a lower arity
relational symbol and a higher one, which seem to make things quite compli-
cated. This may though be possible to �x by giving an even more elaborate
de�nition than the one above. If we assume that there is a unique atomic
diagram between �xed classes, then a generalization of the proposition to
higher arities becomes a quite trivial exercise.

Proposition 6.2. Let l, t ∈ Z+, Q ∈ V and assume that ∆ = {δi,j}i,j∈[l] is
an (l, t, Q)−compatible set. If

Kn = {N : N = ([n]×[l−t]) ∪ ({1}×{l−t+1, . . . , l}) and if (a, i), (b, j) ∈ N

then atDiagN ((a, i), (b, j)) ∈ δi,j}
with associated uniform measure µn(N ) = 1/|Kn| then K = (Kn, µn)n∈N
almost surely satis�es (∆, Q)−extension properties and has a 0− 1 law with
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an almost sure theory which is supersimple and ω−categorical with SU-rank
1 and trivial algebraic closure.

Proof. Note that Q(x, y) almost surely de�nes a restricted equivalence re-
lation in K, thus it follows from Lemma 5.10 that if we can prove that K
almost surely satis�es (∆, Q)−extension properties then K has a 0 − 1 law
and TK satisfy all required properties.

If i, j ∈ [l − t] and ζ ∈ δi,j then

µn(∃x, y(atDiag(x, y) = ζ)) ≈ 1− (|δi,j | − 1)n
2

|δi,j |n2

which tends to 1 as n → ∞. On the other hand if i ∈ {l − t + 1, . . . , l}
then |δi,j | = 1. Thus we conclude that each atomic diagram in any δi,j has
an asymptotic probability of 1 to exist, and hence there exists a formula γ
which is spanning Q.

Using ∆ and Q we may create (∆, Q)−extension axioms according to Def-
inition 5.4 and hence we now need to prove that the properties in De�nition
4.1 all almost surely hold in order to �nish this proof. It is clear that the
extension axioms satisfy property (4.1). It remains to prove that the formu-
las σk, τk,i,j and ξk,i hold. It is clear, by the way the structures in Kn are
de�ned, that almost surely for N ∈ Kn we have N |= σk∧ξk,i for each k ∈ N
and i ∈ [ik].

If N |= θk,i(a1, . . . , ak) and j is one of its associated numbers, the formula
θk+1,j has an equivalence class, with number p, (with respect to γ) pointed
out for the extra element. If p ∈ {l − t + 1, . . . , l} then, with probability
one, N |= τk,i,j since there is only one way for elements in speci�c equiva-
lence classes to be adjacent to elements in the equivalence class p. Assume
p ∈ [l− t]. The probability that no element with this atomic diagram exists
for some elements satisfying θk,i is at most(

n · l
k

)(
c− 1
c

)n
l
−k−s

where c is the number of possible isomorphism classes of k+1 elements in
the chosen equivalence classes and s is the number of elements which γ talk
about. We note that this probability goes to 0 as n grows, and thus τk,i,j is
almost surely true. �

We will now move on to proving Theorem 1.2. It might seem like we,
during the proof, are taking a detour to a new structure M′. However the
problem in studyingM is that we do not know, without our detour toM′,
if the equivalence relation ξ inM does almost surely de�ne an equivalence
relation with the desired properties in K.

Proof of Theorem 1.2. Let M |= T and ξ(x, y) be a formula representing
the equivalence relation tpMeq(x/aclMeq(∅)) = tpMeq(y/aclMeq(∅)) which
we know is ∅−de�nable and have l equivalence classes out of which t are
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�nite. Let V ′ = V ∪ {Q} where Q is a new binary relation and cre-
ate the V ′-structure M′ such that M′ � V = M and M |= ξ(a, b) if
and only if M′ |= Q(a, b). Obviously Q is an equivalence relation in M′
and since Q only represents an ∅−de�nable relation in M it is clear that
tpM′eq(x/aclM′eq(∅)) = tpM′eq(y/aclM′eq(∅)) if and only ifM′ |= Q(x, y).

Let ∆′ = {δ′i,j}i,j∈[l] be such that for each i, j ∈ [l], δ′i,j is the set of all
binary atomic diagrams existing between elements in Q−equivalence class i
and j inM′. Note that if a, b, c ∈ M ′ with a ∈ aclM′(∅) andM′ |= Q(b, c)
then tpM′(b/a) = tpM′(c/a) and thus if the equivalence class of a and b is i
and j respectively then |δ′i,j | = 1. The remaining properties of ∆ are clear

and we may thus conclude that ∆ is an (l, t, Q)−compatible set. De�ne

K′n = {N : N = ([n]×[l−t]) ∪ ({1}×{l−t+1, . . . , l}) and if (a, i), (b, j) ∈ N

then atDiag((a, i), (b, j)) ∈ δi,j}
and associate the uniform probability measure µ′n(M) = 1/|K′n| with it.
From Proposition 6.2 we get that K′ = (K′n, µ

′
n)n∈N has a 0− 1 law and TK′

satisfy (∆′, Q)−extension properties. By Corollary 5.9, Th(M′) is axioma-
tized by (∆′, Q)−extension axioms and thus Th(M′) = TK′ . By de�nition
M′ |= ∀x, y(ξ(x, y) ↔ Q(x, y)) thus ξ is almost surely a restricted equiva-
lence relation in K′ and K′ almost surely satisfy (∆′, ξ)−extension proper-
ties.

Let ∆ = ∆′ � V , Kn = {N ′ � V : N ′ ∈ K′n} with probability measure
µn(N � V ) = µ′n(N ) and put K = (Kn, µn)n∈N. Clearly µn is a well de-
�ned probability measure due to Q implicitly being de�ned by the labeling
of each structure. Since ξ is a V−formula, it is almost surely true in K that
ξ is a restricted equivalence relation and the (∆, ξ)−extension properties
are almost surely satis�ed. By Corollary 5.9, Th(M) is axiomatized by the
(∆, ξ)−extension properties and thus TK = Th(M). �

In previous works on the subject of �nding 0−1 laws the previous theorem
and Proposition 6.2 are not standard since the sets considered are not (almost
surely) the set of substructures of a model of the almost sure theory under
the uniform measure. The question that arises is if it is possible to extend the
same results to this new context. For this reason we now turn our attention
to study what we call random structures.

De�nition 6.3. Let M be a structure and Kn = {A : A = [n],∃f :
A → M embedding} with a probability measure µn such that for N ∈
Kn, µn(N ) = 1/|Kn|. We say that M is a random structure if K =
(Kn, µn)n∈N has a 0− 1 law andM |= TK.

Lemma 3.4 and Corollary 3.5 imply that an ω−categorical structureM,
where (M, aclM) forms a vector space pregeometry, is not a random struc-
ture. In our previous examples, by de�nition, the in�nite structures in 4.5
and 5.5 are both random structures. However Example 5.6 does not give a
random structure, which follows from Proposition 6.5 as it is not ω−stable.



SIMPLE STRUCTURES AXIOMATIZED BY ALMOST SURE THEORIES 25

Theorem 1.3 does however show that all the structures considered in this ar-
ticle are at least close to being random structures, which we will now prove.

Proof of Theorem 1.3. Assume that tp(x/aclMeq(∅)) = tp(y/aclMeq(∅)) has
exactly l equivalence classes. Enumerate the classes and let ∆ = {δi,j}i,j∈[l]

be such that δi,j is the set of all possible binary atomic diagrams between
class i and class j. Put r = maxi,j |δi,j | + 1 and let V ′ = V ∪ {Q} ∪
{R1

i,j , . . . , R
r−|δi,j |
i,j }i≤j where Q and Rti,j are binary relational symbols not

in V . For each i ≤ j and for some P (x, y) ∈ δi,j we will de�ne new dis-
tinct atomic diagrams P0, . . . , Pr−|δi,j | inductively. Let P0 be the atomic

diagram P (x, y) and if Pt(x, y) is de�ned then let Pt+1 be the atomic dia-
gram Pt(x, y) ∧ Rti,j(x, y) ∧ Rti,j(y, x). Let δ′i,j = δi,j ∪ {P1, . . . , Pr−|δi,j |} for
i ≤ j but if i > j let δ′i,j be the set of reversed atomic diagrams in δ′j,i.

Further more for each i ∈ [l] add Q(x, y) ∧Q(x, x) to each atomic δ′i,i and if

i 6= j add Q(x, x) ∧ ¬Q(x, y) to each atomic diagram in δ′i,j .

It is now clear that |δ′i,j | = |δ′i′,j′ | for each i, j, i′, j′ ∈ [l] and ∆′ =
{δ′i,j}i,j∈[l] is a (l, 0, Q)−compatible set. Proposition 6.2 now implies that

there is a countable structureM′ which satis�es (∆′, Q)−extension proper-
ties, and thusM′ � V satis�es (∆, ξ)−extension properties which in turn im-
plies thatM∼=M′ � V . Let Kn = {A : A = [n], ∃f : A →M′ embedding}
under the uniform measure µn. As there is an equal amount of possible
atomic diagrams between and inside Q−equivalence classes and each equiv-
alence class is distinguished by some unique relational symbol it follows that
almost surely A ∈ Kn will contain l Q−equivalence classes with more than
log(n) elements in each class. It is now straightforward to show thatM′ is a
random structure in the same way as we showed the 0−1 law in Proposition
6.2. �

The following example describes a structure which satis�es all the as-
sumptions of Proposition 1.3 but is not a random structure. We may thus
conclude that being a reduct of a random structure is the best we can get in
general for such structures.

Example 6.4. Let V be the vocabulary {E1, E2, P} where E1, E2 are binary
and P is unary. LetM be the V−structure consisting of the disjoint union
of the structures G1 and G2 such that the relation P holds for all elements
in G2. The countable structures G1 and G2 are models of the almost sure
theory of the class consisting of all �nite structures with two (respectively
one) symmetric anti-re�exive relation under the uniform measure (hence G2

is the random graph). It is a quick exercise (which may use Theorem 5.7) to
show that M is ω−categorical, simple with SU−rank 1 and aclM(∅) = ∅.
Let

Kn = {A : A = [n],A ↪→M}

and let Cn = {N ∈ Kn : ∃f : N → G1 embedding}. Note that |Cn| = 4(n2).
We may then calculate the proportion of structures in Kn which belong to
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Cn:

|Cn|
|Kn|

= 1−
∑n

i=1

(
n
i

)
|Cn−i|2(i2)

|Kn|
= 1−

∑n
i=1

(
n
i

)
4(n−i2 )2(i2)

4(n2)
=

1−
n∑
i=1

(
n

i

)
4(−2in+i2+i)/22(i2−i)/2 ≥ 1−

n∑
i=1

(
n

i

)
4(−in)/22(in)/2 ≥

1−
n∑
i=1

(
n

i

)
2(−in)/2 ≥ 1− 1

n

n∑
i=1

(
n

i

)
n−i = 1− 1

n

(
(1 + 1/n)n − 1

)
which tends to 1 as n tends to in�nity. Thus almost surely Kn equipped with
the uniform measure will only contain substructures of G1. HenceM 6|= TK

because the theories Th(M) and TK satisfy di�erent extension axioms. We
conclude thatM is not a random structure.

The previous example is an easy case in the sense that we have only two in-
�nite equivalence classes and only multiple possible binary atomic diagrams
inside the classes. If we would have multiple equivalence classes and multiple
atomic diagrams between them then the calculations would be considerably
harder. We leave for future combinatoric research to deduce exactly which
of the structures of Proposition 1.3 are random structures and which are just
reducts of such.

The sets Kn in Proposition 6.2 are constructed in a speci�c way, taking
care that all l equivalence classes are nonempty and express all the possi-
ble atomic diagrams of the spanning formula. The reason for taking such
caution, and the reason why we assumed acl(∅) = ∅ in Theorem 1.3, is that
aclM(∅) will almost surely disappear from the set of embeddable structures,
unlessM is ω−stable.

Proposition 6.5. LetM be a structure which is ω−categorical, simple, with
SU−rank 1 and with trivial algebraic closure such that aclM(∅) 6= ∅. If M
is a random structure thenM is ω−stable.

Proof. IfM is not ω−stable, then by Theorem 5.7 and Corollary 5.11 there
exists a restricted equivalence relation ξ with l equivalence classes such that
between some two equivalence classes, or inside one equivalence class, there
are multiple possible atomic diagrams. We assume that the set B is an
equivalence class which contain multiple atomic diagrams inside of it. The
calculations are similar (but slightly more technical) in the second case. Let
a ∈ acl(∅) and assume that (Kn, µn)n∈N is as in the de�nition of a random
structure. Since M is a random structure ξ will almost surely de�ne an
equivalence relation where the atomic diagrams between some class with one
element and the other classes are the same as a has to the other classes,
while one class will almost surely contain the same atomic diagrams as B.

The atomic diagram between any equivalence class and a base set is
uniquely determined. As M is a random structure there is an increasing
function f : N→ N such that, almost surely in Kn, there will be more than
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f(n) elements in the ξ−equivalence class with the same atomic diagrams
as in B, and only one element in the ξ−equivalence class approximating
a. For each A ∈ Kn which contain an element approximating a there al-
most surely exists 2f(n) structures not approximating a. Thus almost surely
A ∈ Kn will not contain an equivalence class which correspond to a. This is
a contradiction. �

Remark 6.6. De�nition 6.3 could have been made in another way to include
a wider range of structures. If we had instead done the de�nition considering
Kn = {A : A = [n],∃f : A → M embedding and aclM(∅) ⊆ im(f)} then
Proposition 6.5 would no longer hold, Theorem 1.3 would be possible to
generalize and Example 5.6 would give a random structure. Do however
note that Example 6.4 would still be viable, and thus we may not even in
this setting skip the reduct part of Theorem 1.3.

Just as we in Section 5 got corollaries regarding the strongly minimal
theories we get, in this section, the following corollary which sums up how
the strongly minimal ω−categorical structures may be approximated.

Corollary 6.7. Let V be any �nite relational vocabulary. Assume that T
is ω−categorical and strongly minimal. For countable M |= T the following
are equivalent:

(i) M consists of an indiscernible set over a �nite tuple.
(ii) The algebraic closure inM is trivial.
(iii) M is a random structure.

Proof. (ii) implies (i) holds since in strongly minimal theories ifM |= T and
{a1, . . . , an}, {b1, . . . , bn} ⊆ M are independent sets then, from elementary
results, it follows that tp(a1, . . . , an) = tp(b1, . . . , bn). (iii) implies (ii) follows
from Lemma 3.4 in the same way as we used it in proving Proposition 5.14.
(i) implies (iii) may be proved by using a generalization of Theorem 1.2
to the context of �nite relational vocabularies in the context of ω−stable
structures in accordance to Remark 5.13. By building the sets of structures
like in Proposition 6.2 and the proof of Theorem 1.2 we may conclude that
|N | = n for N ∈ Kn. �
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